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Abstract

The most successful approach to Neural Ma-
chine Translation (NMT) when only monolin-
gual training data is available, called unsuper-
vised machine translation, is based on back-
translation where noisy translations are gen-
erated to turn the task into a supervised one.
However, back-translation is computationally
very expensive and inefficient. This work ex-
plores a novel, efficient approach to unsuper-
vised NMT. A transformer, initialized with
cross-lingual language model weights, is fine-
tuned exclusively on monolingual data of the
target language by jointly learning on a para-
phrasing and denoising autoencoder objective.
Experiments are conducted on WMT datasets
for German→English, French→English, and
Romanian→English. Results are competitive
to strong baseline unsupervised NMT models,
especially for closely related source languages
(German) compared to more distant ones (Ro-
manian, French), while requiring about a mag-
nitude less training time.

1 Introduction

While traditional end-to-end neural machine trans-
lation (NMT) approaches have shown highly
promising results when abundant parallel data is
available (Barrault et al., 2019), the task remains
a considerable challenge when only monolingual
training data is available, also called unsupervised
MT (Artetxe et al., 2018a; Lample et al., 2018a).
Unsupervised NMT systems tend to combine back-
translation (Sennrich et al., 2016a) with cross-
lingual embeddings (Artetxe et al., 2018b; Lample
et al., 2018a,b) or, more recently, with weights of
a pre-trained cross-lingual language model (XLM)
(Conneau and Lample, 2019). Back-translation
uses noisy translations, generated by a source-to-
target model, as input for a target-to-source model
(and vice versa). Although shown to perform well

if plenty of monolingual data is available, back-
translation is computationally very expensive. It is
also highly inefficient as the inference performed
to generate the noisy translations is of sequential
nature, slowing down the training substantially.

This paper presents a novel unsupervised NMT
method that does not require back-translation. In-
stead, it jointly fine-tunes a transformer (Vaswani
et al., 2017), initialized with weights of cross-
lingual language models (Conneau and Lample,
2019), on a denoising autoencoder (Vincent et al.,
2008; Artetxe et al., 2018b) and paraphrasing ob-
jective exclusively on data in the target language.
The alignment of the languages in the transformer’s
encoder means we can learn similar hidden repre-
sentations for sentences of similar meaning but
from different languages. The decoder, fine-tuned
to generate a sentence in the target language, can
thus generate a translation based on the encoder’s
representation of a source-language input sentence.
Naturally, this method is more suitable for related
languages, as the alignment of languages and hid-
den representations in the cross-lingual encoder is
of particular importance to this approach.

Our experiments with the WMT datasets
for German→English, French→English, and
Romanian→English (Bojar et al., 2016) show that
the proposed approach outperforms competitive
models – namely Artetxe et al. (2018b), Lample
et al. (2018a) and Lample et al. (2018b) – highlight-
ing that the alignment quality achieved by the high-
quality cross-lingual language model as a transla-
tion signal is superior to aligned embeddings and
back-translation. Results for German are substan-
tially higher than for French and Romanian, high-
lighting that our approach works particularly well
for more closely related languages. While achiev-
ing competitive results, the proposed approach is
substantially more efficient. It converges much
quicker while requiring less than 50% time per



50

epoch during fine-tuning which results in around a
magnitude less floating point operations for the pro-
posed approach than for an equivalent setup when
using back-translation. We further show that the
paraphrasing objective improves translation quality
considerably compared to using the autoencoder
objective in isolation.

2 Method

Given an input sequence Xs in source language s
the objective is to generate a sequence Y t in the
target language t, which is semantically equivalent.
A model NMTs→t models the target function

arg max
V t

m∏
u=1

p(ytu|yt<u;x
s
1, ..., x

s
n), (1)

with V t being the set of all possible sequences
in the target language. This paper focuses on the
transformer model (Vaswani et al., 2017) to solve
Equation 1. The transformer consists of an en-
coder and a decoder module: both are initialized
with weights W s↔t of a cross-lingual language
model and a shared subword vocabulary to align
languages s and t (§ 2.3).

Hs = ENCW (Xs) (2)

Ŷ t = DECW (Hs) (3)

The encoder transforms the input into a latent
space while the decoder iteratively generates the
output sequence Ŷ t.

2.1 Fine-tuning Approach
We propose a fine-tuning approach for this model
that solely relies on monolingual data of the target
language and the alignment W between s and t.
Due to the cross-lingual weights W , the hidden
representation of the encoder for both source and
target language are aligned and thus expected to be
similar1:

ENCW (Xs) ∼ ENCW (Y t) (4)

This assumption is the essence to our approach
and it applies more to closely related source and tar-
get languages than to more distant ones. Based on

1This expectation is based on results for zero-shot classi-
fication to highlight the sentence similarity across different
languages as well as the high cosine-similarity between word
translation pairs shown in Conneau and Lample (2019). Lan-
guages more similar to the one the model has been trained
on have higher sentence similarity and thus achieved higher
scores in their experiments.

the assumption, our hypothesis is that it is sufficient
to train the initialized encoder and decoder on sen-
tence generation tasks in only the target language.
More specifically, we explore meaning-preserving
training objectives, that focus on monolingual sen-
tence generation objectives so that the meaning of
the input sequence is preserved for the generated
sequence. We call these fidelity objectives. Thus,
given a sentence P t in the target language (speci-
fied in § 2.2) with very similar/identical meaning
to a sentence Qt of the same language in the mono-
lingual training data, we optimize the NMT model
by calculating the cross-entropy loss of the fidelity
task over the shared subword vocabulary:

Lfid = −
∑

<P t,Qt>∈Dfid

log(p(Qt|P t)), (5)

where Dfid is a fidelity training dataset. When con-
fronted with an input sequence Xs in the source
language during inference, ENCW (Xs) generates
a hidden representation Hs, which is expected to
be similar to the representation Ht for a semanti-
cally identical sentence in the target language due
to the cross-lingual LM weights W . The similarity
between Hs and Ht trains the decoder to gener-
ate a meaning-preserving sequence based on the
hidden representation of the encoder and enables
DECW (Hs) to generate a sentence in the target
language similar to DECW (Ht) while preserving
the meaning of the source sentence Xs.

2.2 Fidelity Objectives for Fine-tuning

We focus on two learning objectives that are solved
by the model for the target language: a denoising
autoencoder (Artetxe et al., 2018b) and paraphrase
generation in the target language. The objectives
are illustrated in Figure 1 and are learned using Eq.
5.

Denoising Autoencoder We use a straightfor-
ward autoencoder objective (Vincent et al., 2008;
Artetxe et al., 2018b) to fine-tune the model so that
it reconstructs the input Qt from a noisy version
P t

denoise (the noise prevents the model from sim-
ply copying the input). We add noise to Qt by
either swapping, omitting or replacing words with
a padding token. The number of noise operations
on a sentence is a hyperparameter. The denoising
autoencoder objective is used in most unsupervised
NMT systems in combination with back-translation
(Conneau and Lample, 2019), however, in these
settings, the autoencoder objective only serves the
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Figure 1: Illustration of the joint fine-tuning approach with denoising autoencoder and paraphrasing objectives.
Note that for each sentence multiple paraphrases and noisy inputs are generated for fine-tuning the transformer.

function of making the model familiar with noise in
the input that back-translated texts naturally have.
Explicitly using alignment in the encoder for unsu-
pervised translation in the way we propose has not
yet been explored.

Paraphrasing In previous work the autoencoder
objective has only been shown to be effective in
combination with back-translation as a means to
make the model familiar with noise in the input
(Conneau and Lample, 2019; Artetxe et al., 2018b).
This might be attributed to the limitation of the
denoising autoencoder that the added noise is artifi-
cial and results in ungrammatical sentences. Thus,
we additionally explore the task of reconstructing a
sentence Qt from a paraphrased version P t

pp which
is complemented by the denoising task. Automat-
ically generated paraphrases are expected to be
more grammatical and diverse than the simple rule-
based variations used in the autoencoder objective.

2.3 Initialization
To initialize the weights W of the word embed-
dings, the encoder, and decoder of the transformer
model we use the weights of the state-of-the-art
pre-trained cross-lingual language model (XLM) of
Conneau and Lample (2019). The pre-trained XLM
is essentially the encoder part of the transformer
model trained on the masked language modelling
(MLM) objective on a stream of text. Furthermore,
XLM uses language embeddings to assist the net-
work in recognizing different languages. Finally,
XLM and subsequently the translation model make
use of subword tokenized inputs, specifically byte-
pair encoding (BPE) (Sennrich et al., 2016b) to
reduce the vocabulary size as it is shared by all

languages in the model.

3 Evaluation

3.1 Experimental Setup

Data: Our approach uses WMT 2007-8 train-
ing data for German→English, as well as
French→English (Callison-Burch et al., 2007,
2008), and the training data of WMT 2015 for
Romanian→English (Bojar et al., 2015). All lan-
guages are Indo-European and therefore related to
some extent, but there are differences of relatedness.
French and Romanian are Italic whereas German
and English are West Germanic: we therefore hold
German and English to be the most closely related
of our language pairs, with much that is similar in
terms of lexicon and morpho-syntax and a recent
shared history; followed by French and English
(due to extensive lexical borrowings from language
contact), and lastly Romanian→English which is
the most distantly related language pair.

Note that for all language pairs, our approach
converged in the first epoch, with only a few steps
difference. Therefore, our approach was implic-
itly fine-tuned on comparable amount of data for
all language pairs. Similar to previous unsuper-
vised MT approaches, we evaluate the models on
the WMT 2016 test sets for German→English and
Roman→English (Bojar et al., 2016) and use the
WMT 2014 test set for French→English (Bojar
et al., 2014).

Implementation details: The experiments were
run in Python 3.7 and Python 3.5 for the NMT
model and paraphrasing system, respectively. The
openly accessible repository of the work described
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Model de-en fr-en ro-en

(1) Lample et al. (2018a) 13.3 14.3 –
(2) Artetxe et al. (2018b) – 15.6 –
(3) Lample et al. (2018b) Transformer 21.0 24.2 19.4
(4) Lample et al. (2018b) Transformer + PBSMT 25.1 27.7 23.9
(5) Conneau and Lample (2019) 34.3 33.3 31.8

(6) Transf. + autoencoder 20.9 18.9 18.7
(7) Transf. + autoencoder + paraphrases 24.2 22.1 21.2

Table 1: BLEU scores on test sets. (1)–(5) are taken from the respective papers. (6) and (7) refers to the proposed
approach. Bold numbers indicate the language pair on which the model performs best.

in Conneau and Lample (2019)2 was used as the ba-
sis for the implementation of this paper, and we use
their provided pre-trained models 3. The data is pre-
processed into BPE tokens using FastBPE4 with a
vocabulary size of 60, 000. All models were fine-
tuned on one GPU (NVIDIA Tesla P100). Since
our experiments are conducted in the exact same
ecosystem as Conneau and Lample (2019); Lample
et al. (2018b), our results are directly comparable
to theirs.

We use paraphrases created by the model pro-
posed by Wieting et al. (2017)5, due to its open-
source access. It uses a Seq2Seq architecture to
back-translate bilingual sentence pairs. For each
sentence in the training data, the most probable
three paraphrases are used. It would be preferable
to use a fully unsupervised paraphrasing system,
e.g. (Roy and Grangier, 2019). Nonetheless, we
argue that the employed system does not violate
the assumption of an unsupervised NMT system,
since the paraphrases are only generated for the
target language. Thus, while the target language
must be part of at least one bilingual corpus, the
source language can be arbitrary (as long as the
cross-lingual language model between the source
and target language exists).

Hyperparameters: Since for unsupervised
NMT the assumption is made that only mono-
lingual data is available, selecting the model or
hyperparameters on a parallel dataset contradicts
this premise. Therefore, the default hyperparam-
eter settings from related work (Conneau and
Lample, 2019) and the underlying XLM model are

2https://github.com/facebookresearch/
XLM

3mlm ende 1024, mlm enfr 1024, and mlm enro 1024
4https://github.com/glample/fastBPE
5https://github.com/vsuthichai/

paraphraser

used6. The number of training epochs is based on
the perplexity scores on the WMT 2013 test sets or,
for Romanian, the WMT 2015 development set.

Evaluation metrics While perplexity is used as
the metric during training, the performance on
the test sets are reported on the commonly used
BLEU metric (Papineni et al., 2002), specifically
the MOSES evaluation script (Hoang and Koehn,
2008).

4 Results

Table 1 shows the BLEU scores on the test sets
for source and target language. The scores for
model (1) to (5) are taken from the respective pa-
pers with our re-evaluations producing almost iden-
tical results when using the respective openly ac-
cessible repository. Although the proposed model
(7) uses exclusively data of the target language, it
performs competitively than the sophisticated ap-
proaches in (1), (2), (3), and (4) which all use back-
translation (Lample et al., 2018a,b; Artetxe et al.,
2018b), especially for German→English. Since
(3) uses the transformer architecture as well, the
results highlight that the alignment achieved by
the high-quality cross-lingual language models of
XLM is superior to the gains achieved by the back-
translation algorithm. When combining both back-
translation and XLM, the results can, however, be
further improved substantially, as shown by (5).

While previous attempts to using the denoising
objective without back-translation resulted in unus-
able results (Artetxe et al., 2018b), we observe that
our model performs reasonably well already when

6emb dim: 1024, #layers 6, #heads 8, dropout: 0.1,
attention dropout: 0.1, tokens per batch: 2000, optimizer:
adam inverse sqrt. Denoising autoencoder parameters:
word shuffle: 3, word dropout: 0.1, word blank: 0.1, lr:
7 · 10−4

https://github.com/facebookresearch/XLM
https://github.com/facebookresearch/XLM
https://github.com/glample/fastBPE
https://github.com/vsuthichai/paraphraser
https://github.com/vsuthichai/paraphraser
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Model (3) (5) (7)

time per step (minutes) 89.55 92.24 29.54

total cost (FLOPs) 1.78 · 1018 6.31 · 1017 8.07 · 1016
cost (FLOPs) @ 100K 5.10 · 1017 3.15 · 1017 7.47 · 1016

Table 2: Comparison of average training time between different methods on a single Tesla P100 when fine-tuning
for German→English. A step consists of 100K samples. Total cost reports floating-point operations for the entire
training process. We use the value 9.5 TFLOP/s for the P100. Costs are shown when trained on the entire training
corpus and when exclusively training on 100K sentences. The generation of paraphrases is included in (7) total
cost.

training exclusively on this objective (6). Joint
modelling of the paraphrasing and denoising objec-
tive (7) improves scores of the unsupervised system
by about 3 BLEU points over (6).

Furthermore, our approach (7) achieves particu-
larly high results when a source language is related
(German) to the training language, compared to a
more distant one (French, Romanian). While our
model (7) outperforms (3) for German→English
by around 3 BLEU points, it scores 2.1 points less
for French→English. Moreover, scores between
(7) and (3) are only comparable for German, while
(3) performs much better for both the less related
source languages. This observation is even ampli-
fied when the source language is Romanian. Our
model appears to be more susceptible to the re-
latedness of the source language than (5) which
uses the same cross-lingual weights, scoring 2.1
points less on French than German, compared to
only 1.0 for (5). While our approach solely relies
on the alignments based on these weights, the back-
translation of (5) adds an important signal espe-
cially for more distant languages. This confirms the
assumption made for our model: the BLEU score
of our model is particularly high for the closely
related German→English, compared to the more
distant language pairs.

5 Efficiency

One major advantage of the proposed method over
existing methods is its efficiency in terms of compu-
tational time. In Table 2 we report the average time
and cost for the German→English experiments.
The time to fine-tune on a full epoch is measured
in the same environment under identical conditions.
For our model, the measured times include the com-
putational cost to generate the paraphrases7. We

7Training the paraphrasing generator (Wieting et al., 2017)
is not included in the costs as the employed paraphrasing
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Figure 2: BLEU scores over number of FLOPs. FLOPs
include the computation of the paraphrases before our
model is trained.

find that by using the paraphrasing objective in-
stead of back-translation the computational time
can be reduced by a factor of three. Moreover, the
entire training process requires around an order of
magnitude less floating point operations due to our
approach converging much quicker.

Our approach outperforms Lample et al. (2018b)
while being much more efficient, however, one
might suggest that the shown efficiency of the pro-
posed model can also be achieved with the better
scoring Conneau and Lample (2019) by trading off
some of its performance advantages. Therefore, we
explored to which extent either less training time
or training data to achieve faster convergence im-
proves its efficiency. Regarding training times, our

model for English is already openly accessible. Moreover, the
paraphrasing model uses a (Bi-LSTM) that was trained for 3
epochs on only 24,000 sentence pairs, which is less than 2%
of the translation data used for the NMT models.
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Figure 3: BLEU scores of the proposed model as well
as the state-of-the-art approach of Conneau and Lam-
ple (2019) for varying number of monolingual training
sentences: 10K, 25K, 50K 100K, and 5M.

proposed approach (7) scored consistently higher8

than the other models until it’s convergence, see fig-
ure 2. Only after our model converged, the model
of Conneau and Lample (2019) surpasses its scores.
Thus, stopping the training process earlier would
not lead to better efficiency than our model. We
then also analyzed the models’ scores when modify-
ing the amount of data used for fine-tuning. Results
using 10K, 25K, 50K, 100K, and 5M training sen-
tences are shown in Figure 3. As seen, when using
little training data, Conneau and Lample (2019) per-
forms much worse than the proposed model since
errors and noise from translating into one direction
are propagated when translating back. The less
monolingual data used, the stronger the effect of
this error-propagation issue. The back-translation
model of Conneau and Lample (2019) starts to out-
perform the proposed model starting from 100K

8Excluding the initial phase as our model computes the
paraphrases first. Since our model catches up at a BLEU of
around 1.7, we ignored this special case.

training sentences. Yet, even in this setting the pro-
posed model remains much more efficient, as seen
in the column cost (FLOPs) @ 100K in Table 2.
The back-translation model is thus required to train
on more data and ultimately longer until conver-
gence and cannot achieve similar efficiency with
scores comparable to our approach.

6 Model Analysis & Discussion

Alignment and translation quality: To investi-
gate whether the alignment extends from a word-
level to a phrase or even sentence level, a qualitative
analysis was conducted. Example reference texts
and respective translations for German→English
are shown in Figure 4. It can be seen that the trans-
lation quality is high for shorter sentences but it
declines with increasing sentence length. Many
words and phrases are translated correctly, which
generally leads to preservation of sentence meaning
for simple sentences in closely-related languages
like English and German. While many simple
phrases are grammatical, many longer more com-
plex structures are not.

Furthermore, the model hallucinates content, es-
pecially when confronted with numbers and named
entities. For example, in sentence 5 the model gen-
erates a made-up destination to northern Croatia
while New Lloyd in sentence 6 also never occurs in
the source sentence. In the translation for sentence
3, the name is simply omitted and the currency,
as well as the amount, is wrong. This observation
can be transferred to numbers as well: in sentence
3, the number of 7.5 million was changed to 67.5
million. In an extreme example, the model hal-
lucinates an entire clause for sentence 7. We also
observed some artifacts in the output: in sentence 7,
oberflächlich is translated into Oberpublic, instead
of superficial, merging an German and English
term.

Wrong translations frequently contain words that
are still closely related to the correct translation.
For instance, in sentence 2 the model generates the
former prime minister of Israel Olmert, instead of
Netanyahu and translates meets instead of receives.
Or in sentence 5, the model translated into hurdles
instead of obstacles. These very subtle differences
are difficult for the model to capture.

Paraphrase quality Although the paraphrasing
objective improves the performance of the system
substantially, the generated paraphrases are still far
from optimal. Figure 5 shows example paraphrases.
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X-1: Die Vorbereitung lief gut.
Y: The preparation went well.
Ŷ : The training season went well.

X-2: Obama empfängt Netanyahu.
Y: Obama receives Netanyahu.
Ŷ : Obama meets Olmert.

X-3: Spaniens Nationaltorhüter Iker Casillas hat für 7,5
Millionen Euro seine Hände versichern lassen.
Y: Spain’s national goalkeeper Iker Casillas insured his
hands for 7.5 million euro.
Ŷ : Spain’s King has asked for £ 67.5 million to reinsure
his hands.

X-4: Wir wollten gewinnen und wir haben gewonnen,
obwohl ich es bedaure, dass wir nicht noch ein oder zwei
weitere Tore erzielt haben”.
Y: We wanted to win and we did, although I regret that we
did not score one or two goals more.
Ŷ : We wanted to win and we have won, although I regret
it not yet that we have scored one or two more goals.”

X-5: Zagreb kündigt an, die Durchreise über Slowenien
nach Norden ohne Hürden zu gewähren.
Y: Zagreb has announced that they will allow passage over
Slovenia towards the north without obstacles.
Ŷ : Zagreb has announced it will allow the migration
through Slovenia to northern Croatia without hurdles.

X-6: Er könnte sich vorstellen, in Startup-Firmen der
Neuen Werf zu investieren und später auch welche zu
akquirieren.
Y: He can imagine investing in start-up business in Neuen
Werft, and also later acquiring these.
Ŷ : He could also imagine investing in startup-owned
companies like the New Lloyd’s to invest and later in
companies to quiquire.

X-7: Dieser oberflächliche Erfolg wird von dem dominiert,
was Psychologen extrinsische Werte nennen; Geld ,Image,
sozialer Status, alles auf Kosten intrinsischer Werte -
unsere innere Sehnsucht nach persönlicher Entwicklung
und Freundschaft, die sich auf unsere geistige Gesundheit
viel tiefgehender auswirkt.
Y: This superficial success is dominated by what
psychologists term extrinsic values; money, image, social
status, all at the expense of intrinsic values - our inner
yearning for personal growth and friendship - that more
deeply impacts our mental health.
Ŷ : This OberPublic success is dominated by the
things that economists call extraterrestrial values to
characterize; money, image, social status all on the planet
of intrinsatiable values - our inner desire for personal
development and friendship, which can be felt on our
mental health much deeper than it is in the physical world
of human development and friendship, which is a real
concern for our human health and friendship, which is in
effect a greater word.

Figure 4: Example translations (Ŷ ) by model (7) of sen-
tences (X) from German to English with gold-standard
translations (Y).

They show clear noise and are not always grammat-
ical either. The quality of the paraphrases degrades

R: They have not been charged or formally arrested.
P1: they were not charged or officially arrested.
P2: they didn’t have an arrest or official.

R: The Japanese-made tin robots have blocky heads and
moveable arms and legs.
P1: the japanese robots have blocky robots, and their arms
and feet.
P2: the japanese robots have blocky heads, their hands
and feet.

R: The A.P. said it hoped for a resolution so it could return
to full coverage of the six-week tournament before the
opening match Friday between France and Argentina.
P1: the organisers said they hoped to find a resolution
so he could return to full coverage of the six-week
tournament before the opening - up friday between france
and argentina.
P2: the panasonic said that it hoped for a resolution for
an order to return to full coverage of the six-week tourna-
ment to keep an eye on friday between france and argentina.

Figure 5: Example references (R) and respective para-
phrases (P) of the employed paraphrasing system (Wi-
eting et al., 2017).

substantially when using more paraphrases per sen-
tence. More sophisticated paraphrasing systems
(e.g. Witteveen and Andrews (2019)), might fur-
ther improve results. We experimented with one,
three and five extracted paraphrases per reference
sentence. Using more than one paraphrase per sen-
tence boosts performance substantially, highlight-
ing that the paraphrasing objective also serves a
data augmentation function. However, there was no
noticeable difference between 3 and 5 paraphrases.

7 Literature Review

7.1 Unsupervised Machine Translation
Initial approaches for unsupervised MT focus
on NMT systems in combination with back-
translation, denoising autoencoding, and cross-
lingual embeddings (Lample et al., 2018b; Artetxe
et al., 2018b). Artetxe et al. (2018a); Lample
et al. (2018b) improve over NMT approaches by fo-
cusing on phrase-based Statistical Machine Trans-
lation (PBSMT) with phrase tables from cross-
lingual embedding mappings and iterative back-
translation. Lample et al. (2018b) improves on
these attempts by more careful initialization and
language models. Lample et al. (2018b) attempt to
combine both PBSMT and NMT, by tuning the
NMT model on data generated by the PBSMT
model and explore additional tweaks, e.g. byte-
pair encodings (Sennrich et al., 2016b). Artetxe
et al. (2019) also focus on PBSMT for unsupervised
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machine translation. They propose a more sophisti-
cated hybridization approach and unsupervised op-
timization technique for the PBSMT model. Com-
parable performance to Artetxe et al. (2019) was
achieved by Conneau and Lample (2019) by sim-
ply initializing the NMT model of Lample et al.
(2018b) with the weights of a pre-trained cross-
lingual transformer. An analysis on the the practi-
cality of unsupervised machine translation systems
by Kim et al. (2020) concludes that linguistic dis-
similarity and a domain mismatch between source
and target data pose a substantial challenge for cur-
rent state-of-the-art systems. They attribute these
challenges to a lack of sufficient monolingual cor-
pora for these domains, especially if one of the
languages is under-resourced. The success of unsu-
pervised methods has led to the first WMT shared
subtask on unsupervised MT in 2019 on German-
Czech with system submissions being very similar
to existing approaches adapted for Czech (Kva-
pilı́ková et al., 2019; Liu et al., 2019). More-
over, since 2019 WMT organizes a similar lan-
guage translation task for Spanish→Portuguese,
Czech→Polish, and Hindi→Nepali (Barrault et al.,
2019, 2020).

7.2 Cross-lingual Learning with
Transformers

The success of fine-tuning pre-trained language
models, such as GPT or BERT (Radford et al.,
2019; Devlin et al., 2019) has also led to various
cross-lingual versions of these pre-trained models,
such as M-BERT (Devlin et al., 2019) and XLM
(Conneau and Lample, 2019). These cross-lingual
transformers learn to align multiple languages in
their latent space by concatenating the monolingual
training data on a shared subword vocabulary. They
have created state-of-the-art results in multiple low-
resource languages. Although monolingual models
still outperform these cross-lingual ones if enough
training data are available (Virtanen et al., 2019),
a large-scale version of XLM has been shown to
produce comparable results to monolingual LMs
for high-resource languages (Conneau et al., 2020).

7.3 Paraphrase Generation
Paraphrase generation is concerned with the cre-
ation of phrases/sentences that use different words
to express similar information (Bhagat and Hovy,
2013). It is a heavily researched task, with re-
cent approaches focusing on the use of deep learn-
ing treating it as a Seq2Seq problem, by either

using paraphrase databases (Cao et al., 2017; Li
et al., 2018; Witteveen and Andrews, 2019), explor-
ing NMT by pivoting between languages or pairs
(Mallinson et al., 2017; Wieting et al., 2017; Feder-
mann et al., 2019), or by treating it as a sentence
simplification task (Zhang and Lapata, 2017; Niu
et al., 2019). Most paraphrasing systems create a
list of k most probable paraphrases. While para-
phrase generation focuses on English, paraphrase
datasets for other languages exist (Ganitkevitch and
Callison-Burch, 2014). Extremely low-resource
settings for paraphrasing have also been explored
using parallel corpora (Maruyama and Yamamoto,
2019) or in a fully unsupervised setting (Roy and
Grangier, 2019).

8 Conclusions & Future work

This work presented a simple fine-tuning method
for unsupervised NMT that solely relies on the
underlying alignment of a cross-lingual language
model and monolingual data in the target language.
Joint learning on a denoising autoencoder and para-
phrasing objective creates a competitive system to
strong baselines, especially for related language
pairs, while requiring much shorter training times.

While this work has explored the proposed
approach on commonly used language pairs for
benchmarking unsupervised MT, future work in-
cludes testing the proposed method on other
language pairs. This includes i) even more
closely related languages (e.g. German→Dutch
or Spanish→Portuguese), ii) language pairs with-
out any parallel data, iii) translations between di-
alects. Moreover, we aim to further explore to
which extent the proposed method can be com-
bined with back-translation, especially in the con-
text of distant languages, e.g. by adding back-
translation iterations on top of the proposed ap-
proach, similar to PBSMT in (Lample et al., 2018b).
Other training objectives should be explored, such
as sentence simplification, translating between di-
alects, or even abstractive summarization when
scaling this approach to document-level translation.
Besides higher efficiency, this approach appears
promising when training data for a language pair
origins from different domains (e.g. Wikipedia ver-
sus News). Since our approach only requires data
in the target language, domain mismatches in the
training data for the language pair do not affect the
proposed method. We are further aiming for human
evaluation of translation quality.
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Loı̈c Barrault, Ondřej Bojar, Marta R. Costa-jussà,
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