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Abstract

Multimodal Machine Translation (MMT) en-
riches the source text with visual information
for translation. It has gained popularity in re-
cent years, and several pipelines have been pro-
posed in the same direction. Yet, the task lacks
quality datasets to illustrate the contribution
of visual modality in the translation systems.
In this paper, we propose our system under
the team name Volfa for the Multimodal Trans-
lation Task of WAT 2021' (Nakazawa et al.,
2021) from English to Hindi. We also partic-
ipate in the textual-only subtask of the same
language pair for which we use mBART, a
pretrained multilingual sequence-to-sequence
model. For multimodal translation, we pro-
pose to enhance the textual input by bringing
the visual information to a textual domain by
extracting object tags from the image. We also
explore the robustness of our system by sys-
tematically degrading the source text. Finally,
we achieve a BLEU score of 44.6 and 51.6 on
the test set and challenge set of the multimodal
task.

1 Introduction

Machine Translation deals with the task of transla-
tion between language pairs and has been an active
area of research in the current stage of globaliza-
tion. In the task of multimodal machine translation,
the problem is further extended to incorporate vi-
sual modality in the translations. The visual cues
help build a better context for the source text and
are expected to help in cases of ambiguity.

With the help of visual grounding, the machine
translation system has scope for becoming more
robust by mitigating noise from the source text and
relying on the visual modality as well.

In the current landscape of multimodal trans-
lation, one of the issues is the limited datasets

'nttp://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/index.html

available for the task. Another contributing fac-
tor is that often the images add irrelevant infor-
mation to the sentences, which may act as noise
instead of an added feature. The available datasets,
like Multi30K (Elliott et al., 2016), are relatively
smaller when compared to large-scale text-only
datasets (Bahdanau et al., 2015). The scarcity of
such datasets hinders building robust systems for
multimodal translation.

To address these issues, we propose to bring
the visual information to a textual domain and
fine-tune a high resource unimodal translation sys-
tem to incorporate the added information in the
input. We add the visual information by extracting
the object classes by using an object detector and
add them as tags to the source text. Further, we
use mBART, a pretrained multilingual sequence-
to-sequence model, as the base architecture for
our translation system. We fine-tune the model
on a textual-only dataset released by Kunchukut-
tan et al. (2018) consisting of 1,609,682 parallel
sentences in English and Hindi. Further, we fine-
tune it on the training set enriched with the ob-
ject tags extracted from the images. We achieve
state-of-the-art performance on the given dataset.
The code for our proposed system is available at
https://github.com/kshitij98/vita.

The main contributions of our work are as fol-
lows:

* We explore the effectiveness of fine-tuning
mBART to translate English sentences to
Hindi in the text-only domain.

* We further propose a multimodal system for
translation by enriching the input with the ob-
ject tags extracted from the images using an
object detector.

* We explore the robustness of our system by
a thorough analysis of the proposed pipelines
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by systematically degrading the source text
and finally give a direction for future work.

The rest of the paper is organized as follows. We
discuss prior work related to multimodal transla-
tion. We describe our systems for the textual-only
and multimodal translation tasks. Further, we re-
port and compare the performance of our models
with other systems from the leaderboard. Lastly,
we conduct a thorough error analysis of our sys-
tems and conclude with a direction for future work.

2 Related Work

Earlier works in the field of machine translation
largely used statistical or rule-based approaches,
while neural machine translation has gained popu-
larity in the recent past. Kalchbrenner and Blunsom
(2013) released the first deep learning model in this
direction, and later works utilize transformer-based
approaches (Vaswani et al., 2017; Song et al., 2019;
Conneau and Lample, 2019; Edunov et al., 2019;
Liu et al., 2020) for the problem.

Multimodal translation aims to use the visual
modality with the source text to help create a
better context of the source text. Specia et al.
(2016) first conducted a shared task on the prob-
lem and released the dataset, Multi30K (Elliott
et al., 2016). It is an extended German version of
Flickr30K (Young et al., 2014), which was further
extended to French and Czech (Elliott et al., 2017,
Barrault et al., 2018). For multimodal translation
between English and Hindi, Parida et al. (2019)
propose a subset of Visual Genome dataset (Kr-
ishna et al., 2017) and provide parallel sentences
for each of the captions.

Although both English and Hindi are spoken
by a large number of people around the world,
there has been limited research in this direction.
Dutta Chowdhury et al. (2018) created a synthetic
dataset for multimodal translation of the language
pair and further used the system proposed by Cal-
ixto and Liu (2017). Later, Sanayai Meetei et al.
(2019) work with the same architecture on the mul-
timodal translation task in WAT 2019. Laskar et al.
(2019) used a doubly attentive RNN-based encoder
and decoder architecture (Calixto and Liu, 2017;
Calixto et al., 2017). Laskar et al. (2020) also pro-
posed a similar architecture and pretrained on a
large textual parallel dataset (Kunchukuttan et al.,
2018) in their system.
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Train Valid Test Challenge
#sentence pairs 28,930 998 1,595 1,400
Avg. #tokens (source) 495 493 492 5.85
Avg. #tokens (target) 503 499 492 6.17

Table 1: The statistics of the provided dataset. The aver-
age number of tokens in the source and target language
are reported for all the sentence pairs.

3 System Overview

In this section, we describe the systems we use for
the task.

3.1 Dataset Description

We use the dataset provided by the shared task or-
ganizers (Parida et al., 2019), which consists of
images and their associated English captions from
Visual Genome (Krishna et al., 2017) along with
the Hindi translations of the captions. The dataset
also provides a challenge test which consists of sen-
tences where there are ambiguous English words,
and the image can help in resolving the ambiguity.
The statistics of the dataset are shown in Table 1.
We use the provided dataset splits for training our
models.

We also use the dataset released by Kunchukut-
tan et al. (2018) which consists of parallel sen-
tences in English and Hindi. We use the training
set, which contains 1,609,682 sentences, for train-
ing our systems.

3.2 Model

We fine-tune mBART, which is a multilingual
sequence-to-sequence denoising auto-encoder that
has been pre-trained using the BART (Lewis et al.,
2020) objective on large-scale monolingual corpora
of 25 languages, including both English and Hindi.
The pre-training corpus consists of 55,608 million
English tokens (300.8 GB) and 1,715 million Hindi
tokens (20.2 GB). Its architecture is a standard
sequence-to-sequence Transformer (Vaswani et al.,
2017), with 12 encoder and decoder layers each
and a model dimension of 1024 on 16 heads re-
sulting in ~680 million parameters. To train our
systems efficiently, we prune mBART’s vocabu-
lary by removing the tokens which are not present
in the provided dataset or the dataset released by
Kunchukuttan et al. (2018).

3.2.1 mBART

We fine-tune mBART for text-only translation from
English to Hindi and feed the English sentences



Test Set

Challenge Set

Model

BLEU RIBES AMFM BLEU RIBES AMFM

Text-only Translation

CNLP-NITS-PP 37.01 0.80 0.81 37.16 0.77 0.80
ODIANLP 40.85 0.79 0.81 38.50 0.78 0.80
NLPHut 42.11 0.81 0.82 43.29 0.82 0.83
mBART (ours) 44.12 0.82 0.84 51.66 0.86 0.88
Multimodal Translation

CNLP-NITS 40.51 0.80 0.82 33.57 0.75 0.79
iitp 42.47 0.81 0.82 37.50 0.79 0.81
CNLP-NITS-PP  39.46 0.80 0.82 39.28 0.79 0.83
ViTA (ours) 44.64 0.82 0.84 51.60 0.86 0.88

Table 2: Performance of our proposed systems on the test and challenge set.

to the encoder and decode Hindi sentences. We
first fine-tune the model on the dataset released by
Kunchukuttan et al. (2018) for 30 epochs, and then
fine-tune it on the Hindi Visual Genome dataset for
30 epochs.

3.2.2 VIiTA

We again fine-tune mBART for multimodal trans-
lation from English to Hindi but add the visual
information of the image to the text by adding the
list of object tags detected from the image. We
feed the English sentences along with the list of
object tags to the encoder and decode Hindi sen-
tences. For feeding the data to the encoder, we
concatenate the English sentence, followed by a
separator token ‘##’, followed by the object tags
which are separated by ‘,’. We use Faster R-CNN
with ResNet-101-C4 backbone? (Ren et al., 2015)
to detect the list of objects present in the image.
We sort the objects by their confidence scores and
choose the top ten objects.

For training the model, we first fine-tune the
model on the dataset released by Kunchukuttan
et al. (2018). Since this is a text-only dataset, we
do not add any object tag information. Afterward,
we fine-tune the model on Hindi Visual Genome
dataset, where each sentence has been concatenated
with object tags. Initially, we mask ~15% of the
tokens in each sentence to incentivize the model to
use the object tags along with the text and fine-tune
the model on masked sentences along with object
tags for 30 epochs. Finally, we train the model for
30 more epochs on Hindi Visual Genome dataset

We use the implementation available in Detec-

tron2 (https://github.com/facebookresearch/
detectron?2).

168

with unmasked sentences and object tags.

3.3 Experimental Setup

We implement our systems using the implementa-
tion of mBART available in the fairseq library® (Ott
et al., 2019). We fine-tune on 4 Nvidia GeForce
RTX 2080 Ti GPUs with an effective batch size
of 1024 tokens per GPU. We use the Adam opti-
mizer (¢ = 1079, 8; = 0.9, B2 = 0.98) (Kingma
and Ba, 2015) with 0.1 attention dropout, 0.3
dropout, 0.2 label smoothing and polynomial decay
learning rate scheduling. We validate the models
every epoch and select the best checkpoint after
each training based on the best validation BLEU
score. To train our systems efficiently, we prune
the vocabulary of our model by removing the to-
kens which do not appear in any of the datasets
mentioned in the previous section. While decoding,
we use beam search with a beam size of 5.

4 Results and Discussion

The BLEU score (Papineni et al., 2002) is the
official metric for evaluating the performance of
the models in the leaderboard. The leaderboard
further uses RIBES (Isozaki et al., 2010) and
AMFM (Banchs and Li, 2011) metrics for the
evaluations. We report the performance of our
models after tokenizing the Hindi outputs using
indic-tokenizer* in Table 2.

It can be seen that our model is able to general-
ize well on the challenge set as well and performs
better than other systems by a large margin. To

Shttps://github.com/pytorch/fairseq
*nttps://github.com/ltrc/
indic-tokenizer
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A large pipe extending from the wall of the court.
FIE B AR I e g3 U ISt urgy

building, man, flowers, shorts, racket, hat, court,

English Sentence
Hindi Translation

Object Tags shoe, shirt, window
mBART output 3feTed &1 IR ¥ fawarid t J1urzy
ViTA output FId B AR I fawaia us Fe1 gy

English Sentence A person riding a motorcycle.

Masked Sentence A <mask> riding a <mask>.
. helmet, building, sign, man, shirt, bike, flowers,
Object Tags barrier, tree, wheel
mBART output T 3eH! €IS B T HRaAT S
ViTA output TP 3 U a5 &) JaR) HR 361§

Figure 1: A translation example from the challenge set
which illustrates the advantage of using ViTA to resolve
ambiguities. mBART is translating the word court to
judicial court, while ViTA translates it to tennis court.

Train Valid Test Challenge
#entities in text 29,583 1,028 1,631 1,592
#objects tags in images 253,051 8,679 13,855 12,507
#entities in object tags 13,959 498 758 442
%entities in object tags  47.18% 48.44% 46.47% 27.76%

Table 3: We show the overlap between the entities in
the text and the object tags detected using Faster R-
CNN model. The entities were identified using the
en_core_web_sm model from the spaCy library>.

further analyze the results, we find a few cases in
the challenge set wherein ViTA is able to resolve
ambiguities, and an example is illustrated in Fig-
ure 1. Yet, the performance of the models is very
similar across the textual-only and multimodal do-
mains, and there are no significant improvements
observed in the multimodal system.

4.1 Degradation

Although there is no significant improvement in
the multimodal systems over the textual-only mod-
els, Caglayan et al. (2019) explore the robustness
of multimodal systems by systematically degrad-
ing the source text for translations. We employ
a similar approach and degrade the source text to
compare our systems.

4.1.1 Entity masking

The goal of entity masking is to mask out the vi-
sually depictable entities in the source text so that
the multimodal systems can make use of the visual
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Figure 2: The effect of object tags on an entity masked
input from the test set. ViTA is able to use the context
built from the object tags to predict a motorcycle, while
mBART is predicting a horse instead.

No masking Entity Masking Degradation %

mBART 442 15.1 65.8
VIiTA 44.6 22.5 49.6
ViTA-gt 43.6 254 41.7

Table 4: The effect of entity masking on the BLEU
score of the proposed models on the test set.

cues in the image. To identify such entities, we
use the en_core_web_sm model in spaCy” to pre-
dict the nouns in the sentence. The statistics of the
tagged entities can be seen in Table 3.

We progressively increase the percentage of
masked entities to better compare the degradation
of our systems and it can be seen in Figure 3a. The
final degraded values are reported in Table 4. Since
the masked entities can also be predicted by using
only the textual context of the sentence, we simi-
larly add a training step of masking ~15% tokens
while training mBART for a valid comparison. An
example of the performance of our systems on an
entity masked input is illustrated in Figure 2.

As an upper bound to the scope of our system,
we propose ViTA-gt, which uses the ground-
truth object labels from the Visual Genome dataset.
Since the number of annotated objects is large, we
filter them by removing the objects far from the
image region.

Shttps://spacy.io/
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Figure 3: BLEU score comparison of the proposed models by increasing the masking percentage in the source

text.
No masking Color Deprivation Degradation % No masking Adjective Masking Degradation %
mBART 442 39.0 11.8 mBART 44.2 36.1 18.3
ViTA 44.6 39.2 12.1 ViTA 44.6 36.1 19.1
ViTA-col 43.7 40.0 8.5 ViTA-adj 443 36.9 16.7
ViTA-gt-col 43.8 40.9 6.6 ViTA-gt-adj 439 37.2 15.3

Table 5: The effect of color deprivation on the BLEU
score of the proposed models on the test set.

4.1.2 Color deprivation

The goal of color deprivation is to similarly mask
tokens that are difficult to predict without the visual
context of the image. To identify the colors in the
source text, we maintain a list of colors and check
whether the words in the sentence are present in the
list. Similar to entity masking, we progressively
increase the percentage of masked colors in the
dataset to compare our systems. The comparison
of our systems can be seen in Figure 3b. The final
values of color deprivation are reported in Table 5.

As an upper bound to the scope of our system,
we believe that colors can further be added to the
object tags to help build a more robust system. As
an added experiment, we propose ViTA-col by
using the ground-truth annotations from the Vi-
sual Genome dataset and adding colors to our pre-
dicted object tags, which are present in the ground-
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Table 6: The effect of adjective masking on the BLEU
score of the proposed models on the test set.

truth objects as well. As a part of future work, we
would like to extend our system to predict the col-
ors from the image itself. We further experiment
with ViTA-gt—col, which uses ground-truth ob-
jects with added colors in the input.

4.1.3 Adjective Masking

Similar to color deprivation, we propose adjective
masking as several of the adjectives are visually
depictable, and the degradation comparison should
not be limited to just entities and colors. We pre-
dict the adjectives in the sentence by using the POS
tagging model en_core_web_sm from spaCy li-
brary.

The performance of our models is compared in
Figure 3c. The final values are reported in Table 6.

As an upper bound to the scope of our system,
we propose to add all the adjectives to their cor-
responding object tags in the input. We propose



ViTA-ad]j by adding the ground truth adjectives
annotated in the Visual Genome dataset to the ob-
ject tags which are also predicted by our object
detector. We also propose ViTA-gt-adj, which
uses the ground-truth objects with their correspond-
ing adjectives. The objects which are from the im-
age region are removed to mitigate the noise added
by the large number of objects in the annotations.

4.1.4 Random Masking

For a general robustness comparison of our models,
we remove the limitation of manually masking the
source sentences and progressively mask the text
by random sampling.

The performance of our models is compared in
Figure 3d.

5 Conclusion

We propose a multimodal translation system and
utilize the textual-only pre-training of a neural ma-
chine translation system, mBART, by extracting
object tags from the image. Further, we explore
the robustness of our proposed multimodal system
by systematically degrading the source texts and
observe improvements from the textual-only coun-
terpart. We also explore the shortcomings of the
currently available object detectors and use ground-
truth annotations in our experiments to show the
scope of our methodology. The addition of colors
and adjectives further adds to the robustness of the
system and can be explored further in the future.
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