
Proceedings of the Sixth Arabic Natural Language Processing Workshop, pages 271–275
Kyiv, Ukraine (Virtual), April 19, 2021.

271

BERT-based Multi-Task Model for Country and Province Level Modern
Standard Arabic and Dialectal Arabic Identification

Abdellah El Mekki1 Abdelkader El Mahdaouy1 Kabil Essefar1
Nabil El Mamoun2 Ismail Berrada1 Ahmed Khoumsi3

1School of Computer Sciences, Mohammed VI Polytechnic University, Morocco
2Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, Morocco

3Dept. Electrical & Computer Engineering, University of Sherbrooke, Canada
{firstname.lastname}@um6p.ma
ahmed.khoumsi@usherbrooke.ca

Abstract

Dialect and standard language identification
are crucial tasks for many Arabic natural lan-
guage processing applications. In this paper,
we present our deep learning-based system,
submitted to the second NADI shared task
for country-level and province-level identifica-
tion of Modern Standard Arabic (MSA) and
Dialectal Arabic (DA). The system is based
on an end-to-end deep Multi-Task Learning
(MTL) model to tackle both country-level and
province-level MSA/DA identification. The
latter MTL model consists of a shared Bidi-
rectional Encoder Representation Transform-
ers (BERT) encoder, two task-specific atten-
tion layers, and two classifiers. Our key idea
is to leverage both the task-discriminative and
the inter-task shared features for country and
province MSA/DA identification. The ob-
tained results show that our MTL model out-
performs single-task models on most subtasks.

1 Introduction

The Arabic language is spoken by approximately
400 million people and characterized by different
varieties. On the one hand, people of the Arab
world tend to use Modern Standard Arabic (MSA)
as a communication channel in formal situations
(e.g. media, religion, education). On the other
hand, Arabic dialects are usually used for informal
communication in daily life. These dialects differ,
to varying degrees, from one region to another.

Generally, existing research works categorized
DA into four regions (Maghreb, Egypt, Gulf, and
Levant) based on the coarse-grained taxonomy
(Zaidan and Callison-Burch, 2014). Recently, sev-
eral research studies classified DA into more fine-
grained varieties such as country-level dialects
(Salameh et al., 2018; Bouamor et al., 2019; Abdul-
Mageed et al., 2020b).

In the last few years, Arabic dialect identifica-
tion has gained much attention (Bouamor et al.,
2019; El Mekki et al., 2020; Abdul-Mageed et al.,
2020b,c). Identifying the dialect of an end-user is
a very important task in many applications such
as user profiling, personalized customer support,
etc. Nevertheless, due to the nature and the struc-
ture of DA as well as MSA (Al-Sughaiyer and
Al-Kharashi, 2004; Habash, 2010; Habash et al.,
2012), this task faces several challenges.

Previous works on DA identification mainly fo-
cused on the use of traditional machine learning
models (Abu Kwaik and Saad, 2019; Meftouh
et al., 2019) and single-task deep learning mod-
els (Talafha et al., 2020). (El Mekki et al., 2020)
introduced hierarchical models that perform the
training and prediction of the country-level and
province-level classification based on a sequential
process. Recently, (Abdul-Mageed et al., 2020c)
shown the effectiveness of MTL using MARBERT,
a transformer-based language model pre-trained on
a massive dataset of 128GB Arabic tweets, for both
country-level and province-level DA identification.

In this paper, we tackle both the DA and MSA
identification of the second NADI (Nuanced Ara-
bic Dialect Identification) shared tasks: Country-
level MSA identification, country-level DA iden-
tification, province-level MSA identification, and
province-level DA identification (Abdul-Mageed
et al., 2021). Our submitted system consists of
an end-to-end deep MLT model that predicts both
the province and the country of a given Arabic
tweet. Our model leverages MARBERT’s contex-
tualized word embedding (Abdul-Mageed et al.,
2020a) with two task-specific attention layers that
extract the task-discriminative features. The latter
features are then concatenated with the encoder’s
pooled embedding ([CLS] embedding) and are fed
to the task classifiers. Thus, the core idea of our ap-
proach is to combine both task-discriminative and
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Figure 1: Label distribution of the training set for the country-level classification subtasks. Country code following
the ISO 3166-1 alpha-2 (Wikipedia, 2020)

inter-task shared features for country and province
MSA/DA identification. The obtained results show
that our MTL model outperforms its single-task
counterpart on all evaluated subtasks. These results
prove the effectiveness of combining task-specific
features and inter-task shared features for country-
level and province-level MSA and DA identifica-
tion.

The rest of this paper is organized as follows.
Section 2 describes the NADI shared task’s datasets.
Section 3 presents our proposed method. Section
4 summarizes the obtained results for both subtask
1 and subtask 2. In Section 5, we discuss these
results. Finally, the conclusion is given in section
6.

2 Data

The second NADI shared task consists of four sub-
tasks on MSA and DA country-level as well as
province-level identification. Table 1 presents the
four subtasks of NADI’2020.

Table 1: NADI’2021 DA and MSA identification sub-
tasks

Data Country-level Province-level

MSA Subtask 1.1 Subtask 2.1

DA Subtask 1.2 Subtask 2.2

For both MSA and DA subtasks, the organiz-
ers of NADI’2021 provided a dataset of 31,000
labeled tweets covering 21 Arab countries and 100
Arab provinces. The training set consists of 21,000
tweets, while the rest 10,000 are equally distributed
between the development and test sets. Finally,
each tweet is assigned a single country label and a
single province label. Figure 1 shows that the distri-
bution of tweets for the country-level classification
subtasks is unbalanced. Furthermore, Egypt, Iraq

and Saudi Arabia countries have the highest num-
ber of tweets, while Mauritania, Qatar and Somalia
have the lowest one.

3 Method

Our multi-task model, for both tasks, consists of
three main components: BERT encoder (MAR-
BERT pre-trained language model), two task-
specific attention layers, and two task classifiers.

3.1 BERT Encoder
The input tweets are encoded using a Bidirec-
tional Encoder Representation from Transformers
(BERT) model (Devlin et al., 2019). BERT em-
ploys multiple transformer blocks to encode the in-
put text. This model is trained on large textual cor-
pora by jointly optimizing the Masked Language
Model (MLM) and the Next Sentence Prediction
(NSP) objectives. Fine-tuning BERT model on the
downstream tasks has shown state-of-the-art per-
formances in many NLP applications.

In order to avoid domain shift, our end-to-end
model for NADI’2021 uses MARBERT. In fact,
MARBERT (Abdul-Mageed et al., 2020a) is a vari-
ation of BERT pre-trained on a large Arabic Twitter
dataset (1 billion tweets) using only MLM objec-
tive (tweets are short).

3.2 Task-specific attention layer
Two task-specific attention layers are used to re-
ward tokens’ hidden representation (contextual em-
bedding) that contributes to the correct classifica-
tion of tweets for the country-level and province-
level tasks. These layers operate on top of the
contextualized word embedding of the BERT en-
coder H = [h1, h2, ..., hn] ∈ Rn×d, where n is
the sequence length and d is the embedding di-
mension. Hence, each task-specific attention layer
(Bahdanau et al., 2015; Yang et al., 2016) can at-
tend to some parts of the tweet to extract the task-
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discriminative features. The attention mechanism
is given by:

C = tanh(HWa)

α = softmax(CTWα)

v = α ·HT

where Wa ∈ Rd×1, Wα ∈ Rn×n are the attention
mechanism’s learnable parameters, C ∈ Rn×1 and
α ∈ [0, 1]n weights the word hidden representa-
tions according to their relevance to the task, v
represents the task-relevant information contained
in a tweet.

3.3 Task classifier
The task classifier consists of one hidden layer
and one output layer. The pooled output (h[CLS]
embedding) and the vector v, obtained using the
task-specific attention layer, are concatenated and
passed to the task classifier. The latter outputs the
predicted task label.

3.4 Multi-task learning objective
Our MTL model is trained to jointly optimize both
tasks’ cross-entropy losses. For the country-level
MSA/DA identification, our model minimizes:

LCountry(ŷ
c, yc) = −

N∑
i=1

l∑
j=1

ycijlog(ŷ
c
ij)

where ycij is the ground-truth label, ŷcij is the pre-
dicted label, N is the number of training samples,
and l is the number of countries (l = 21).
For the province-level MSA/DA identification, our
model is trained to minimize:

LProvince(ŷ
p, yp) = −

N∑
i=1

k∑
j=1

ypijlog(ŷ
p
ij)

where ypij is the ground-truth label, ŷpij is the pre-
dicted label, and k is the number of provinces
(k = 100).
Thus, the final loss of our model is:

L = LCountry + LProvince

Finally, our model is trained using Adam opti-
mizer (Kingma and Ba, 2014), with a learning rate
of 1 × 10−5. Based on several experiments, the
batch size and the number of epochs are set to 16
and 5, respectively. For tweets cleaning, we have
implemented the same preprocessing pipeline that
is used by MARBERT which consists of diacritics
removal and mention substitution by USER token.

4 Results

In our experiments, we have investigated multiple
models, starting from traditional machine learn-
ing techniques to transformer-based approaches.
The obtained results show that MARBERT signif-
icantly outperforms the other approaches. For a
fair comparison, our single-task model employs an
attention layer over the contextualized word embed-
ding of MARBERT and concatenates its outputs
with the [CLS] token embedding for MSA and DA
identification subtasks. It is worth mentioning that
incorporating an attention layer into single-task
and MTL models improves the results compared to
performing the classification using only the [CLS]
token embedding representation.

Table 2 presents the Macro-averaged F1-scores
and the accuracies achieved using our evaluated
single-task and MTL models on the four subtasks.
The obtained results show that our attention-based
multi-task model largely outperforms the single-
task model on all subtasks’ Dev set and Test set.
For MSA identification, at the country-level and
province-level, our MTL model achieves F1-score
performance increments of 1.49% and 0.35% re-
spectively over the single-task model on the Dev
set, while it achieves F1-score performance incre-
ments of 0.47% and 0.63% respectively over the
single-task model for the Test set. For DA identi-
fication, at the country-level and province-level,
the MTL model leads to F1-score performance
increments of 0.42% and 0.42% over the single-
task model, respectively on the Dev set, while it
achieves increments of 1.57% and 2.02%, respec-
tively on the Test set. This can be explained by the
fact that our MTL model leverages signals from
related tasks and boosts the performance of both.
Moreover, through the task-specific attention lay-
ers, the MTL model extracts the task-discriminative
features. Furthermore, employing task-specific
features and global-shared features ([CLS] em-
bedding) improves the performance of our MTL
model.

5 Discussion

In order to analyze the results and explain the lower
performance of our MTL model on some subtasks,
Figure 2 draws the confusion matrices for DA and
MSA identification at the country-level on the Dev
set. The matrices highlight a number of strengths
and weaknesses of our final model. On the one
hand, the model performs well for countries with
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Single-task model Multi-task model
Dev/Test F1 Accuracy F1 Accuracy

Subtask 1.1
Dev 21.56 34.35 23.05 37.80
Test 20.90 33.73 21.47 33.84

Subtask 1.2
Dev 31.62 48.48 32.04 51.28
Test 29.07 49.50 30.64 50.30

Subtask 2.1
Dev 6.05 6.63 6.40 6.85
Test 4.72 5.00 5.35 5.72

Subtask 2.2
Dev 8.88 9.60 9.40 9.84
Test 5.30 6.90 7.32 7.92

Table 2: Scores of our models (%) for the 4 subtasks (dev-sets and test-sets).

(a) MSA identification (b) DA identification

Figure 2: The confusion matrices of our MTL model on the Dev set for country-level DA and MSA identification.

a high number of training examples such as Egypt,
Algeria, and Iraq. On the other hand, the model
shows poor performance in predicting true posi-
tives for countries with a low number of training
examples, as it is the case of Djibouti and Bahrain.
Moreover, the MSA country-level identification
is a very challenging subtask since it is hard to
find patterns to discriminate between countries and
provinces based on standard language. Also, the
model tends to make incorrect predictions for coun-
tries that are geographically close since their di-
alects have some minor differences (e.g. the Gulf
countries) compared to other Arab countries.

6 Conclusion

In this paper, we introduced our submitted system
to the second NADI shared task. We proposed an
MTL model for joint country-level and province-

level identification of MSA and DA tweets. The
model is based on the state-of-the-art MARBERT
encoder and uses two task-specific attention lay-
ers to extract the task-discriminative features. The
obtained results have shown that our MTL model
outperforms the single-task model on all subtasks
for both evaluation measures (Macro-F1 and accu-
racy).

Future research work will focus on developing
task-interaction and class-interaction modules and
mechanisms for coarse-grained and fine-grained
DA and MSA identification.
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