
Proceedings of the Sixth Arabic Natural Language Processing Workshop, pages 282–286
Kyiv, Ukraine (Virtual), April 19, 2021.

282

Arabic Dialect Identification based on Weighted Concatenation
of TF-IDF Features

Mohamed Lichouri, Mourad Abbas, Khaled Lounnas, Besma Benaziz, Aicha Zitouni
Computational Linguistics Department / CRSTDLA, Algiers, Algeria

{m.lichouri,m.abbas,k.lounnas,b.benaziz,a.zitouni}@crstdla.dz

Abstract

In this paper, we analyze the impact of
weighted concatenation of TF-IDF features for
the Arabic Dialect Identification task. This
study is performed for two subtasks: sub-
task 1.1 (country-level MSA) and subtask 1.2
(country-level DA) identification. The clas-
sifiers supporting our comparative study are
Linear Support Vector Classification (LSVC),
Linear Regression (LR), Perceptron, Stochas-
tic Gradient Descent (SGD), Passive Aggres-
sive (PA), Complement Naive Bayes (CNB),
MutliLayer Perceptron (MLP), and RidgeClas-
sifier. In the evaluation phase, our system
gives F1 scores of 14.87% and 21.49%, for
country-level MSA and DA identification re-
spectively, which is very close to the average
F1 scores achieved by the submitted systems
and recorded for both subtasks (18.70% and
24.23%).

1 Introduction

Nowadays, the study of Arabic dialects has be-
come the focus of many researches, and many
workshops have been dedicated for this interest-
ing topic. One of the noteworthy works are those
featured in MADAR 2019 (Bouamor et al., 2019),
we can mention (Ragab et al., 2019; Abbas et al.,
2019; Přibáň and Taylor, 2019) where authors used
machine learning techniques combined with resem-
ble classifier or major voting rules to enhance the
performance of the used models. The MADAR
2019 has been followed by NADI 2020 in which
more dialects from 100 Arab provinces have been
covered (Abdul-Mageed et al., 2020). In Talafha
et al. (2020); El Mekki et al. (2020); Gaanoun and
Benelallam (2020), authors adopted the combina-
tion of ngrams and TF-IDF features. An analy-
sis of the impact of preprocessing and n-grams
on automatic classification of Tweets that men-
tion medications has been presented in Lichouri

and Abbas (2020b). In (Lichouri et al., 2020),
the authors studied the effect of TF-IDF features
and morphological process on profiling fake news
spreaders on Twitter. In some works, because of
the imbalanced nature of the used dataset, there is
a need to apply sampling techniques: upsampling
the minority class as presented in Beltagy et al.
(2020) using the Scikit-Learn library (Pedregosa
et al., 2011), or the use of oversampling techniques
from imblearn toolbox (Lemaı̂tre et al., 2017) like:
Random Over-Sampler (ROS), Synthetic Minority
Oversampling Technique (SMOTE) and Adaptive
Synthetic (ADASYN) as described in Lichouri and
Abbas (2020a). In this work, we combined multi-
ple classifiers, using a combination of ngrams and
TF-IDF as features (Lichouri et al., 2018) with the
same concept as suggested in Abu Kwaik and Saad
(2019); Touileb (2020) by using a weighted con-
catenation of these features. We also readapted the
oversampling approach proposed in Lichouri and
Abbas (2020a), in addition to the morphological
preprocessing steps that we applied like stemming,
lemmatization and pos tagging. This paper is struc-
tured as follows: In section 2, a description of the
used dataset is presented. The applied cleaning
steps and preprocessing are explained in section
3. In section 4, we present the proposed approach
and discuss the findings. Finally, we conclude in
section 5.

2 Description of the Dataset

The used dataset in this shared task of NADI 2021
(Abdul-Mageed et al., 2021) is an extension of the
previous shared task (Abdul-Mageed et al., 2020).
It is composed of two parts, the first one includes
tweets written in Modern Standard Arabic (MSA),
and the second one in the local Arabic Dialects
(DA). These two subsets (MSA and DA) include
tweets from 21 Arab countries and 100 provinces.

283

MSA subset DA subset
Train Dev Test Total Train Dev Test Total

sentences 21,000 5,000 5,000 31,000 21,000 5,000 5,000 31,000
words 233.4k 65.4k 63.1k 408.2k 168.3k 45.7k 44.7k 258.7k
Max # word per sentence 49 58 57 - 51 58 59 -
Min # word per sentence 1 1 1 - 1 1 1 -
Max # char per sentence 592 382 285 - 268 279 283 -
Min # char per sentence 1 2 1 - 1 2 2 -

Table 1: Dataset statistics after applying some pre-processing steps

We divided these subsets into three parts: train, dev
and test, for which we addressed some statistics in
Table 1, after applying a number of pre-processing
steps. As can be noticed from Table 1, the mini-
mum number of words and characters per sentence
in the training and development sets is 1. This in-
formation is useful to determine the number “n”
of grams to be selected in the features extraction
phase.

3 Data Cleaning and Preprocessing

In most NLP tasks, dealing with tweets necessitates
cleaning before analysis and processing. Hence
we applied some simple surface cleaning steps in-
cluding Arabic Letter Normalizer (ALN) and the
removal of: punctuation (RP), emojis (i.e., emoti-
cons, symbols & pictographs, transport & map
symbols and flags (iOS)) (RE), stop words (RSW),
Arabic diacritics (RAD), Latin letter (RLL) and
words (RLW), repeated words (RRW) and chars
(RRC). We used also three morphological prepro-
cessing steps: WordNetLemmatizer (Lem), ISRI
Arabic Stemmer (Stem) and PosTagger (PosTag)
of NLTK1.
After a series of experiments in order to investigate
the impact of all the possible combinations of the
different aforementioned cleaning processes, we
kept the best configuration which is composed of
emojis removal, diacritics removal, repeated words
removal, in addition to the stemming process. Fur-
thermore, we selected the features which yielded
the best performance after testing a huge number
of n-grams combinations (200 experiments). These
features have been transformed using the TF-IDF
vectorizer and concatenated with (see Table 2) and
without (see Table 3) a weighted union function.

4 Proposed system

It should be noted from Figure 1, that we first com-
bined all the aforementioned preprocessing steps to
generate all the possible textual presentations, af-
ter that we applied a second combination between
n-grams (n=1 to 10) and tokenizer (word, char,
char with boundary, union of the three) to gener-
ate all the possible vector features. Then we fed
these features to the best oversampling procedures
(i.e., ADASYN) which were applied before train-
ing our three best classifiers (LSVC, RDG, SGD).
Finally we used an resemble classifier (i.e., ma-
jority voting rule) which takes as input the three
predictions and applies a majority voting rule to
predict the dialect. We divided our work into three
setups. In the first setup, we conducted an empiri-
cal comparison of some classifiers (Pedregosa et al.,
2011), namely: Linear Support Vector Classifica-
tion (LSVC), Linear Regression (LR), Perceptron,
Stochastic Gradient Descent (SGD), Passive Ag-
gressive (PA), Complement Naive Bayes (CNB),
MutliLayer Perceptron (MLP), and RidgeClassifier.
We used these classifiers in their default setup ex-
cept for the SGD classifier for which we examined
the performance in function of runs number. In the
first setup, we used three types of features indepen-
dently, it is about the TF-IDF features of ngrams for
words, chars and char wb. Using different values
of n (ngrams) resulted in diverse feature vectors
using the eight aforementioned classifiers. We then
ranked the best ”features+classifiers” combinations
according to the obtained F1 scores, in order to use
them in the following setups.
The second setup is based on the first one, since

we concatenate the best ”features+classifiers”, men-
tioned above, without weighting. The best perfor-
mance is obtained by three classifiers, as shown in
Table 2.

1https://www.nltk.org/index.html

284

Preprocessed Tw
eets

TFIDF
Word

ngrams

TFIDF
Char-wb
ngrams

TFIDF
Char ngrams

Feature U
nion

W1

W2

W3

LSVC

RGD

SGD

Pred1

Pred2

Pred3

M
ajority Voting R

ule

Final prediction

Figure 1: Proposed system based on weighted concatenation approach

MSA DA
Model Configuration F1 Configuration F1

SVC unionVect(1, 5, 2, 10, 2, 8) 14.70 unionVect(1, 3, 1, 4, 2, 4) 21.81
SGD unionVect(1, 2, 1, 4, 1, 9) 15.28 unionVect(1, 3, 1, 4, 2, 4) 21.85
RDG unionVect(1, 2, 1, 5, 1, 9) 14.73 unionVect(1, 2, 1, 4, 2, 4) 20.68

Table 2: Obtained results in the dev phase while applying a concatenation without weighting. unionVect takes as
inputs different values of n (ngrams)

MSA DA
Model weights F1 weights F1

SVC
0.8
0.6
0.5

14.89
0.8
0.4
0.8

21.25

SGD
0.8
0.8
0.8

14.84
0.8
0.5
0.8

18.98

RDG
0.8
0.7
0.8

14.85
0.8
0.5
0.8

19.76

Comb.
0.8
0.7
0.8

14.90
0.8
0.5
0.8

20.09

Table 3: Obtained results in the dev phase while apply-
ing a concatenation by weighting the three analyzers
(char, char wb, word). The selected values of n are (1,
5, 1, 7, 1, 9).

According to the results shown in Table 3, the three
best classifiers are SVC, SGD and RDG, run with
their default parameters. The best results for both
MSA and DA are obtained by SGD classifer with
an F1-score of 15.28% and 21.85%, respectively.
For the first subtask, the concatenation of: word
bigrams (1, 2), char 4-grams (1, 4) and char wb 9-
grams (1, 9) gave the best results. Whereas, in the
second subtask, the best performance was achieved
using a concatenation of: word 3-grams (1, 3), char
4-grams (1, 4) and char wb ”bigrams, 3-grams and
4-grams” (2, 4).

In the third setup, we applied weighted concatena-
tion of the features used in the second setup. We
used multiple values of the weights: w1, w2 and
w3 for word, char, and char wb analyzers, respec-
tively. The best performance is recorded for both
MSA and DA subtasks using a majority voting rule
on the three classifiers SVC, SGD, and RDG with
an F1-score of 14.90% and 20.09%, respectively.
The best performance for the second subtask is
achieved using the SVC classifier with an F1-score
of 21.25%. We summarize the results in Table 3.
As a final step, and in order to improve the re-
sults achieved in the third setup, we investigated
the impact of oversampling approaches (i.e., ROS,
SMOTE, ADASYN) to tackle the issue of imbal-
anced data (see Figure 1). It should be noted that
the configurations reported in Table 5 are defined
in Table 4.
For the first subtask (MSA), we obtained these
performances by applying a set of surface
and morphological preprocessing followed by
a union of (word 5-grams, char (2,8) grams
and char wb (2,10)) multiplied by a vector
weights (1.3, 1.3, 1), in addition to the in-
tern parameters of SGD classifier(l1 ratio=0.25,
loss=’modified huber’,penalty=’elasticnet’). We
obtained F1=16.30% (dev) F1=14.50% (test).
For the second subtask (DA), we included the
ADASYN oversampling technique to the config-
uration used in the first subtask while changing
the preprocessing, ngrams range used by union-
Vect, vector weight as well as the parameters of

285

Configs Preprocess Union Weights Oversampling SGD

Conf1 RSW, RAD,
ALN, RRW,
RLL, Stem,
Lem

1, 5,
2, 8,
2, 10

1.3,
1.3,
0.9 N/A

l1 ratio=0.25,
loss=’modified huber’,
penalty=’elasticnet’

Conf2
1.3,
1.3,
1.0

Conf3
1.3,
1.3,
1.9

Conf4
RE, RAD,
RRW, Stem

1, 3,
1, 4,
2, 4

1.8,
0.7,
1.8

ratio=’minority’
max iter=2000,
shuffle=FalseConf5

ratio=’minority’,
random state=222

Conf6
ratio=’minority’,
random state=333}

Table 4: Configurations used in the 4th setup

Subtasks Configuration Conf1 Conf2 Conf3 Conf4 Conf5 Conf6

Subtask 1.1
Dev 15.86 16.28 16.30

N/A
Test 14.47 14.87 14.50

Subtask 1.2
Dev

N/A
22.81 22.94 23.01

Test 21.08 21.49 21.13

Table 5: Performance (F1) achieved using weighted concatenation and oversampling techniques for both subtasks.

the SGD classifier. We obtained performance equal
to 23.01% and 21.13% for development and test
phases, respectively.

5 Conclusion

In this paper, we described our two submitted sys-
tems for identifying Arabic dialects, using twit-
ter texts collected from 21 Arabic countries. We
carried out an empirical comparison study by con-
ducting 200 experiments in which we used several
combinations of features, and preprocessing steps
as stemming, lemmatization and part of speech
tagging. We used a simple classification technique
comprising three classifiers: LSVC, RDG and SGD.
We addressed the issue of imbalanced data using
a set of oversampling methods. Furthermore, We
tried to investigate the impact of concatenating TF-
IDF features with and without weight vector.

References
Mourad Abbas, Mohamed Lichouri, and Abed Al-

hakim Freihat. 2019. St madar 2019 shared task:
Arabic fine-grained dialect identification. In Pro-
ceedings of the Fourth Arabic Natural Language
Processing Workshop, pages 269–273.

Muhammad Abdul-Mageed, Chiyu Zhang, Houda
Bouamor, and Nizar Habash. 2020. Nadi 2020: The
first nuanced arabic dialect identification shared task.
arXiv preprint arXiv:2010.11334.

Muhammad Abdul-Mageed, Chiyu Zhang, Abdel-
Rahim Elmadany, Houda Bouamor, and Nizar
Habash. 2021. NADI 2021: The Second Nuanced
Arabic Dialect Identification Shared Task. In Pro-
ceedings of the Sixth Arabic Natural Language Pro-
cessing Workshop (WANLP 2021).

Kathrein Abu Kwaik and Motaz K Saad. 2019. Arbdi-
alectid at madar shared task 1: Language modelling
and ensemble learning for fine grained arabic dialect
identification. In Proceedings of the Fourth Arabic
Natural Language Processing Workshop, Proceed-
ings of the Fourth Arabic Natural Language Process-
ing Workshop. Association for Computational Lin-
guistics.

Ahmad Beltagy, Abdelrahman Wael, and Omar ElSh-
erief. 2020. Arabic dialect identification using
bert-based domain adaptation. arXiv preprint
arXiv:2011.06977.

Houda Bouamor, Sabit Hassan, and Nizar Habash.
2019. The madar shared task on arabic fine-
grained dialect identification. In Proceedings of the
Fourth Arabic Natural Language Processing Work-
shop, pages 199–207.

286

Abdellah El Mekki, Ahmed Alami, Hamza Alami,
Ahmed Khoumsi, and Ismail Berrada. 2020.
Weighted combination of bert and n-gram features
for nuanced arabic dialect identification. In Proceed-
ings of the Fifth Arabic Natural Language Process-
ing Workshop, pages 268–274.

Kamel Gaanoun and Imade Benelallam. 2020. Ara-
bic dialect identification: An arabic-bert model with
data augmentation and ensembling strategy. In Pro-
ceedings of the Fifth Arabic Natural Language Pro-
cessing Workshop, pages 275–281.

Guillaume Lemaı̂tre, Fernando Nogueira, and Chris-
tos K. Aridas. 2017. Imbalanced-learn: A python
toolbox to tackle the curse of imbalanced datasets
in machine learning. Journal of Machine Learning
Research, 18(17):1–5.

Mohamed Lichouri and Mourad Abbas. 2020a. Sim-
ple vs oversampling-based classification methods
for fine grained arabic dialect identification in twitter.
In Proceedings of the Fifth Arabic Natural Language
Processing Workshop, pages 250–256.

Mohamed Lichouri and Mourad Abbas. 2020b.
Speechtrans@ smm4h’20: Impact of preprocessing
and n-grams on automatic classification of tweets
that mention medications. In Proceedings of the
Fifth Social Media Mining for Health Applications
Workshop & Shared Task, pages 118–120.

Mohamed Lichouri, Mourad Abbas, and Besma Be-
naziz. 2020. Profiling fake news spreaders on twitter
based on tfidf features and morphological process.

Mohamed Lichouri, Mourad Abbas, Abed Alhakim
Freihat, and Dhiya El Hak Megtouf. 2018. Word-
level vs sentence-level language identification: Ap-
plication to algerian and arabic dialects. Procedia
Computer Science, 142:246–253.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Pavel Přibáň and Stephen Taylor. 2019. Zcu-nlp at
madar 2019: Recognizing arabic dialects. In Pro-
ceedings of the Fourth Arabic Natural Language
Processing Workshop, pages 208–213.

Ahmad Ragab, Haitham Seelawi, Mostafa Samir, Ab-
delrahman Mattar, Hesham Al-Bataineh, Moham-
mad Zaghloul, Ahmad Mustafa, Bashar Talafha,
Abed Alhakim Freihat, and Hussein Al-Natsheh.
2019. Mawdoo3 ai at madar shared task: Ara-
bic fine-grained dialect identification with ensemble
learning. In Proceedings of the Fourth Arabic Natu-
ral Language Processing Workshop, pages 244–248.

Bashar Talafha, Mohammad Ali, Muhy Eddin Za’ter,
Haitham Seelawi, Ibraheem Tuffaha, Mostafa Samir,
Wael Farhan, and Hussein T Al-Natsheh. 2020.
Multi-dialect arabic bert for country-level dialect
identification. arXiv preprint arXiv:2007.05612.

Samia Touileb. 2020. Ltg-st at nadi shared task 1: Ara-
bic dialect identification using a stacking classifier.
In Proceedings of the Fifth Arabic Natural Language
Processing Workshop, pages 313–319.

