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Abstract

With the growing popularity of smart speak-
ers, such as Amazon Alexa, speech is becom-
ing one of the most important modes of human-
computer interaction. Automatic speech recog-
nition (ASR) is arguably the most critical com-
ponent of such systems, as errors in speech
recognition propagate to the downstream com-
ponents and drastically degrade the user ex-
perience. A simple and effective way to im-
prove the speech recognition accuracy is to
apply automatic post-processor to the recogni-
tion result. However, training a post-processor
requires parallel corpora created by human an-
notators, which are expensive and not scal-
able. To alleviate this problem, we propose
Back TranScription (BTS), a denoising-based
method that can create such corpora without
human labor. Using a raw corpus, BTS cor-
rupts the text using Text-to-Speech (TTS) and
Speech-to-Text (STT) systems. Then, a post-
processing model can be trained to reconstruct
the original text given the corrupted input.
Quantitative and qualitative evaluations show
that a post-processor trained using our ap-
proach is highly effective in fixing non-trivial
speech recognition errors such as mishandling
foreign words. We present the generated par-
allel corpus and post-processing platform to
make our results publicly available.

1 Introduction

Automatic speech recognition (ASR) is a tech-
nology that converts human voice into text. With
the emergence of deep learning, the performance
of ASR has been improved considerably. Conse-
quently, many firms are applying ASR to their busi-
ness models (Kaya et al., 2020).

Although several excellent commercial API sys-
tems are available, such as Google Cloud Speech
API (Aleksic et al., 2015) and Naver’s CLOVA
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Speech (Chung, 2019), most small- and medium-
sized companies are building their own ASR soft-
ware using open-source tools such as Kaldi (Povey
etal., 2011) owing to the need for domain-specific
systems as well as security of in-house industrial
data (Vajpai and Bora, 2016). In addition, many
companies are operating on conventional ASR
architectures, such as Gaussian mixture models
(GMMs) (Stuttle, 2003) and hidden Markov mod-
els (HMMs) (Gales and Young, 2008), which are
based on acoustic and language models.

However, a drawback of the above-mentioned
method is that words that are not in the dictio-
nary are misrecognized as incorrect words owing
to the out-of-vocabulary (OOV) problem. As this
method is a statistics-based method, satisfactory
performance is achieved only when a massive voice
database is available . Probability values for se-
quences of words that are not present in the train-
ing corpus are estimated to be unstable, and it is
difficult to sufficiently reflect the context because
n values are constrained in n-grams. Moreover, the
entry barrier is high because it is difficult for non-
professionals to handle the model.

To alleviate these limitations, ASR studies have
recently been conducted using pretrained model
(PM)-based transfer learning (Baevski et al., 2020;
Hjortnes et al., 2021; Zhang et al., 2021). This
methodology shows superior performance com-
pared to methods based on the conventional ASR
architecture; however, it has two main limitations
in terms of applying it to real-world services.

First, from the data aspect, this methodology re-
quires a large amount of training data for pretrain-
ing to service the ASR software. As it is strongly
dependent on the data size, it is difficult to apply it
to a low-resource language (LRL), such as Korean.
Furthermore, as the latest studies are based on a
high-resource language (HRL) with sufficient train-
ing data, the same performance cannot be achieved
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if the same model is applied to an LRL without any
special processing.

Second, from the service environment aspect, this
methodology requires service circumstances with
sufficient computing power (e.g., GPU) to process
large-scale data. It is difficult to establish a suffi-
cient hardware environment to provide services, ex-
cept for large companies such as Google and Face-
book. In other words, as training a model involves
many parameters and a large amount of data, com-
panies that do not have sufficient server or GPU
environments will find it difficult to configure the
service environment and improve performance us-
ing the latest model (Park et al., 2020c). Therefore,
it is important to ensure that companies with in-
sufficient environments can provide services while
performing well against LRLs. To this end, instead
of PM-based transfer learning, a new method for
improving ASR performance is required.

To alleviate these limitations, some studies have
attempted to improve the performance of the ASR
model through various pre-processing and post-
processing methods without changing the model
(Jeong et al., 2003; Jung et al., 2004; Voll et al.,
2008; Mani et al., 2020; Liao et al., 2020). This
approach does not require a large amount of data
for pretraining the model and it can be applied
to any model as well as models that can provide
sufficient service with a CPU (Klein et al., 2020),
such as the vanilla Transformer (Vaswani et al.,
2017). In this regard, this method can alleviate the
above-mentioned limitations in terms of the data
and service environment. Hence, this method is
particularly important from the viewpoint of LRLs.

Accordingly, we propose Back TranScription
(BTS), a fully automated data construction method
for a sequence-to-sequence (S2S)-based post-
processor model that does not require human inter-
vention or model modification. The contributions
of this study are as follows.

* We propose BTS, a simple and effective
method for generating ASR post-processor
training corpus without expensive human la-
bor. As this approach does not require human
intervention, it can create a vast amount of
training data from raw text, which drastically
reduces the cost of building such a model.

We discuss the characteristics and effective-
ness of our approach on the basis of extensive
quantitative and qualitative evaluations.
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* We present the generated parallel data and
post-processing platform to make our results
publicly available®.

2 Related Work

ASR post-processing is a research field that aims to
improve performance by correcting the ASR errors
rather than changing the model architecture. The
two main methodologies for ASR post-processing
in the field of speech recognition are the conven-
tional methodology and the sequence-to-sequence
(S82S) methodology.

Conventional Methodology The conventional
methodology is based on rules and statistics. Firms
attempt to improve ASR performance by build-
ing their own rules while providing ASR services.
They apply linguistic rules to improve the quality
of the speech recognition results. The drawback
of this methodology is that it involves high costs
and requires a long time to produce abundant rules.
Moreover, conflicts between rules may occur. Fur-
thermore, each component must be implemented
independently (Paulik et al., 2008; Skodovi et al.,
2012). Some post-processing studies have been
conducted using the N-gram language model; how-
ever, the statistics-based method requires a large
amount data and cannot consider the context (Cucu
et al., 2013; Bassil and Semaan, 2012).

Sequence-to-Sequence (S2S) Methodology
The S2S methodology corrects errors in the same
way as the machine translation process (Vaswani
et al., 2017; Baskar et al., 2019; Park et al.,
2020a). Based on the S2S model, the STT result
is vectorized using an encoder and the vector
is then decoded to generate a human-modified
STT sentence. This methodology outperforms the
conventional method based on rules and statistics.
However, the ASR post-processor based on the
S2S methodology has some limitations in terms of
data construction and industrial service.

First, from the data construction aspect, no open
data are available for training, and a parallel corpus
must be manually built for the ASR post-processor.
The training data are of the form (speech recogni-
tion sentence, human post-edit sentence), and con-
structing such data involves human intervention to
transcribe the speech. In other words, considerable
time and effort are required to construct the data. In
addition, quality differences may occur depending
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on the transcriber. Different individuals may tran-
scribe the same sentence differently, resulting in
performance degradation of the model. Hence, we
aim to alleviate the limitations of S2S-based data
construction through BTS using Text-to-Speech-to-
Text (TST). This method can reduce the cost and
time required for data construction and is free of
the quality issues related to human transcription.

Second, from the service aspect, although most
recent NLP studies are based on the pretrain-
finetuning approach (PFA), small- and medium-
sized enterprises lack sufficient hardware; hence,
there are many limitations in terms of using the
technology to service NLP application software ow-
ing to low speed and insufficient memory. Although
methods such as XLLM (Lample and Conneau,
2019), MASS (Song et al., 2019), and mBART (Liu
et al., 2020) show the best current performance, the
corresponding models are too large in terms of the
number of parameters and model size. Therefore, it
is still unreasonable to provide practical services in
the industry. Furthermore, as this methodology is
dependent on the data size, it can be easily applied
to an HRL whereas its application to an LRL is
limited.

This study is similar to studies on automatic post-
editing (APE) (Chatterjee et al., 2019) and gram-
mar error correction (GEC) (Bryant et al., 2019).
However, APE performs post-processing on ma-
chine translation results while GEC is designed to
correct grammar, i.e., their post-processing targets
are different. In addition, these methods are mainly
based on an HRL-based pretrained language model
(PLM) such as XLLM, MASS, or UniLM (Dong
et al., 2019). Hence, it is difficult to apply them
to services provided by small- and medium-sized
enterprises with insufficient environments.

In this study, we use the vanilla Transformer,
which can be easily applied to the required service.
In contrast to previous studies, we conduct an ex-
periment on the Korean language, which is an LRL,
and we make the model constructed in this study
freely available.

3 Proposed Method
3.1 Background

In this study, we introduce four mainstream at-
tributes reflecting the readability and satisfactori-
ness of ASR service in order to provide high-
quality service to end users of our BTS mecha-
nism, which can be used for training the ASR post-
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processor.

Spacing The first limitation is related to segmen-
tation, i.e., the spaces are generally not adequately
separated in the speech recognition result. To solve
this problem, many studies have investigated an
automatic spacing module; however, few studies
have focused on ASR (Lee and Kim, 2013; Choi
et al., 2021). Thus, the satisfactoriness of ASR ser-
vice, which is used by end users, is low, and the
speech recognition results will lack credibility if
this problem is not resolved.

Foreign Word Conversion The second limita-
tion is the foreign word conversion problem. For
example, for the sentence “The Lotte tower
is on the 123rd floor.”, the ASR ser-
vice outputs “The =Y EFY is on the
123rd floor.”. In other words, 4| €] is
not converted into Lotte tower. We refer to
this problem as the foreign word conversion prob-
lem. Although it is not a critical problem, solving
it can improve the readability and satisfactoriness
of the ASR system for end users.

Punctuation The third limitation is related to
punctuation (e.g., period, comma, exclamation and
question marks). The correct output of the ASR
system should be “where are you going?”;
however, the general ASR system outputs “where
are you going” without the question mark.
Thus, the lack of punctuation makes it problem-
atic for the end users to understand the purpose of
sentence segmentation. This could lead to complex
issues in the recognition of end users’ utterance
intentions in terms of who wants to use the out-
put. Furthermore, commercial ASR systems typ-
ically do not use punctuation when they provide
services (Ha et al., 2020). Several studies (Yi et al.,
2020; Guan, 2020) have attempted to solve these
punctuation problems independently.

Spelling Errors The fourth limitation is related
to spelling errors, which frequently occur in the
ASR result. Although previous studies (Kiyono
et al., 2019; Choe et al., 2019; Park et al., 2020a)
have investigated spelling correction, few have fo-
cused on ASR.

3.2 Back TranScription (BTS)

BTS is a technique that is integrated with TTS and
STT to yield a parallel corpus. The process of build-
ing a parallel corpus involves the following steps:
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Figure 1: Overall architecture of BTS and ASR post-processor. Note that the red words in the source sentence are
ungrammatical words. The source sentence means “Fine dust occurs many diseases when it comes to our bo” and
the target sentence means “Fine dust occurs many diseases when it comes to our body.”.

No Filter

Filter

Train [ Vaid Train [ Vaiid Test

src tgt sre tgt src tgt sre tgt sre tgt
# of sents 224,987 224,987 5,000 5,000 214,318 214,318 5,000 5,000 5,000 5,000
# of tokens 7,319,788 | 7,731,924 | 160,773 | 167,888 | 7,117,361 | 7,447,350 | 136,496 | 143,044 | 165,781 | 172,590
# of words 1,950,669 | 1,900,409 | 42,968 | 41,780 | 1,887,843 | 1,830,500 | 36,655 | 35,961 | 43,482 | 41,472
avg of SL A 32.53 34.37 32.15 33.58 33.21 34.75 273 28.61 33.16 34.52
avg of WS 8.67 8.45 8.59 8.36 8.81 8.54 7.33 7.19 8.7 8.29
avg of SS 7.67 7.45 7.59 7.36 7.81 7.54 6.33 6.19 7.7 7.29
# of K-toks * | 5,503,227 | 5,599,442 | 121,131 | 122,502 | 5,365,092 | 5,420,594 | 103,667 | 104,961 | 123,566 | 124,203
# of E-toks 32,389 61,294 504 829 30,217 57,203 463 724 1,162 2,262
# of S-toks 2,181 338,459 55 6,675 1,769 307,339 21 5,682 74 6,873

Table 1: Statistics of our parallel corpus results on TST with and without a filter. We define the original col-
loquial sentences as the target (tgt) and the generated sentences after TST as the source (src). Moreover, we
attempt to identify the linguistic features of our parallel corpus, including # of sents/tokens/words (number of
sentences/tokens/words); A avg of SL/WS/SS (average of sentence length/words/spaces per sentence); and * # of
K/E/S-toks (number of Korean/English/special-symbol letter tokens).

1) crawling the pre-built mono corpus in a conve-
nient manner; 2) transformation into speech using
TTS; and 3) outputting the converted result as text
using STT. We aim to apply the BTS mechanism to
the mainstream attributes described in Section 3.1.

In other words, we apply TST to the result of
TTS (i.e., the original mono corpus) and then cre-
ate a pseudo-parallel corpus for the ASR post-
processor. This can be explained in terms of ma-
chine translation as follows: the source sentence is
substituted for the output of TST, and the original
mono corpus is substituted for the target sentence.

TST is the processor for creating ASR errors
from the mono corpus, i.e., the ASR errors can be
generated through TST, which is integrated with
both the TTS module that provides the data for
the STT module and the STT module. The mono
corpus is grounded well in space, can handle for-
eign word conversion and punctuation, and rarely
involves spelling errors. We can develop a high-
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quality ASR post-processor based on S2S training
using these processes.

Figure 1 shows the proposed method, including
the BTS architecture and ASR post-processor ar-
chitecture based on S28S training using the pseudo-
parallel corpus, which is derived from BTS. The
module on the left (BTS) shows the target sen-
tence (ground sentence) converted into speech
using the TTS system, which is then converted
into the source sentence (error sentence) through
the STT system. The module on the right (ASR
post-processor) shows the S2S-based ASR post-
processor, which uses the speech of the source sen-
tence as the model input and the target sentence as
the ground truth. In the BTS module, the pseudo-
parallel corpus consists of the target sentence from
the mono corpus and the source sentence converted
from the TTS output (i.e., speech) into the STT
output (i.e., text). The source sentence includes
the above-mentioned errors. Finally, we can train



the ASR post-processor using the pseudo-parallel
corpus.

3.3 Why BTS?

The advantages of the BTS method in terms of
service can be attributed to five factors.

* First, BTS can build infinite training data
for ASR or other purposes. In general, build-
ing a parallel corpus is expensive and time-
consuming. Moreover, it is difficult to estab-
lish a high-quality parallel corpus. However,
we can easily build an infinite parallel cor-
pus if we exploit the advantages of the mono
corpus through web crawling.

Second, BTS supports a universal method for
integrating solutions to problems such as spac-
ing, foreign word conversion, punctuation,
and spelling errors using a single model, as the
mono corpus that is used in our method is free
of the above-mentioned problems. Previous
studies have been conducted independently,
whereas our method can resolve these issues
simultaneously.

Third, commercial ASR systems such as
Google Cloud Speech API can be converted
into domain-specific ASR systems. If a TTS is
produced using only a single corpus of the spe-
cific domain and a post-processor is created
using the constructed parallel corpus, the com-
mercial ASR system can be serviced with a
domain-specific ASR. Companies build their
own ASR system rather than using commer-
cial systems because of the need for a domain-
specific model, which can be built by exploit-
ing the high recognition rate of a commercial-
ized system through BTS. We define these
domain corrections.

Fourth, our method does not require human
intervention for building a parallel corpus as
it involves automatic generation; therefore, it
achieves significant time and cost savings. In
addition, it is free of the quality issues that
may arise in the case of different human oper-
ators.

Finally, language extension is simple and
convenient. The commercial system (Aleksic
et al., 2015) provides various TTS and STT
language-specific API services. Therefore, we
can collect a diverse language dataset for BTS.

110

In summary, BTS is a practical solution that can
enable companies to provide ASR service.

4 Experimental Setup

4.1 Data Collection

Build Mono Corpus The parallel corpus for ex-
perimenting with BTS was set to Korean, which
is an LRL, and we collected it from two differ-
ent sources. First, we extracted 129,987 sentences
from the business and technology TED provided
in a script translated into Korean. Second, we ex-
tracted 105,000 sentences from the Korean-English
translation corpus in AI-HUB (Park and Lim, 2020)

TTS Using the mono corpus, we converted the
text into voice data in the mp3 format using Google
TTS APIL. Specifically, 129,987 sentences from
TED were divided into 7,969,230 speech tokens
and synthesized with 2,081,115 s of voice data.
Further, 105,000 sentences from AI-HUB were di-
vided into 3,065,086 speech tokens and synthe-
sized with 1,563,990 s of voice data. The voice
data were synthesized using the same WaveNet
model (Oord et al., 2016) as that used for Google
Assistant, Google Search, and Google Translation,
which required less than 36 h and 24 h for the
conversion, respectively. The commercialized API
system was used to lower the entry barrier, thereby
allowing companies that lack a TTS system to use
BTS.

STT The voice data constructed by TTS use
Navers CLOVA Speech Recognition (CSR) API
to proceed with the conversion back to text data.
The speech recognition API uses the same model
as that used for Navers Voice Recognition Notes
and Searches, which requires less than 120 h and
72 h for the conversion, respectively. After this pro-
cess, a parallel corpus of 229,987 sentence pairs,
consisting of the target sentences prior to speech
synthesis and recognition as well as the translated
source sentences, is built for the S2S-based ASR
pOst-processors.

Parallel Corpus Filtering Parallel corpus filter-
ing (PCF) (Koehn et al., 2020) is the process of
constructing a qualitatively validated parallel cor-
pus. In other words, it is a sub-field of machine
translation in which training data are selected to
ensure high-quality training to improve the perfor-
mance of the model.

In the case of the pseudo-parallel corpus built
through TST, some source sentences are empty or



Model BLEU GLEU
Base 42.19 N/A
Park et al. (2020a) 50.62 (+8.43)  31.79
No-Filter 55.72 (+13.53) 46.23
Filter 56.56 (+14.37) 46.94

Table 2: Overall BTS performance verification results

too short; they are not recognized owing to uninten-
tional errors in the STT and TTS systems. Thus, we
use the PCF methodology proposed by Park et al.
(2020b) to obtain only high-quality data. A total
of 10,669 sentences are filtered, most of which are
low-quality data obtained because of poor recog-
nition during STT. In addition, we remove pairs
of sentences that are identical or which consist of
special symbol tokens comprising more than 50%
of the total tokens , as these sentences may not be
inconsistent with the learning method.

Final Constructed Pseudo-Parallel Corpus
We compared the performance of the PCF-driven
model with that of the non-progress model to ver-
ify the effectiveness of filtering. For models with-
out filtering (No-Filter), the training data included
224,987 sentences and the verification data in-
cluded 5,000 sentences. For the filtered (Filter)
model, the training data included 214,318 sen-
tences and the verification data included 5,000 sen-
tences. In the case of the test set, 5,000 sentences
of the No-Filter version were constructed to evalu-
ate the performance changes depending on whether
filtering was applied during the training process.

4.2 Model

For the post-processor, we trained the vanilla Trans-
former with the pseudo-parallel corpus, generated
by BTS. The hyper-parameter settings were the
same as those used by Vaswani et al. (2017). Fur-
ther, we used SentencePiece (Kudo and Richardson,
2018) for sub-word tokenization and set the vocab-
ulary size to 32,000. Two GTX 1080ti GPUs were
used in the experiments.

5 Experimental Results

5.1 Data statistics and analysis

Using BTS, we constructed a parallel corpus for
an S2S-based ASR post-processor with 219,318
sentences that are finally processed by PCF.

We conducted a statistical analysis of the con-
structed corpus and a comparative analysis with
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and without PCF. The results are summarized in
Table 1.

First, we conducted basic analyses, such as the
number of data, number of tokens, and average
length of sentences. The lengths of the source sen-
tences built using BTS, regardless of whether the
filter was applied, were smaller than those of the
target sentences on average 1.69, 1.37, and 1.36 for
the training, validation, and test datasets, respec-
tively. However, the average numbers of source
sentence words were greater than those of target
sentence words on average 0.245, 0.185, and 0.41
for the training, validation, and test datasets, respec-
tively. Considering the average number of blank
spaces, these results are attributed to the unneces-
sary separation of phrases, even though the source
sentences have a relatively small total number of
tokens.

Second, we analyzed the Korean and English
tokens. In the case of K-tokens, 75,859, 1,333,
and 672 tokens in the training, validation, and test
datasets were lost in the source sentences, respec-
tively. Token loss is the reason for the omission of
sentence endings and suffixes, and it is estimated
that the model reflects the common characteris-
tics of Korean speakers who pronounce the ending
in a slurred manner. In addition, the E-tokens are
transformed into Korean tokens as pronounced and
suitable phonetic values are not obtained. Conse-
quently, 27,946, 293, and 1,100 E-tokens in the
training, validation, and test dataset were lost in the
source sentences, respectively.

Third, the most significant loss was in the case of
S-tokens. The source sentences in the training, val-
idation, and test datasets lost 320,924, 6,141, and
6,799 special symbol tokens, respectively. For ex-
ample, periods, commas, exclamation marks, and
small brackets, which are added to describe the
situation in the transcription of the original data,
tend to be lost in the source sentences. Such special
symbol tokens may sometimes contain actual col-
loquial tones or emotions that are not represented
by the text adequately. Thus, excessive omission of
special symbol tokens is equivalent to the loss of
rich representation information of colloquial forms
that are different from written ones.

In conclusion, we make the model that we have
constructed freely available in order to lower the en-
try barrier for research institutions and mitigate the
cost challenges faced by many small- and medium-
sized enterprises that lack sufficient resources.



Model Spacing Word Conversion(KO) Word Conversion(EN) Punctuation Overall
Base 89.60 46.87 4.14 0.89 61.84
Filter ~ 91.86 (+2.26) 54.41 (+7.54) 23.41 (+19.27) 61.02 (+60.13) 70.73 (+8.89)

Table 3: BTS performance classified as Automatic Spacing, Word Conversion, Punctuation, and Overall. The F1
scores are reported for each feature. KO: Korean; EN: English.

Input Sentence

Output Sentence

‘ Type of Error

At ol 518 T 35 Eulel A w57} 5

AL o3l

L A3] TV A] grz]A4d A4=7} = | Foreign Word Con-

7 B718 She B4E Hotels
(When I was young, I watched Park Ji-sung playing
a soccer on EJH].)

T A71E 5= BG5S HefolQ. version
(When I was young, I watched Park Ji-sung playing

a soccer on TV.)

FHA FFS FO A of= FA o] 7FoF shLt
(Which department should I go to receive a list of
attendees)

A7 BetE o o] FAof 7lofsht? | Punctuation
(Which department should I go to receive a list of

attendees?)

U5 B3 AL B4t gl
(I missyou so much, but I can’t)

Y& B3 A2d & 471 gl
(I miss you so much, but I can’t.)

Spacing

e o= Fa e WA
(Gapyeong a famous tourist spot in Korea)

Fge g5e] fe B Ael L.
(Gapyeong is a famous tourist spot in Korea.)

AT T Au AT e
(Gamjatang is serv for free)

A S 5 AE 22 U
(Gamjatang is served for free.)

Table 4: Examples of sentences for qualitative analysis

Spelling errors

Spelling errors

5.2 Quantitative Results

Spelling Correction First, we verified the
spelling correction performance of the BTS-
based ASR post-processor. We employed GLEU
(Napoles et al., 2015) and BLEU (Papineni et al.,
2002) as the performance evaluation metrics.
GLEU is similar to BLEU; the difference is that
GLEU also considers the source information and
is specialized for spelling error correction systems.

Base refers to the BLEU score between the
source and target sentences; we leveraged it as the
baseline for assessing the performance improve-
ment. In addition, we compared the performance
with that of the Korean spelling error correction
model proposed by Park et al. (2020a), who per-
formed ASR post-processing experiments and pub-
lished the model as a demo system'. This study
focused on Korean spelling error correction that is
not specialized in ASR post-processing. However,
as the experiments were performed with respect to
speech recognition error correction, we compared
the performance of this model with that of the pro-
posed model. Through this comparison, we could
assess the spelling correction performance of our
approach. The experimental results are summarized
in Table 2.

Our results show that PCF can improve the cor-
rection performance. The BLUE and GLEU scores
of the No-Filter model were 55.72 and 46.23, re-
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spectively. The BLEU score was higher than that
of the base model by 13.53. Further, the BLEU and
GLEU scores of the Filter model were 56.56 and
46.94, respectively. The BLEU score was higher
than that of the base model by 14.37. Thus, PCF
can promote performance improvement.

Furthermore, the BLEU and GLEU scores of
the Filter model were higher than those of the ex-
isting spelling correction model proposed by Park
etal. (2020a) by 5.94 and 15.15, respectively. These
results show that our post-processor can achieve
higher performance in spelling correction.

Automatic Spacing Second, we verified the per-
formance of the BTS-based post-processor in auto-
matic spacing. To measure the multi-class accuracy,
we used the F1-score to correctly locate the spac-
ing in the target sentences. As the Filter model
achieves better performance (see Table 2), further
experiments were based on the Filter model. Our
results can be found in the Spacing part of Table 3.

Using the post-processor, we achieved a scored
that was higher than that of the base model by 2.26.
Thus, BTS can promote correct automatic spacing.

Foreign Word Conversion Third, we demon-
strated the performance of the BTS-based post-
processor in foreign word conversion. For the per-
formance evaluation, we used the F1-score to cor-
rectly locate Korean and English words in the target
sentences. The experimental results are shown in
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the Word Conversion part of Table3.

Compared to the base model, our processor
yielded scores that were higher by 7.54 and 19.27
for Korean and English word conversion, respec-
tively. From these results, we can conclude that
our post-processor facilitates better performance in
word conversion.

Punctuation Attachment Finally, we verified
the performance of the BTS-based post-processor
in punctuation attachment. For the performance
evaluation, we used the F1-score to correctly locate
the punctuation in the target sentences. Our results
are presented in the Punctuation part of Table 3.

The performance score of the BTS-based post-
processor was 60.13 higher than that of the base
model. For the base model, the F1-score of punctu-
ation attachment was 0.89, which indicates that the
base model rarely achieves correct punctuation at-
tachment. This represents the limitation of commer-
cial STT systems. For the test set, the base model
only attached the period (*.”) 32 times, the percent
sign (“%”) 33 times, and the dollar symbol (“$”)
1 time. These limitations can be alleviated by ap-
plying our method. The BTS-based post-processor
facilitates the attachment of the above-mentioned
punctuation marks as well as other fundamental
punctuation marks, such as the question mark(*“?”),
exclamation mark(“!”’), and comma(*,”), in collo-
quial sentences. Thus, our proposed post-processor
can achieve tremendous improvement in punctua-
tion attachment.

ey

Thus, we have shown the performance improve-
ment for the four above-mentioned criteria. Fur-
thermore, the overall F1-score, calculated by con-
sidering all these criteria in one step, showed an
improvement of 8.89.

5.3 Qualitative Analysis

In addition to the quantitative analysis described
above, we also performed qualitative analysis. Ta-
ble 4 lists some examples of source sentences and
the corrected output of each sentence, generated
by the BTS-based ASR post-processor. As shown
in Table 4, the BTS-based ASR post-processor can
effectively correct errors arising in ASR models.
First, the post-processor can correct foreign
word conversion errors. In Korean sentences, the
foreign word “TV” is generally adopted in its origi-
nal form; however, the ASR system transcribes this
word with its Korean pronunciation, “E]H]|”. Our
results show that the BTS-based post-processor can
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effectively correct this error.

Second, it is possible to correct punctuation at-
tachment errors and inappropriate spacing, which
frequently occur in the ASR model. A period (*.”)
or question mark(“?”) can be correctly attached
to each sentence, and spacing errors such as “mis-
syou” can be corrected as “miss you”. Through this
revision process, we expect that end users can be
provided with clearer sentences.

Third, the BTS-based ASR post-processor can
correct spelling errors or improper sentence end-
ings generated by the speech recognition system.
In particular, for Korean, improper sentence end-
ings often lead to different interpretations of whole
sentences. These issues can be effectively rectified
by our method.

For example, in the case of a missing sentence
ending, the post-processor can restore the sentence
by attaching the omitted part “o| Q(is)”. In ad-
dition, the word “serv”’, which occurs owing to
the recognition error of the sentence ending, can
be corrected with the appropriate word “4-24 Tt
(served)”.

In summary, by inspecting examples of BTS-
based post-processing, we can conclude that BTS
is an effective approach for dealing with spelling
correction, automatic spacing, foreign word con-
version, and punctuation attachment. This study is
significant in that errors of ASR systems can be cor-
rected without human-labeled data, which require
professional human resources for generation.

6 Conclusion and Future Work

We proposed BTS, which can automatically gen-
erate a parallel corpus from raw corpora to train
ASR post-processors. By combining TTS and STT
systems, ASR noise was injected into the raw text,
and the post-processing model was trained in a de-
noising manner. Quantitative and qualitative eval-
uations showed that our approach can effectively
handle challenging ASR errors, such as foreign
word conversion.

In the future, we plan to investigate different
noising strategies that reflect real-world ASR errors
and make the denoising process more challenging.
Demonstrating the effectiveness of BTS in addi-
tional languages from various language families is
another important direction for future research.
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