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Abstract

In this paper, we introduce our TMU Neu-
ral Machine Translation (NMT) system sub-
mitted for the Patent task (Korean=Japanese
and English=Japanese) of 8th Workshop on
Asian Translation (Nakazawa et al., 2021). Re-
cently, several studies proposed pre-trained
encoder-decoder models using monolingual
data. One of the pre-trained models, BART
(Lewis et al., 2020), was shown to improve
translation accuracy via fine-tuning with bilin-
gual data. However, they experimented only
Romanian—English translation using English
BART. In this paper, we examine the effec-
tiveness of Japanese BART using Japan Patent
Office Corpus 2.0. Our experiments indicate
that Japanese BART can also improve transla-
tion accuracy in both Korean=Japanese and
English=Japanese translations.

1 Introduction

Neural Machine Translation (NMT) has achieved
high translation accuracy in large-scale data condi-
tions. However, translation accuracy of NMT drops
in the lack of bilingual data (Koehn and Knowles,
2017). There are several approaches such as back-
translation (Sennrich et al., 2016) and transfer learn-
ing (Zoph et al., 2016) to address this problem. Fur-
thermore, in addition to these methods, there are
some approaches to use pre-trained models using
only monolingual data.

BERT (Devlin et al., 2019), which is the most
typical pre-trained model, can boost the accuracy
of many downstream tasks compared to models
without BERT via fine-tuning with the task-specific
training data. However, applying BERT to NMT
in fine-tuning form like the other tasks requires
two-stage optimization and does not provide sig-
nificant improvement (Imamura and Sumita, 2019).
Recently, several studies proposed pre-trained
encoder-decoder models using a monolingual data.
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Lewis et al. (2020) proposed BART, which is one
of the pre-trained encoder-decoder models. They
demonstrated that BART works well for not only
comprehension tasks such as GLEU (Wang et al.,
2018) and SQuAD (Rajpurkar et al., 2016) but also
text generation tasks such as text summarization
and translation. However, they reported only the
effect of English BART, so they did not investigate
BART trained by monolingual data of another lan-
guage. Furthermore, in the translation task, they
experimented with only Romanian—English trans-
lation, which have subword overlap. Therefore, the
effect in translations between language pairs with-
out subword overlapping is not clear. Furthermore,
they did not experiment in translation direction
where the source language matches the language
of the pre-trained model.

Additionally, we consider that fine-tuning pre-
training models such as BART in translation task
is similar to transfer learning (Zoph et al., 2016).
Transfer learning in NMT is a method that trains
the network of the parent language pair (the parent
model) as the initial network and then fine-tunes
it for the child language pair (the child model).
In the terminology of transfer learning, the pre-
trained BART and fine-tuned model are the parent
model and child model, respectively. Previous stud-
ies have shown that transfer learning works most
efficiently when the source languages of the parent
and child models are syntactically similar (Dabre
et al., 2017; Nguyen and Chiang, 2017). Therefore,
we hypothesize that BART is more effective when
the language pair for fine-tuning is syntactically
similar to the pre-training language.

In this study, we examine the effects of Japanese
BART on the translation task. We use Ko-
rean/Japanese and English/Japanese bilingual data
of Japan Patent Office Patent Corpus 2.0 (JPO cor-
pus) for fine-tuning. We also experiment in both
translation directions of Ko=Ja and En=Ja.
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Sent. Tokens
1,000,000 31,569,641 /37,282,300

Language pair Partition

train

Korean / Japanese dev 2,000 104,493 / 124,871
test 5,230 271,744 7 320,584
train 1,000,000 21,071,895 /25,695,404

English / Japanese dev 2,000 524,88 / 64,838
test 5,668 169,023 /198,039

Table 1: Data statistics.

2 Related Work

There are some approaches pre-trained encoder
models like BERT (Devlin et al., 2019) to the NMT
task. Imamura and Sumita (2019) used BERT as
an encoder and demonstrated the effectiveness of
two-stage optimization, which first trains param-
eters without BERT encoder, and then fine-tunes
all parameters. Zhu et al. (2020) used BERT rep-
resentations as input embedding and showed more
effectiveness than using BERT as the encoder.

Recently, several studies proposed pre-trained
encoder-decoder models such as MASS (Song
et al., 2019) and BART (Lewis et al., 2020), and
these models can improve the translation accu-
racy via fine-tuning with bilingual data. MASS
(Song et al., 2019) uses monolingual data from both
the source and target languages for pre-training
when applying to the NMT. On the contrary, BART
(Lewis et al., 2020) uses only monolingual data of
target language, unlike MASS. Liu et al. (2020)
trained multilingual BART (mBART) using mono-
lingual data of 25 languages. They indicated that
mBART initialization leads significant gains in low
resource settings. However, Wang and Htun (2020)
showed that mBART cannot obtain improvements
in the Patent task.

3 Experimental Settings

3.1 Implementation

In this study, we use Japanese BART! base v1.1
(JaBART) trained using Japanese Wikipedia sen-
tences (18M sentences). For fine-tuning, we do
not use an additional encoder like in Lewis et al.
(2020)’s method. Instead, we add randomly initial-
ized embeddings for each unknown subword in
JaBART to both encoder and decoder. We share
the embeddings of characters that match across

"https://github.com/utanaka2000/fairseq/blob/
japanese_bart_pretrained_model

Hyperparameter Value
Embedding dimension 768
Attention heads 12
Layers 6
Feed forward dimension 3072
Optimizer Adam
Adam betas 0.9, 0.98
Learning rate 0.0005
Dropout 0.1
Label smoothing 0.1
Max tokens 4,098

Table 2: Hyperparameters.

languages, such as numbers and units. We also
train baseline models consisting of the same ar-
chitecture as that of JaBART. We use the same
hyperparameters indicated in Table 2 for both fine-
tuning JaBART and training the baseline model.
We fine-tune and train the models using the fairseq
implementation?.

3.2 Data

To train and fin-tune the models, we use Ko—Ja and
En-Ja datasets of JPO corpus. Korean and English
have almost no subword overlaps with Japanese,
because these languages use Hangul, Latin alpha-
bets, and Hiragana/Katakana/Kanji characters, re-
spectively. For Japanese pre-processing, we use
JaBART tokenizer. For Korean and English, we
tokenize sentences using MeCab-ko® and Moses
scripts*, respectively. Then, we apply the Senten-
cePiece (Kudo and Richardson, 2018) with a 32k
vocabulary size. Table 1 presents the training, de-

Zhttps://github.com/utanaka2000/fairseq
3https://bitbucket.org/eunjeon/mecab-ko

“https://github.com/moses-smt/mosesdecodertree/
RELEASE-4.0
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Ko—Ja Ja—Ko
dev test dev test
Baseline 67.400+£.080/- 71.510+.166/0.947+£.001 67.816+.028 /- 71.103+.144/0.942+.001
Single JaBART 68.750+.104 /- 72.760+.140 / 0.949+.000 68.563+.065 /- 72.116+.060 / 0.946+.001
A +1.350/ - +1.250 / +0.002 +0.746 / - +1.013 /+0.003
- Baseline ~ 68.770/-  73.240/0946 68590/- 72.070/0.942
Ensemble JaBART 69.570 / - 73.670 / 0.949 69.440 / - 72.700 / 0.946
A +0.800/ - +0.430 / +0.001 +0.850/ - +0.630 / +0.002
En—Ja Ja—En
dev test dev test
Baseline 38.706+.083 /- 42.533+.151/0.843+.0.02 37.636%.112/- 40.873+.231/0.843+.001
Single JaBART 39.146%.077 /- 43.720+.053/0.849+.001 38.393%.060 /- 41.943+.084 /0.851+.001
A +0.440 / - +1.187 /+0.005 +0.757 / - +1.070 / +0.008
- Baseline  40.360/-  45.000/0.853 39260/- 43.140/0.853
Ensemble JaBART 40.270/ - 45.240/ 0.855 39.660 / - 43.780 / 0.857
A -0.0907/ - +0.240 / +0.002 +0.400/ - +0.640 /+0.004

Table 3: BLEU / RIBES scores of each single and ensemble of three models. The scores of single are the average of
the three models. We indicate the best scores in bold. The scores of A indicate the gains of the fine-tuned JaBART’s

BLEU score over the baseline model.
velopment, and test® data statics.

3.3 Results

Table 3 shows that the BLEU and RIBES scores of
each single and ensemble model.

In the single model, the fine-tuned JaBART
achieves the highest scores for dev and test data in
both language pairs and translation directions of
KoJa and EnsJa. Specifically, the BLEU scores
of the dev and test data reveal improvements of
0.440-1.350 and 1.013-1.250 from the baseline
models, respectively. The RIBES scores also re-
veal improvements of 0.001-0.007, but there is no
significant difference between the fine-tuned BART
and baseline models.

In the ensemble model®, the fine-tuned JaBART
improves the BLEU and RIBES scores approxi-
mately 0.440-0.850 and 0.001-0.008, respectively,
in the dev and test of Ko=Ja and Ja—En transla-
tions. However, in En—Ja translation, the BLEU
score of the fine-tuned JaBART decreases 0.09 in
the dev and improves 0.240 in the test data. Thus,
in the ensemble scenario, the fine-tuned JaBART
model can improve translation accuracy except for
En—Ja translation.

3In this study, we use test-n data, a union of test-n1, test-n2,
and test-n3 data, for evaluation.

SWe submitted the En=Ja ensemble models as the target
for human evaluation.
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4 Discussions

We hypothesize that JaBART is more effective
when the language pair for fine-tuning is syntac-
tically similar to the pre-training language, as in
transfer learning. In our experimental settings, Ko-
rean and English are syntactically similar and differ-
ent languages with Japanese, respectively . There-
fore, we expect that JaABART is more effective in
the Ko=Ja translations than in the En=Ja transla-
tions. However, Table 3 shows no significant differ-
ences in A scores between the Ko=Ja and En=Ja
translations. These results indicate that syntactic
similarity does not affect the enhancement in the
final BLEU scores.

5 Conclusions

In this paper, we described our NMT system sub-
mitted to the Patent task (Ko=Ja and EnJa) of
the 8th Workshop on Asian Translation. We com-
pared the baseline and fine-tuned JaBART mod-
els, and demonstrated that the fine-tuned JaBART
achieves consistent improvements of BLEU scores
in language pairs with no subword overlapping,
and irrespective of translation directions.

Contrary to our hypothesis, our experiments indi-
cated no significant difference in the translation ac-
curacy depending on the syntactic similarity. How-
ever, we consider that there are some differences in

7Japanese and Korean are SOV and agglutinative lan-

guages, whereas English is SVO and fusional language
(Masayoshi, 1990; Jeong et al., 2007).



another aspect such as training process per epoch
and network representations. Therefore, we attempt
to analyze BART fine-tuned using language pairs
with varying syntactic proximities in detail in the
future.
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