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Abstract

The use of Named Entity Recognition (NER)
over archaic Arabic texts is steadily increas-
ing. However, most tools have been either
developed for modern English or trained over
English language documents and are limited
over historical Arabic text. Even Arabic NER
tools are often trained on modern web-sourced
text, making their fit for a historical task ques-
tionable. To mitigate historic Arabic NER re-
source scarcity, we propose a dynamic ensem-
ble model utilizing several learners. The dy-
namic aspect is achieved by utilizing predic-
tors and features over NER algorithm results
that identify which have performed better on
a specific task in real-time. We evaluate our
approach against state-of-the-art Arabic NER
and static ensemble methods over a novel his-
torical Arabic NER task we have created. Our
results show that our approach improves upon
the state-of-the-art and reaches a 0.8 F-score
on this challenging task.

1 Introduction

Digitized historical literature is an essential re-
source in facilitating historical and social research.
Information extraction, the task of automatically
extracting structured information from digitized
documents, has emerged as a method to scale the
analysis of texts and allow the integration of in-
formation from different sources (e.g., (Ehrmann
et al., 2020), (Ren et al., 2017)). One of the cardinal
tasks in information extraction is NER, extracting
entities from text and categorizing them into prede-
fined categories. Numerous NER algorithms have
been suggested, from rule-based approaches (Mes-
far, 2007) to machine learning (ML) approaches
e.g., (Zhou and Su, 2002). However, an overwhelm-
ing majority of the algorithms have been developed
over modern English text. Rule-based approaches
designed using modern English grammatical rules
are irrelevant to Arabic (Shaalan, 2014). ML ap-
proaches rely on large modern English corpora

sourced from international news outlets and social
media. Training these tools to extract named enti-
ties from historical texts written in ancient Arabic
requires large amounts of tagged text in the same
language and preferably the same dialect, which
are sorely missing.

In this work, we explore two avenues to miti-
gate the weakness of existing Arabic NER tools
over historical Arabic texts (Shaalan, 2014). First,
we utilize an approach named dynamic prediction,
that was used in adjacent fields such as schema
matching (Sagi and Gal, 2013), business process
matching (Weidlich et al., 2013), and pattern recog-
nition (Ko et al., 2008). In dynamic prediction,
the results of different techniques are combined
according to each result’s (or component of the
result) predicted quality. Here, we build an ensem-
ble learning model based on dynamic prediction
for NER algorithms. To alleviate the lack of re-
sources in Arabic historical NER, we have created
a novel dataset – the Bedaya Corpus and examine
how training ML-based NER tools on historic Ara-
bic impacts their performance instead of training
them over modern Arabic text.

The contribution of this paper can, therefore, be
summarized as follows. 1) We introduce a dynamic
ensemble model for NER over historical Arabic
texts. 2) We present Bedaya corpus, an Arabic his-
torical dataset. 3) We perform a detailed empirical
evaluation of our approach over baseline and state-
of-the-art methods. We now provide background
and preliminary definitions of NER and ensemble-
learning in Section 2 and present related work in
Section 3. In Section 4 we present our predictors
and ensemble learning technique. In Section 5, we
present the datasets. In Section 6, we report the
results of our empirical evaluation, concluding our
work in Section 7.
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2 Background

2.1 NER

Named Entity Recognition (NER) seeks to locate
and classify named entities mentioned in unstruc-
tured text into categories such as person names,
organizations, locations, events, and others. For
example, the output for the sentence ”Romeo and
Juliet meet in Verona.” is as follows.

[Romeo](Person) and [Juliet](Person)
meet in [Verona](Location).

Some NER algorithms provide a confidence
value (usually over [0, 1]) associated with each
mapping. Others provide a set of confidence values
for each token, one for each possible class. There
are two broad approaches to constructing NER al-
gorithms. Rule based approaches, rely on rules and
patterns manually created in order to capture terms
from input documents. For example, Mikheev et al.
(Mikheev et al., 1999) suggest the following rule:

[Xxxx] (sequence of capitalized words)
+ ’is’ + ’a’ + [JJ*] (sequence of zero
or more adjectives) + [REL] (relative).
then [Xxxx] is (Person), e.g., ”[John
White] is a beloved brother”.

Rule-based systems achieve high precision but
require a significant time investment to develop.
Moreover, transferring rules from one language to
another or between domains is very challenging
(Jiang et al., 2016).

In machine-learning (ML)-based approaches,
an algorithm containing rules or some other in-
ternal representation is learned from training ex-
amples (Mansouri et al., 2008). This approach
can be further categorized into supervised, unsu-
pervised, semi-supervised. Supervised approaches
rely on manually tagged examples. Unsupervised
approaches attempt to divide the tokens into sim-
ilar groups, hopefully grouping the same class’s
entities. Semi-supervised approaches use a small
number of tagged examples to guide the otherwise
unsupervised process. Several features are used in
ML-based approaches, such as part of speech, cap-
italized words, special marks (punctuation, num-
bers, dates, and titles), and word length. Recent
NER systems rely on (deep) neural-networks over
sequences of words (Li et al., 2020). Gazetteers,
or entity dictionaries, are an essential resource
for NER that support entity tagging (Zamin and

Oxley, 2011) by allowing to look up words and
phrases that are commonly used as named entities
(e.g., (Shaalan and Raza, 2009), (Sajadi and Minaei,
2017)).

NER over Arabic text has proved much more
challenging than other languages due to the com-
plexity of Arabic morphology, absence of capital
letters, and the lack of resources on which to train
ML-based tools (Shaalan, 2014). For example,
while performance on CONLL 2000, a common
NER task in English has reached an F1-score of
97.3% (Liu et al., 2019), the best performance on
a modern Arabic corpus ANERcorp only achieves
an F1-score of 89.9% (Balla and Delany, 2020).
Arabic texts can be categorized into classical Ara-
bic, Modern Standard Arabic (MSA), and Arabic
dialects (Shaalan, 2014). Historical Islamic litera-
ture is written in classical Arabic (Habash, 2010).
According to (Hetzron, 1997), MSA differs from
classical Arabic in vocabulary, syntax and styles.
moreover they present 9 common morphonology
changes that happened upon the time that lead for
MSA from classical Arabic, thus changes leads
to changes in syntax and words meanings. Re-
searchers must consider these differences when
using modern datasets and NER tools to build NER
tools for historical Arabic texts.

2.2 Ensemble Learning

Ensemble learning algorithms (Definition 2.1) aim
to combine the outputs of several base-algorithms
(e.g., classifiers) to get better predictive perfor-
mance. Ensemble methods have been demonstrated
to provide superior predictive performance versus
single algorithms on a variety of problems. The
potential for performance improvement is higher
when the algorithms’ performance is diverse, such
that different algorithms succeed and fail on differ-
ent tasks (Oza and Russell, 2001).

Definition 2.1 (NER ensemble learning algorithm).
Let D ⊆ D be a set of training documents and let
fm : TD → C be the expected mapping between
each token in this set and a class (supervised labels).
LetF be the set of all possible NER algorithms and
let F ⊂ F be the set of base NER algorithms. Let
MD be the set of all such possible mappings for
D and let mF ⊂MD be the set of NER algorithm
results returned by F over D. A NER ensemble
learning algorithm is a function f : 2D ×MD ×
2MD → F . Given a specific training set D, an
expected mapping fm, a set of NER algorithms F ,
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and a set of NER algorithm results mF , f outputs
a NER algorithm.

Different ensemble learning approaches have
been attempted. In voting based approaches, each
classifier votes for a class, and the class with the
most votes is chosen (Dietterich, 2000). Linear
approaches assign a weight to each classifier, and
the class with the highest combined score is then
chosen. Several ensemble methods are based on
heuristics. Bagging (Breiman, 1996) algorithms
train each model in the ensemble using a randomly
drawn subset of the training set. In contrast, Boost-
ing (Schapire, 1990) algorithms gradually build the
model by training each new model instance to high-
light the cases that previous models misclassified.

However, the above mentioned approaches are
trained once, and their combined algorithm remains
static, regardless of base classifiers’ results. This
static approach can lead to unexpected results. For
example, a reliable classifier utilizes a word’s capi-
talization as a major signal. In a long sentence that
is, for some reason, capitalized throughout (per-
haps for emphasis), this classifier may decide that
all tokens belong to one long, named entity. The
result would appear wrong to human eyes but will
be taken heavily into account due to the classifier’s
static high importance in the ensemble. In section
4.2, we present our dynamic approach.

3 Related work

Speck and Ngomo 2014 explore the use of NER
ensemble learning in English, combining four NER
algorithms using 15 different ensemble learning
algorithms. They evaluate these methods over five
different English language datasets and show that
ensembles can reduce the error rate by an average
of 40%. However, all of the ensemble learning
methods evaluated were static methods. In this
work, we employ predictors to assess the quality of
NER results dynamically.

For Arabic NER, Abdallah et al. 2012 integrate
an ML-based approach with a rule-based one. They
train a decision tree model to combine the results,
achieving an F1-score of 87.8%. (Sajadi and Mi-
naei, 2017) learn a static ensemble for named entity
recognition over classical Arabic text and rely on
the Adaboost algorithm, an implementation of the
multi-class boosting method. Using their novel
NOORcorp (5) historic Arabic corpus, the system
was evaluated over its ability to recognize three
classes: location, person, organization. Ekbal and

Bandyopadhyay 2010 propose a NER for Arabic
based on Support Vector Machines (SVM) (Hearst
et al., 1998) used to classify feature vectors for
every word.

Recent NER systems rely on (deep) neural-
networks over sequences of words. These systems
infer features from raw sentences by using several
layers of components allowing to represent higher
levels of abstraction over the word sequence (see
survey (Li et al., 2020)). The current state of the
art are NER systems based on the contextual word
embedding approach (Peters et al., 2018) and espe-
cially systems which employ BERT (Devlin et al.,
2018), a novel pre-trained deeply bidirectional, un-
supervised language representation, that takes into
account the context for each occurrence of a given
word. Al-Smadi et al., 2020 propose an Arabic
NER system using a six-layer deep neural network
model based on the transfer learning architectures
among deep neural networks (Yosinski et al., 2014),
(Devlin et al., 2018). The system achieves an over-
all F1-score of 90% Compared with their baseline
BI-LSTM-CRF model which reached an overall
F1-score of 73%. Their work is trained and tested
over MSA, they used WikiFANE-Gold (Alotaibi
and Lee, 2014) as a dataset that builds over the Ara-
bic version of Wikipedia. While our work focus
on historical text, and emphasizes (see 6.4) the non
improving NER over historical Arabic text using
MSA.

Dynamic prediction has been previously pro-
posed for schema matching (Sagi and Gal, 2013)
and pattern matching (Ko et al., 2008). To the best
of our knowledge, it has not been used to combine
NER algorithms, as proposed here.

4 Employing Predictors for Dynamic
Ensemble Building

Static ensemble methods rely on the base NER
algorithms’ results to generate a NER algorithm
that combines their results such that on every doc-
ument set, the results of the base NER algorithms
are combined in the same way. Predictors have
been explored for schema matching (Sagi and Gal,
2013) and pattern recognition (Ko et al., 2008)
as a method for fine-tuning the ensemble creation
method to the task at hand. Predictors assess the
result of each base algorithm on the task and pro-
vide a score. The ensemble model can use this
score to determine whether or not the algorithm
has succeeded in this specific occasion to identify
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the correct class. Formally:

Definition 4.1 (Predictor). Let D be a set of doc-
uments and let {TD|∀t ∈ TD : t ∈ d ∧ d ∈ D}
be the set of tokens contained in these documents.
Let C be a set of classes, and let f : TD → C × R
be a NER algorithm result assigning a real number
and a class to each token. Let N be the set of all
possible such NER algorithm results and let n ∈ D
be some natural non-zero number, then a predictor
is a function f : N → Rn.

Thus, a predictor assesses the quality of the al-
gorithm’s outputs without knowing the expected
results. Predictors are defined over different result
cardinalities. Dataset-level predictors output a sin-
gle number for the entire dataset. Sentence-level
predictors output one number for each sentence,
and token-level predictors output a number for each
token. Furthermore, as mentioned in Section 2, a
NER algorithm result may include a confidence
score for each token for each of the possible classes.
In this case the NER algorithm result (and predictor
input) is a function f : TD → (C × R)|C|. Here,
we propose the following predictors.

4.1 Predictors

Token-level Predictors Our token-level predic-
tors are calculated over the NER algorithm’s con-
fidence rates for each token and class. Thus, an
algorithm tasked with classifying tokens into four
classes will report four confidence values for each
token, representing the confidence in its prediction
for every class. The first predictor is max confi-
dence rate token (MCT), which takes the value of
the maximum confidence rate per token. Usually,
this is the reported confidence for the chosen class.
This predictor indicates how confident the NER
tool is in its outcome, which leads it to prefer NER
tools with higher confidence rates. The second
predictor is the Difference confidence Rate Token
(DCT), which measures the difference between the
token’s maximal confidence and second-best confi-
dence rate, another indication of how confident the
NER tool is in its outcome.

Sentence-level Predictors We explore two ap-
proaches to constructing sentence-level predictors.
The first two predictors rely on the confidence rate
information as in the token-level predictors. The
latter two rely on counting results. Binary distance
(BD) measures the sum of distances between the
reported confidence value and the closest binary

value. BD indicates the number of confident to-
kens in a sentence. A higher value for confident
tokens leads to a lower value of BD. For each to-
ken’s sentence, the confidence value is rounded
towards the closest binary value, and the difference
is taken and summed. For example, in Figure 1,
given the confidence values from two NER’s out-
put, the lower BD indicates a confident NER. This
predictor’s rationale is that good NER results are
those in which the NER algorithm is confident and
either marks a token as belonging to the class or
not. Half-hearted values are penalized. Follow-
ing a similar rationale, difference confidence rate
sentence DCS is the sum of differences between
the highest and second-highest confidence rate for
every token in the sentence. Like DCT, DCS in-
dicates the NER tool’s confidence in its outcome.
The second group of sentence-level predictors uti-
lizes a counting representation of the sentence over
the number of named entities in general or the num-
ber of named entities from a specific class. With
these predictors, the ensemble model can prefer a
NER Tool with good performance for recognizing
a type of Named Entity or can ignore others that
are bad at recognizing this type. Sentence num-
ber of named entities (SNN) counts the number of
tokens marked as belonging to named entities in
the sentence normalized over the sentence’s length.
We similarly define three additional predictors: sen-
tence number of persons (SNP), sentence number
of organizations (SNO), and sentence Number of
Locations (SNL). Each predictor counts the number
of tokens from their respective class. Finally, SLD
measures the proportion of tokens associated with
the most prevalent class in the sentence from all to-
kens in the sentence. Table 1 contains examples for
predictor calculation over the sentence ”Sherlock
Holmes lives on Baker Street”.

Figure 1: BD-sentence example.
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Predictor
Name

Example

MCT If the confidence rate for ’Sherlock’ is 0.9 for Person class and 0.7, 0.8, and 0.3 for
Location, Organization, and Other classes respectively, its MCT will be 0.9.

DCT If the confidence rate for ’Sherlock’ is 0.9 for Person class and 0.7, 0.8, and 0.3 for
Location, Organization and Other classes respectively, its DCT will be 0.9 - 0.8 = 0.1.

BD In figure 1 we describe two NER tools NER1 and NER2. NER2 is judged superior
by BD since it is very confident for three tokens and only uncertain for two versus
NER1 that is only confident for two tokens.

DCS If the confidence rate for every token in the sentence (six in our example) is 0.9 for the
Person class and 0.7, 0.5, and 0.3 for the Location, Organization, and Other classes
respectively. DSC for this sentence will be

∑6
n=1(0.9− 0.7).

SNN If NER1 recognizes just Sherlock and Holmes as Person (or another NE) the predictor
score will be 2 for this NER tool.

SNP, SNO,
SNL

If NER1 recognizes just Sherlock and Holmes as Person (or another NE) the predictor
score will be 2 for Person, and zero for Organization and Location.

SLD If NER1 recognizes Sherlock, Holmes as Person, and Baker as Location (or another
named entity) the predictor score will be 2/3.

Table 1: Predictor examples.

4.2 A Dynamic Ensemble Model (DEM) for
NER Algorithms

Figure 2 shows the workflow of our technique. Af-
ter training NER base algorithms over the train-
ing data, predictors are calculated over the results.
Both the predictor value and the raw NER algo-
rithm results serve as inputs for the ensemble-
learning model, aiming to learn an ensemble
method. When the learned method is employed
at test/usage, the dataset is first fed into the NER
tools to get the NER results, then the predictors
are calculated, and the learned ensemble method
combines both to give a class label for each token.

Figure 2: Workflow of the proposed approach.

5 Datasets

There is an apparent lack of Arabic corpora (Aboue-
nour et al., 2010). Moreover, few of these corpora
have been made freely and publicly available for
research purposes (Bies et al., 2012). while oth-
ers are available but under licenses (Mostefa et al.,
2009) Thus, researchers often rely on private cor-
pora, which precludes reproducing previous work
and comparing its performance over a consistent
benchmark.

In this work we use three corpora, NoorCorp
(Sajadi and Minaei, 2017) based on a different his-
torical book circa 800 AD, ANERcorp (Benajiba
et al., 2007), a modern corpus which has become
a standard in Arabic NER works. ANERcorp is
based upon web-documents written in modern Ara-
bic collected from 316 articles from newspapers
such as bbc1 and aljazeera2. Table 2 compares
the corpora’s token counts and class distributions.
The datasets are tagged into four classes, Person,
Organization, Location, and Other. The latter is
assigned to tokens that do not belong to the first
three classes. The third corpus is a historic one
contributed in this work.

1https://www.bbc.com/arabic
2https://www.aljazeera.net/

https://www.bbc.com/arabic
https://www.aljazeera.net/
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Bedaya corpus

The scarcity of public Historic NER datasets has
led us to create a new corpus. The Bedaya cor-
pus3, is based on Ibn Kathir’s historical Arabic
opus Al-Bidāya wa-al-Nihāya (The Beginning and
The End). Kathir’s ten volumes contain an exten-
sive description of the world’s history from its cre-
ation and are widely used in Islamic studies. The
dataset is taken continuously from the 7th part of
the book. It contains 20,500 tokens with 5,664
different tokens. Named entities were annotated
manually by one of the authors and verified by an
Arabic language expert that reviewed 50% of the
dataset with a 99.998% inter-rater agreement.

Over a 80-20% training-test partition (Sajadi and
Minaei, 2017) over NOORCorp dataset reached
approximately 97% F1-score. In our evaluation
of the NOORCorp dataset, we challenge our tools
with a harder task, which is to train over one dataset
and to be tested on a different one. 4 Thus, we
ensure the generality of our algorithm and obtain
enough space for ensemble algorithms improving.

Class Noor Bedaya ANER

Loc. 1,320 (1.2%) 328 (1.6%) 6,426 (4.8%)
Pers. 15,873 (14%) 2,840 (14%) 5,036 (3.4%)
Org. 1,932 (1.7%) 336 (1.6%) 3,402 (2.3%)
O 93,055 (83%) 17,016 (83%) 133,768 (90%)

All 112,180 20,520 148,632

Voc
size

19,319 5,664 33,208

Table 2: Dataset Token Counts and Class Distribution.

6 Experiments

We now present a series of empirical evaluations
examining the following questions. Which predic-
tors are the most correlated with our desired quality
measures (§ 6.2)? Does our dynamic ensemble ap-
proach outperform the baseline approaches of using
a single NER algorithm and using static ensemble
learning (§ 6.3)? What is the performance impact
of training NER algorithms over modern Arabic
text versus historic Arabic for a historic Arabic

3available at https://github.com/
muhammad-majadly/Bedaya-dataset

4It should be noted, that in preliminary work we were
able to reproduce these same results over an 80-20 split of
NOORCorp using both static and dynamic ensembles.

NER task (§ 6.4)? We begin by introducing the
experimental setup.

6.1 Setup
6.1.1 Ensemble Algorithm
We employ C4.5 (Quinlan, 2014) as our ensemble
learning algorithm. C4.5 generates a decision tree,
a learned classifier that uses a tree-like graph or
model of decisions and possible outcomes. Each
internal node represents an ”examination” on an
attribute, each branch represents the outcome of
the examination, and each leaf node represents a
class label. The paths from the root to the leaves
represent classification rules. Our DEM approach
utilizes the J48 implementation of C4.5 in Weka
(Hall et al., 2009).

6.1.2 NER Tools
The following are the NER algorithms used in this
work. Pattern is a rule-based tool. The tool uses
pattern comparison with a small lexicon containing
the 50 most prevalent words for every named entity-
tag in the historical Arabic dataset NoorCourp. Ad-
ditionally, the tool employs six rules related to the
Arabic language and historic Arabic specifications
taken from (Sajadi and Minaei, 2017) and (Shaalan
and Raza, 2009) with some minor changes. Table
3 presents the rules we use.

The rest of the tools utilize an ML approach.
CRF uses the conditional random field technique
(Lafferty et al., 2001), a discriminative model for
sequence labeling. It models the dependency be-
tween each sample and the entire input sequence.
CRF uses the following extracted features: Part
of speech (Stanford POS tagger (Manning et al.,
2014)), special flag marks (is punctuation?, is
a number?), words, word parts (last three, two,
one letter), word length, and nearby words fea-
tures. LSTM-CRF (Huang et al., 2015) combines
a bidirectional long short-term memory neural net-
work (Hochreiter and Schmidhuber, 1997) with
CRF. Long short-term memory (LSTM) is an ar-
tificial recurrent neural network (Rumelhart et al.,
1986). Unlike standard feedforward neural net-
works, LSTM has feedback connections and can
process entire sequences of data. Polyglot (Al-
Rfou et al., 2015) is a multilingual, semi-supervised
ML-based NER that uses word embedding. Word
embeddings are representations of words acquired
by using vast amounts of raw text. These represen-
tations capture information about words’ syntactic
functionality and semantics. Polyglot embeddings

https://github.com/muhammad-majadly/Bedaya-dataset
https://github.com/muhammad-majadly/Bedaya-dataset
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Rule Name Rule Format

Person Rule 1 word1[noun] + (son of) + word2[noun] then word1 and word2 is a person.
Person Rule 2 (equivalent words to Mr./MRs) + word[noun] word is a person.
King Rule king [or equal words like ‘Khalifa’] + word[noun] word is a person.
Location Rule word1[pers] + (from/born) + word2[noun] then word2 is a Location.
Organization Rule word1[first word of tribes’ names] + word2[noun] then word1 and word2 is an

organization.
Same NER Rule word1[NE=x] + (and/like) + word2[noun] then word2 is x.

Table 3: Pattern-NER rules.

are trained on Wikipedia, the text consists of the
most frequent 100K words for each language, and
the word representation consists of 64 dimensions.
The polyglot model learns a simple three-layer neu-
ral network using the word embedding represen-
tation for classification, taking as features the em-
beddings for the words in a nearby interval of text
around each word.

The last three algorithms (SVM, LR, and DT)
use three different machine learning classifiers over
the same feature space: part of speech tags, and
word length. SVM (Chang and Lin, 2011) works
by finding a hyperplane in N-dimensional space
(N number of features) that distinctly classifies the
data points. Logistic Regression (LR) (Hosmer Jr
et al., 2013) uses a logistic function to model a
binary dependent variable. Decision Tree (DT)
(Quinlan, 1986) is a decision support tool that uses
a tree-like graph or model of decisions and their
possible consequences, including chance event out-
comes. To ensure diversity in our ensemble ap-
proach, we chose these non-sequence ML-based
algorithms that consider token-level information
together with the sequence-based algorithms CRF,
LSTM-CRF, and Polyglot. The classifiers use the
following extracted features: Part Of Speech tags,
the word itself, words, and word length.

6.1.3 NER Diversity
Ensemble methods have been demonstrated to pro-
vide superior predictive performance versus single
algorithms on a variety of problems. The poten-
tial for performance improvement is higher when
the algorithms’ performance is diverse, such that
different algorithms succeed and fail on different
tasks (Oza and Russell, 2001). To ensure diversity,
we choose both rule-based and machine learning
algorithms, and within the latter group, a diverse
set of principles and models. Empirical diversity
was measured over this task by using the Pearson

product-moment correlation coefficient (PPMCC)
(Steel et al., 1960) between each pair of NER algo-
rithms results over the Bedaya dataset. An absolute
value of 1.0 indicates a perfect correlation, and 0.0
indicates no correlation at all. CRF is positively
correlated with LSTM-CRF at 0.7 and less corre-
lated with POLYGLOT at 0.38. Polyglot is highly
correlated with LR with 0.7. DT with LR and SVM
with LSTM-CRF are very correlated at 0.84. Pat-
tern and LR have a 0.78 correlation between them.
The most correlated tools are SVM NER and DT
with 0.96.

6.1.4 Measures

We measure NER performance using the com-
monly employed precision, recall, and F1-score.
Precision is the portion of correctly classified to-
kens (true positives) among the tokens classified
as belonging to a named entity by the NER sys-
tem (predicted positive). In contrast, recall is the
fraction of true positives predicted by the NER sys-
tem among the total number of tokens belonging
to named entities in the dataset (actual positive).
F1-score is the harmonic mean of precision and
recall.

Oracle We use the concept of an oracle (Ko et al.,
2008) to measure the upper limit for the ensemble
of classifiers’ performance. An oracle is the union
of true positive results of all classifiers. If one
classifier can correctly classify a given input, then
an ensemble of classifiers that can classify this
input will not be better than the oracle.

Definition 6.1 (Oracle). Let T be a token and let
C be the set of classes where c ∈ C is the expected
class of token T and let O ∈ C be the class for
tokens labeled as a non named entity. The oracle
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over NER tools [N1, ..., Nn] is defined as follows.

Oracle(T ) =

{
c ∃i ∈ [1, .., n]|Ni(T ) = c

O else

The oracle’s performance over Bedaya dataset is
94% Precision, 75% Recall, and F1-score 83%.

6.2 Evaluating Predictors
To assess the quality of a predictor, we use the
correlation between the predictor value and the re-
sult’s eventual quality. In our case, we measure
it using PPMCC and Point Biserial Correlation
(PBC) (Tate, 1954). PPMCC can be used between
two continuous variables to assess their linear re-
lationship. PBC is used to measure the correlation
between a binary (is entity?) and continuous vari-
able (prediction). We split our dataset (Bedaya)
into sentences for sentence-level predictors, run
all base NER algorithms over each sentence, and
compare the predictor value over each sentence to
precision and recall calculated on it using PPMCC.
For token-level predictors (DCT and MCT), we use
PBC with true/false token predictions. Correlation
measurement is done on two levels, for all the tools
together and for each tool individually. Predictors
correlated with all the tools are more general and
make the system more effective. On the other hand,
predictors correlated with one tool can give helpful
information to the ensemble model about a specific
tool. Table 4 summarizes correlation results for pre-
dictors with all the tools reporting their correlation
over 10,000 tokens and 500 sentences using seven
different NER tools with quality measures preci-
sion and recall. The best-correlated sentence-level
predictor is DCS, and the best token-level predic-
tor is MCT. A cross-correlational analysis revealed
that BD is correlated strongly with DCS, SNN is
strongly correlated with SNP, and DCT is corre-
lated with MCT. Other predictor pairs are weakly
correlated.

6.3 Evaluating DEM
When applying NER algorithms over Bedaya (Ta-
ble 5) with NoorCorp (Table 5) as a train dataset,
somewhat surprisingly, classic CRF achieves the
best score while the state-of-the-art ML-model
LSTM-CRF NER is only the fourth-best tool. Us-
ing DEM results in an ensemble that outperforms
CRF by three percentage points on recall and 2.4
percentage points on F1-score. In table 6 DEM is

Pearson Biserial

Predictor Precision Recall Rpb pvalue

BD -0.181 -0.233
DCS 0.182 0.255
SNN 0.121 0.147
SNP 0.096 0.120
SNO 0.110 0.120
SNL 0.040 0.070
SLD 0.020 -0.014
DCT 0.42 < 0.001
MCT 0.40 < 0.001

Table 4: Correlation results for our proposed predictors.
Pearson Correlation with Precision and Recall, and Bis-
erial Correlation with true/false token prediction.

Type Precision Recall F1

CRF 90.0% 68.0% 77.4%
LSTMCRF 81.3% 64.6% 73.0%
SVM 86.3% 66.0% 74.8%
LR 88.3% 50.0% 63.8%
DT 85.0% 65.3% 75.2%
Pattern 84.0% 30.0% 42.0%
PolyGlot 59.0% 39.0% 47.0%
DEM 90.8% 71.0% 79.8%
Oracle 94.0% 75.0% 83.0%

Table 5: Performance of DEM vs. single NER Tools.

compared with the following static ensemble meth-
ods: C4.5(Quinlan, 2014), Adaboost (M1)(Freund
and Schapire, 1996) and bagging (BG) (Breiman,
1996) with RandomForest (Breiman, 2001), REP-
Tree, and C4.5 as the base classifiers. The rest of
the static ensemble methods are Logistic Model
Trees (LMT) (Landwehr et al., 2005), Sequential
Minimal Optimization (SMO) (Hastie and Tibshi-
rani, 1998), and Naive Bayes (NB) (John and Lan-
gley, 1995). As we chose the C4.5 algorithm as
our dynamic ensemble method, we can see the im-
pact of utilizing C4.5 with predictors versus using
it without predictors by comparing the other eight
static models’ results. It seems that in this setup
and over this task, DEM can improve both the re-
call and the resulting F1-score by approximately
three percentage points compared with the best
static method’s performance. When comparing to
the Oracle, one can see that DEM manages to close
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half of the distance between the best performing
NER and the Oracle in terms of F1-score. In con-
trast, the next best ensemble method only manages
to close a quarter of this distance.

Type Precision Recall F1

NB 86.50% 67.90% 76.10%
SMO 91.00% 68.20% 78.00%
LMT 91.00% 68.30% 78.00%
BG (REPTree) 91.00% 68.20% 78.00%
BG (randomForest) 91.10% 68.40% 78.14%
BG (C4.5) 91.08% 68.34% 78.09%
C4.5 91.10% 68.30% 78.07%
M1(c4.5)) 91.10% 68.30% 78.07%
DEM 90.80% 71.00% 79.80%
Oracle 94.00% 75.00% 83.00%

Table 6: Performance of DEM vs. Static Models.

6.4 Modern Text Versus Historical Text

Of the seven NER algorithms we evaluate, five are
ML-based. Here, we evaluate their performance
when trained on modern and historical datasets.
Figure 3 shows the algorithms’ performance when
tested over the Bedaya dataset and trained over two
different datasets: ANER (Benajiba et al., 2007)
a modern corpus, NoorCorp (Sajadi and Minaei,
2017) a historical corpus, and over both. The re-
sults demonstrate the importance of historic Ara-
bic datasets as algorithms trained on historic data
achieve better performance than when trained upon
modern data. When trained over a mix of historical
and modern data, didn’t lead to improvement, thus
relatively poor performance highlights the need to
find better ways to transfer learning from modern
to historical texts. Table 7 shows some outputs of
tokens from Bedaya dataset by CRF-NER tool (the
best tool in our ensemble model) when it trained
over modern and historic text.

7 Conclusion and Future Work

We have proposed a dynamic ensemble model for
NER and demonstrated its efficacy over a historical
Arabic task. We have shown that training ML-
based NER algorithms over modern Arabic text
negatively impacts their performance over histori-
cal text, even when the training is combined with
historical sources. This result highlights the need
for more tagged historical datasets, such as the Be-
daya corpus contributed by this work. In future

Figure 3: Comparative results of NER trained over
modern (ANER) and historic (NoorCorp) data.

Token CRF
(MSA)

CRF
(Historic)

Class

’talha’ O PERS PERS
’mnaf’ O PERS PERS
’almgazi’ O LOC LOC
’alhodybya’ O LOC LOC
’alshabha’ O ORG ORG
’bniAMR’ O ORG ORG

Table 7: Output Examples for CRF-NER when trained
over modern and historical text.

work, we intend to enhance the dynamic ensem-
ble model by exploring additional predictors and
alternative ensemble learning methods. We further
intend to explore different ways to utilize modern
Arabic corpora in historical text analysis tasks.
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