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Abstract

We study the problem of Cross-lingual Event
Argument Extraction (CEAE). The task aims
to predict argument roles of entity mentions
for events in text, whose language is different
from the language that a predictive model has
been trained on. Previous work on CEAE has
shown the cross-lingual benefits of universal
dependency trees in capturing shared syntactic
structures of sentences across languages. In
particular, this work exploits the existence of
the syntactic connections between the words in
the dependency trees as the anchor knowledge
to transfer the representation learning across
languages for CEAE models (i.e., via graph
convolutional neural networks – GCNs). In
this paper, we introduce two novel sources of
language-independent information for CEAE
models based on the semantic similarity and
the universal dependency relations of the word
pairs in different languages. We propose to
use the two sources of information to produce
shared sentence structures to bridge the gap be-
tween languages and improve the cross-lingual
performance of the CEAE models. Extensive
experiments are conducted with Arabic, Chi-
nese, and English to demonstrate the effective-
ness of the proposed method for CEAE.

1 Introduction

Event Argument Extraction (EAE) aims to classify
argument roles of entity mentions for events in text.
For example, given the sentence “He died of in-
juries from a grenade attack by a fellow soldier”,
the task requires systems to identify the entity men-
tion “a fellow soldier” as the Agent of the event
Die, which is triggered by the verb “died”. EAE is
an important component of event extraction (EE)
that has been extensively studied with different ap-
proaches (Ji and Grishman, 2008; Liao and Grish-
man, 2011a; Li et al., 2014; Nguyen and Grishman,
2015b; Nguyen et al., 2016; Nguyen and Grishman,

2018; Liu et al., 2018; Zhang et al., 2019b; Wang
et al., 2019). Cross-lingual Event Argument Extrac-
tion (CEAE) is an instance of EAE that considers
the setting where test languages (i.e., target lan-
guages) are different from training languages (i.e.,
source languages). The goal is to transfer knowl-
edge in source languages, where data is abundant,
to low-resource target languages. The previous
work on CEAE (Subburathinam et al., 2019) has
shown the existence of shared syntactic structures
of sentences across languages, which are useful for
cross-lingual transfer. In particular, with the mul-
tilingual word embeddings, Subburathinam et al.
(2019) develop a model based on Graph Convolu-
tional Networks (GCNs) (Kipf and Welling, 2017;
Zhang et al., 2018), which operates on universal
dependency trees to capture the shared structures.

Notably, the use of the dependency trees of the
sentences for GCNs in (Subburathinam et al., 2019)
essentially treats the existence of the syntactic con-
nections between the words in the universal depen-
dency trees as the language-universal knowledge
that can be exploited to bridge the gap between lan-
guages for EAE. In (Subburathinam et al., 2019),
such syntactic connection existences are formalized
via the adjacency matrices Adep = {adepij }i,j=1..N

of the dependency trees (i.e., N is the number of
words in the input sentence and adepij = 1 if the i-th
and j-th words are connected in the dependency
tree) that would be consumed by GCNs for repre-
sentation learning. We call Adep the syntax-based
structures of the sentences for convenience (as adepij

is based on the syntactic connection of the words).
As such, in this work, we introduce two novel

sources of information as the language anchors,
which are complementary to the syntactic con-
nections Adep, to enable GCNs to learn better
language-general representations for EAE. The
first source of information relies on the seman-
tic similarities of the pairs of words in the input
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sentence to induce the semantic-based structures
Asem = {asemij }i,j=1..N for GCNs. The rationale
for such semantic-based structures is that despite
the vocabulary differences between languages, the
semantic similarity of the words is a language-
invariant concept and can be leveraged to enhance
the cross-lingual knowledge transfer for EAE. In
this work, we rely on the multilingual representa-
tion vectors of the words to facilitate such semantic
similarity computation for asemij in different lan-
guages. For the second source of information, we
propose to employ the syntactic dependency re-
lations between the words (e.g., nsubj, conj) in
the dependency trees to obtain the relation-based
structures Arel = {arelij }i,j=1..N for EAE with
GCNs. Specifically, Arel = {arelij }i,j=1..N is an
extension of Adep that further considers the natures
(i.e., the relations) of the syntactic connections be-
tween the words (i.e., instead of using only the
existence of the connections as in Adep). Similar
to the semantic-based structures, we argue that the
syntactic dependency relations from the universal
dependency trees are also language-independent
and can be helpful for our CEAE problem. To this
end, we employ the embeddings of the dependency
relations to compute the relation-based structure
scores arelij . Note that all the structures Adep, Asem,
and Arel are fed into GCN models for represen-
tation learning in this work. Finally, we conduct
extensive experiments to demonstrate the benefits
of the proposed sentence structures, leading to the
state-of-the-art performance for CEAE with Arabic,
Chinese, and English as the experiment languages.
To our knowledge, this is the first work to examine
semantic-based and relation-based structures for
EAE.

2 Related Work

EAE and EE have been extensively studied for En-
glish in the monolingual context of Event Extrac-
tion, featuring both the traditional machine learn-
ing models (Patwardhan and Riloff, 2009; Liao
and Grishman, 2011b; Li et al., 2013; Yang and
Mitchell, 2016) and the recent advanced deep learn-
ing models (Chen et al., 2015; Sha et al., 2018;
Wang et al., 2019; Zhang et al., 2019a; Nguyen and
Nguyen, 2019; Lai and Nguyen, 2019; Lai et al.,
2020; Pouran Ben Veyseh et al., 2020). Only a few
works have considered cross-lingual learning for
EAE (Chen and Ji, 2009; Hsi et al., 2016; Subbu-
rathinam et al., 2019).

Cross-lingual transfer learning has also been
examined for the other related tasks of EAE, in-
cluding multilingual relation extraction (Kim et al.,
2010; Qian et al., 2014; Faruqui and Kumar, 2015;
Lin et al., 2017; Zou et al., 2018; Wang et al., 2018)
and semantic role labeling (Mulcaire et al., 2018,
2019; Liu et al., 2019). However, none of these
works explores edge-based attention GCN as we
do.

Finally, our work is also related to the recent text
structure models for other NLP tasks, including
relation extraction (Sahu et al., 2019; Tran et al.,
2020), event factuality prediction (Veyseh et al.,
2019), and text summarization (Balachandran et al.,
2020).

3 Model

We formalize EAE as a multi-class classification
problem. Let W = w1, w2, ..., wN be a sentence
(of N words) with wt as the trigger word and wa

as the argument candidate (i.e., an entity mention)
(1 ≤ t, a ≤ N ). The goal of EAE is to predict the
role y∗ of wa for the event triggered by wt.

Following (Subburathinam et al., 2019), we use
the UDPipe toolkit (Straka and Straková, 2017) to
obtain the universal dependency tree for W , the
part of speech (POS) tags and BIO entity type tags
for the words in W . For convenience, let R be the
set of universal dependency relations and E be the
matrix for the embedding vectors of such depen-
dency relations where Er indicates the embedding
vector for r ∈ R.

In the first step for cross-lingual EAE, each word
wi in W is represented by the concatenation vector
xi of three language-universal embedding vectors:
xi = [xwi , x

p
i , x

e
i , x

d
i ] where xwi is the multilingual

word embedding for wi from MUSE (Joulin et al.,
2018), xpi is the embedding vector for the POS tag
of wi ∈ W , xei is the embedding vector for the
entity type tag of wi, and xdi is the embedding vec-
tor Eri for the dependency relation ri between wi

and its governor. The POS tag and entity type tag
embeddings are initialized randomly and learned
via training. After this step, the input sentence W
would be transformed into a sequence of representa-
tion vectors X = x1, x2, . . . , xN . As presented in
the introduction, our CEAE model involves three
major sentence structures (i.e., Adep, Asem, and
Arel) that would be consumed by the GCN models
to perform CEAE. We describe these components
in detail below.
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Models Cross-lingual (training/test languages) Monolingual
en/ch en/ar ch/en ch/ar ar/en ar/ch en+ch/ar en+ar/ch ch+ar/en en ch ar

GCN 59.0 61.8 51.6 60.6 43.1 50.1 63.1 60.1 51.9 63.9 59.3 64.0
RSGCN 58.4 62.9 53.9 63.3 48.0 52.6 64.0 59.1 55.5 64.9 63.7 66.9

Table 1: F1 scores of the models on the test data.

Models en/ch en/ar ch/en ch/ar ar/en ar/ch
RSGCN 55.3 63.3 56.0 63.8 50.5 53.8
-Arel 53.1 60.0 52.6 61.8 49.6 52.0
-Asem 53.5 61.5 54.0 62.6 48.7 53.1
-Asem-Arel 53.8 61.4 52.3 59.4 47.6 51.9

Table 2: F1 scores of the models on the development data.

3.1 Language-Universal Sentence Structures

A sentence structure in this work refers to a real-
valued matrix A = {aij}i,j=1..N capturing the
levels of interactions/dependencies between the
pairs of words in W . In particular, the score
aij ∈ A represents the contribution that the rep-
resentation vector of wj would provide for the
representation vector computation of wi in W ac-
cording to some information source/perspective
(e.g., syntax or semantic). Our goal in this work is
to obtain the sentence structures for W based on
the language-independent knowledge (thus called
language-universal sentence structures) to enable
cross-lingual representation learning for EAE. As
such, three types of sentence structures are utilized
in this work:

(i) Syntax-based Sentence Structures (de-
noted by Adep = {adepij }i,j=1..N ): This structure is
inherited from (Subburathinam et al., 2019) to cap-
ture the syntactic connections of the words in the
dependency tree T of W . In particular, adepij = 1
only if wi and wj are connected in T .

(ii) Semantic-based Sentence Structures (de-
noted by Asem = {asemij }i,j=1..N ): As mentioned
in the introduction, this type of structures aims to
leverage the semantic similarities between pairs
of words as the universal knowledge across lan-
guages for CEAE. In this work, we use the mul-
tilingual word embedding vectors xwi to capture
the semantic representations of the words wi. The
semantic-based structure score asemij is then com-

puted by: asemij = tanh
(
u>(xwi � xwj )

)
where �

is the element-wise product and u is a learnable
vector.

(iii) Relation-based Sentence Structures (de-
noted byArel = {arelij }i,j=1..N ): The syntax-based
structures Adep only consider the syntactic connec-
tions of the words to generate the structure scores.

In this work, we note that the dependency rela-
tions (e.g., nsubj, conj) between the words in the
universal dependency trees are also the language-
independent concepts. To this end, we propose to
further exploit such dependency relations to obtain
the relation-based structure scores arelij for CEAE:
arelij = tanh(v>Erij ) if wi and wj are connected
in T and 0 otherwise (here rij is the dependency
relation between wi and wj in T ). Here, v is a
learnable vector.

Note that we normalize Adep via the neighbor
sizes of the words, and Asem, Arel via the softmax
function to ensure that the weights corresponding
to a word wi (i.e., a∗ij for j = 1..N ) sum to 1.

3.2 Graph Convolutional Neural Networks

In order to exploit the aforementioned sentence
structures for representation learning for CEAE,
we propose to first combine the structures via a
linear combination, leading to a richer structure
A = {aij}i,j=1..N :

A = γ1A
dep + γ2A

sem + (1− γ1 − γ2)Arel (1)

Afterward, we follow (Subburathinam et al.,
2019) to feed A into a GCN model for represen-
tation learning. In particular, the GCN model
in this work involves L layers. The representa-
tion vector hli for the word wi ∈ W at the l-
th layer (1 ≤ l ≤ L) is computed via: hli =
ReLU(

∑N
j=1 aij(W

lhl−1j + bl)) where h0i is set
to xi for all 1 ≤ i ≤ N , and W l and bl are the
learnable weight matrices and bias vectors at the
l-th layer.

In the next step, an overall representation vec-
tor V is computed based on hidden vectors in
the last layer of the GCN model via: V =
[hLa , h

L
t ,max pooling(hL1 , . . . , h

L
N )]. This vector

is sent into an one-layer feed-forward network to



240

وبعدھا  ابلغت   میرندا   بنقل    ابنھا    بشارة   الى      احد   سجون  سوریا
w1											w2										w3												w4										w5											w6										w7												w8											w9										w10								

GCN
RSGCN

Syrian          prison           a                  to         Bechara       her-son   transferred    Miranda      reported     After-that        

Figure 1: Visualization of the weights of the words with respect to the trigger word w7 (i.e., a7j and adep7j ).

estimate the distribution P (.|W,wa, wt) over all
the possible argument roles for our CEAE prob-
lem. Finally, the negative log-likelihood L =
− logP (y∗|W,wa, wt) is used as the loss function
to train the models in this work.

4 Experiments

4.1 Dataset and Hyper-parameters

Following (Subburathinam et al., 2019), we evalu-
ate the models in this work using the multilingual
ACE 2005 dataset where the EAE data is provided
for three languages, i.e., Arabic (ar), Chinese (ch),
and English (en). We use the preprocessed data and
the train/dev/test split provided by (Subburathinam
et al., 2019) to ensure a fair comparison. The devel-
opment data is used to finetune hyper-parameters.
In particular, we use 30 dimensions for the POS
and entity type embeddings, 30 dimensions for the
dependency relation embeddings (that are initial-
ized randomly and updated during training), 200
dimensions for the hidden vector of GCN, 2 layers
for the GCN model, the bath size of 50 for mini-
batching, 0.5 for the learning rate for the SGD op-
timizer, and 0.9 for the learning rate decay. For the
novel sentence structures, we observe that γ1 = 0.6
and γ2 = 0.1 leads to the best performance of the
proposed model on the development data.

4.2 Comparison with the State of the Art

This section compares the proposed model (called
RSGCN – Rich Sentence Structure-based GCN)
with the GCN-based model in (Subburathinam
et al., 2019) (called GCN). In particular, the mod-
els are trained on the training datasets for one or
two of the three language (i.e., en, ch and ar) that
are then evaluated on the test datasets for the other
languages. Table 1 reports the performance of the
models. As we can see, the proposed model RS-
GCN significantly outperforms GCN on seven over
nine cross-lingual settings, and interestingly also
on all the monolingual settings with substantial
performance gaps (p < 0.01). This clearly demon-
strates the advantages of the proposed semantic-

based and relation-based structures for CEAE.

4.3 Ablation Study

To assess the contributions of the novel semantic-
based (Asem) and relation-based (Arel) structures
in this work, we exclude each of them from RS-
GCN and evaluate the performance of the remain-
ing model on development data. This ablation study
is conducted over six different cross-lingual set-
tings, i.e., six choices for different source and target
language.

Table 2 shows that both structuresAsem andArel

are necessary for the proposed model as removing
any of them would hurt the performance across
different language pairs. We also observe that for
most language pairs (e.g., en/ar, ch/en), excluding
Arel would lead to a deeper performance drop than
those for removing Asem, thus demonstrating the
more importance of Arel over Asem. We attribute
this to the fact that the Arel structure is based on
explicit structural information (i.e., dependency
relations) which could be more valuable for the
structure transfer.

4.4 Analysis

To understand the effect of the proposed structures,
we analyze the examples from the development
data of the setting en/ar that RSGCN makes cor-
rect predictions but GCN does not. Among others,
we find that the proposed sentence structures help
RSGCN assign more appropriate structure scores
for the words for better representation learning.
Consider Figure 1 as an example where a rough
translation for the sentence is “After that, Miranda
was informed that her son Bechara had been trans-
ferred to a Syrian prison”. In this example, the
word w7 (i.e., “transferred”) is the trigger of the
event “Movement-Transport”, and the word w6

(i.e., “her son”) is the argument with the role “Ar-
tifact”.

As shown in the figure, both RSGCN and GCN
assign the highest score for the most important
word w6 (i.e., “her son”). However, in addition
to that, GCN also considers the words w5 (i.e.,
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“Bechara”),w3 (i.e., “a”), andw8 (i.e., “Miranda”)
as equally important as w6. This is problematic
as the irrelevant words w3 and w5 for argument
role identification might introduce noise into the
representation vectors. Even worse, the high score
for w8 might cause the model to incorrectly predict

“Miranda” as the argument in this case. To this end,
the proposed sentence structures help RSGCN to
mitigate such issues by re-distributing the scores so

“her son” can have the highest score and the con-
fusing word “Miranda” is almost canceled (with
the nearly zero score), eventually leading to the
success of RSGCN on this example.

5 Conclusion and Future Work

We introduce two novel sentence structures for
cross-lingual EAE with GCNs based on the se-
mantic similarity and the universal dependency re-
lations of the words in the input sentences. The
experiments demonstrate the benefits of the pro-
posed sentence structures that lead to the state-of-
the-art performance for different experiments sce-
narios for CEAE. In the future, we plan to apply the
proposed model to other related tasks, e.g., cross-
lingual relation extraction (Veyseh et al., 2020). In
addition, motivated by the recent introduction of
high-performance multilingual NLP toolkits, e.g.,
Trankit (Nguyen et al., 2021), we expect to extend
our work to other languages to better demonstrate
the benefits of the proposed models. Finally, we
will also explore the performance of our models
when recent pre-trained multilingual language mod-
els, e.g., multilingual BERT (Devlin et al., 2019),
are employed to encode input texts for different
languages.
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