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Abstract

In implicit discourse relation classification, we
want to predict the relation between adjacent
sentences in the absence of any overt discourse
connectives. This is challenging even for hu-
mans, leading to shortage of annotated data,
a fact that makes the task even more difficult
for supervised machine learning approaches.
In the current study, we perform implicit dis-
course relation classification without relying
on any labeled implicit relation. We sidestep
the lack of data through explicitation of im-
plicit relations to reduce the task to two sub-
problems: language modeling and explicit dis-
course relation classification, a much easier
problem. Our experimental results show that
this method can even marginally outperform
the state-of-the-art, in spite of being much
simpler than alternative models of compara-
ble performance. Moreover, we show that
the achieved performance is robust across do-
mains as suggested by the zero-shot experi-
ments on a completely different domain. This
indicates that recent advances in language
modeling have made language models suffi-
ciently good at capturing inter-sentence rela-
tions without the help of explicit discourse
markers.

1 Introduction

Discourse relations describe the relationship be-
tween discourse units, e.g. clauses or sentences.
These relations are either signalled explicitly with
a discourse connective (e.g. because, and) or ex-
pressed implicitly and are inferred by sequential
reading (Example 1 below).

(1) A figure above 50 indicates the economy
is likely to expand. [While] One below
50 indicates a contraction may be ahead.
(Comparison - wsj_0233)

The relations in the latter category are called im-
plicit discourse relations and they are of special
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significance because their lack of an explicit sig-
nal makes them challenging to annotate for even
humans, suggested by the lower inter-annotator
agreements on implicit relations (Zeyrek and Kur-
fali, 2017; Zikédnova et al., 2019), let alone classify
automatically.

Resources for implicit discourse relations, there-
fore, are very limited. Even the Penn Discourse
Tree Bank 2.0 (PDTB 2.0) (Prasad et al., 2008),
which is the most popular resource, includes merely
16K implicit discourse relations, all annotated on
the same domain. Explicit discourse relations, on
the other hand, are proven to be simple enough to
be obtained both manually and automatically. Pre-
vious work shows that explicit relations in English
have a low level of ambiguity, so the discourse
relation can be classified with more than 94% ac-
curacy from the discourse connective alone (Pitler
and Nenkova, 2009). This has inspired others to
predict connectives for the implicit discourse rela-
tions and add them as additional features to existing
supervised classifiers (Zhou et al., 2010; Xu et al.,
2012).

Our work takes this idea one step further by re-
ducing the amount of supervision required. Instead
of training a separate connective classifier, we gen-
erate a set of candidate explicit relations that are
obtained by inserting explicit discourse markers be-
tween sentences and score the resulting segments
using a large pre-trained language model.! The can-
didates are then classified with an accurate explicit
discourse relation classifier, and the final implicit
relation prediction can be obtained by either using
the candidate with the highest-scoring connective,
or marginalizing over the whole distribution of ex-
plicit connectives.

The main contributions of our papers are as fol-
lows:

'In the reminder of the paper, these candidate explicit
relations are simply referred as candidates.
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e We show that this simple approach is very
effective and even marginally outperforms the
current state-of-the-art method that does not
use labeled implicit discourse relation data,
even though that method uses a significantly
more complex adversarial domain adaptation
model (Huang and Li, 2019).

o To the best of our knowledge, this is the first
study to go beyond the default four-way clas-
sification under the low-resource scenario as-
sumption where no labeled implicit discourse
relation is available. We show that the pro-
posed pipeline maintains its performance (rel-
ative to the baselines) in a more challenging
11-way classification as well as across do-
mains (i.e., biomedical texts (Prasad et al.,
2011)).

e We offer explicitation of implicit discourse re-
lations as a probing task to evaluate language
models. Despite their relevancy, discourse
relations are mostly overlooked in the assess-
ments of language models’ understanding of
context. As a secondary aim, we investigate
a wide range of pre-trained language models’
understanding of inter-sentential relations.

We hope that the proposed pipeline will be an-
other step in overcoming the data-bottleneck prob-
lem in discourse studies.

2 Background

2.1 Implicit Discourse Relations

PDTB 2.0 adopts a lexicalized approach where
each relation consists of a discourse connective
(e.g. “but”, “and”) which acts as a predicate taking
two arguments. For each relation, annotators were
asked to annotate the connective, the two text spans
that hold the relation and the sense it conveys based
on the PDTB sense hierarchy (Prasad et al., 2008).
The text span which is syntactically bound to the
connective is called the second argument (arg2)
whereas the other is the first argument (argl). ”Ad-
ditionally, implicit relations are annotated with that
explicit connective which according to judgements
best expresses the sense of the relation.”
However, in certain cases, a relation holds be-
tween the adjacent sentences despite the lack of
an overt connective (see Example 1). PDTB 2.0
recognizes such relations as implicit discourse rela-
tions. Additionally, implicit relations are annotated

with an explicit connective which best expresses
the sense of the relation is according to annota-
tors. The connective inserted by the annotators is
termed as “implicit connective” (e.g. “while” in
Example 1). Unlike explicit relations where there
is an explicit textual cue (the connective), implicit
relations can only be inferred which makes them
more challenging to spot and annotate.

2.2 Related Work

The research on implicit discourse relation classifi-
cation is overwhelmingly supervised (Pitler et al.,
2009; Rutherford and Xue, 2015; Lan et al., 2017;
Nie et al., 2019; Kim et al., 2020). Although un-
supervised methods were present in the earliest
attempts (Marcu and Echihabi, 2002), they haven’t
received serious attention and much research con-
centrated on increasing the available supervision to
deal with the data; most prominently, either by au-
tomatically generating artificial data (Sporleder and
Lascarides, 2008; Braud and Denis, 2014; Ruther-
ford and Xue, 2015; Wu et al., 2016; Shi et al.,
2017) or through introducing auxiliary but similar
tasks to the training routine to leverage additional
information (Zhou et al., 2010; Xu et al., 2012; Liu
etal., 2016; Lan et al., 2017; Qin et al., 2017; Shi
and Demberg, 2019a; Nie et al., 2019). Zhou et al.
(2010) and Xu et al. (2012) constitute the earliest
examples where the classification of implicit rela-
tions are assisted via connective prediction. Both
studies employ language models to predict suit-
able connectives for implicit relations which are,
then, either used as additional features or classified
directly.

Ji et al. (2015) is one of the few recent dis-
tantly supervised® studies which tackle implicit
relation classification as a domain adaptation prob-
lem where the labeled explicit relations are re-
garded as the source domain and the unlabeled im-
plicit relations as the target. Huang and Li (2019)
improves upon Ji et al. (2015) by employing adver-
sarial domain adaption with a novel reconstruction
component.

2.3 Pre-trained Language Models

BERT Bidirectional Encoder Representations
for Transformers (BERT) is a multi-layer Trans-
former encoder based language model (Devlin

Previous work uses the term unsupervised (domain adap-
tation). Although we use the same amount of supervision
with earlier work (no labeled implicit relation are utilized), we
believe distant supervision describes the method better.



et al., 2019). As opposed to directional models
where the input is processed from one direction to
another, the transformer encoder reads its input at
once; hence, BERT learns word representations in
full context (both from left and from right). BERT
is trained with two pre-training objectives on large-
scale unlabeled text: (i) Masked Language Mod-
elling and (i1) Next Sentence Prediction.

A number of BERT variants are available that
differ in terms of (i) their architecture, e.g. BERT-
base (I2-layer, 110M parameters) and BERT-large
(24-layer, 340M parameters); (ii) whether the letter
casing in its input is preserved (-cased) or not (-
uncased); (iii) their masking strategy, e.g. word
pieces (default) or whole words (-whole-word-
masking).

RoBERTa RoBERTa (Liuetal., 2019) shares the
same architecture as BERT but improves upon it via
introducing a number of refinements to the training
procedure, such as using more data with larger
batch sizes, adopting a larger vocabulary, removal
of the NSP objective and dynamic masking.

DistilBERT DistilBERT was introduced by
(Sanh et al., 2019). It is created by applying knowl-
edge distillation to BERT which is a compression
technique in which a small model learns to mimic
the full output distribution of the target model (in
this case: BERT). DistilBERT is claimed to re-
tain 97% of BERT performance despite being 40%
smaller and 60% faster, as suggested by its perfor-
mance on Question Answering task.

GPT-2 Generatively Pre-trained Transformer
(GPT-2) is a unidirectional transformer based lan-
guage model trained on a dataset of 40 GB of web
crawling data (Radford et al., 2019). Unlike BERT,
GPT-2 works like a traditional language model
where each token can only attend to its previous
context. GPT-2 has four variants which differ from
each other in the number of layers, ranging from
12 (small) to 48 (XL).

3 Model

The proposed method consists of three main com-
ponents: (i) a candidate generator that generates
sentence pairs connected by each of a set of dis-
course connectives, (ii) a language model that es-
timates the likelihood of each candidate, and (ii1)
an explicit discourse relation classifier to be used
on the candidates. Whole pipeline is shown in Fig-
ure 1. The proposed methodology does not require

even a single implicit discourse relation annotation
and is only distantly supervised where the super-
vision comes from the explicit discourse relations
used in training the classifier.

The main motivation behind the proposed
pipeline is the finding that discourse relations are
easily classifiable if they are explicitly marked
(Pitler and Nenkova, 2009). We further verify
this finding via a preliminary experiment which
showed that four-way classification could be per-
formed with an F-score of 88.74 when the implicit
discourse relations are “explicitated” with the gold
implicit connectives they are annotated with (see
Table 2). This finding is significant not only be-
cause it justifies our motivation but also shows
the potential of the current approach. Secondar-
ily, the task requires a high level understanding of
the context which allows us to investigate the pre-
trained language models capabilities in detecting
inter-sentential relations.

3.1 Candidate Generation

Recall Example 1, which contains an implicit rela-
tion between argument 1 (“A figure above ... to
expand.”) and argument 2 (“one below ...be
ahead.”).

Given a list of English connectives (and, be-
cause, but, etc.), we generate the following explicit
relation candidates for a given implicit relation:

Aq C Ao

...toexpand and [o]ne below ...
...toexpand because [o]ne below ...
...toexpand but [o]ne below ...

The list of connectives are chosen among the
lexical items PDTB 2.0 annotation guideline recog-
nizes as discourse connectives (Prasad et al., 2008).
Of the listed 100 connectives,® we limit ourselves
to 65 one-word connectives to generate the candi-
dates due to masked language models’ inability to
predict multiple tokens simultaneously.

3.2 Prediction of Implicit Connectives

Our next task is to produce a distribution over con-
nectives C conditioned on the context (arguments
Ajp and As). For unidirectional language models
(in our case: GPT-2 variants), we estimate this by
computing the language model likelihood of the
entire candidates and normalizing over the connec-

3The modified connectives such as “partly because” are
not counted as distinct types.



Model 4-Way 11-Way
PDTB train (Explicit) 13639 12695
PDTB test 1046 1040
BioDRB(test) 247 140
BioDRB(full) 3001 1755

Table 1: Number of instances in the respective datasets.
For the BioDRB test and full distinctions, please refer
to Section 5.3.

tives:
Pconn(C|A1, A2) o< Pra(Ar C Ag)

With bidirectional masked language models (in our
case: DistilBERT, BERT and RoBERTa) we need
to instead provide a candidate template by inserting
the special sentence separation ([SEP]) and mask-
ing ([MASK]) tokens. Then it is simply a matter of
normalizing over the model’s estimated probability
of the connective being inserted at the position of
the masking token:

PCcmn(C|A17 A2) X
Prar(C| Ay [SEP] [MASK] As [SEP))

3.3 Explicit Discourse Relation Classifier

We regard discourse relation classification as a sen-
tence pair classification task and build a classifier
on top of the pre-trained BERT model from Devlin
et al. (2019) using the recommended fine-tuning
strategy. Specifically, the first and second argu-
ments are separated via the special separator token
([SEP]) with the connective on the second argu-
ment and the [CLS] token is used for classification
through a fully connected layer with softmax ac-
tivation. This classifier gives us a model for the
distribution Pg,,(1|C, A1, A2) of relation labels
conditioned on the connective C' and its arguments
A1 and AQ.

The annotation of explicit and implicit relations
in the PDTB 2.0 differ in several aspects. In the
case of implicit relations, PDTB 2.0 annotates ar-
guments in the order they appear in the text, hence
implicit relations can only manifest one configura-
tion (i.e. argl, [conn], arg2). On the other hand,
the relative argument order of the explicit relations
can vary to the extent that sometimes the arguments
may interrupt each other (e.g. Of course, if the film
contained dialogue, Mr. Lane’s Artist would be
called a homeless person. [from wsj-0039]). In or-
der to remedy for this disparity to some extent, we

Explicit DR Classifier
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Figure 1: A high level visualization of the proposed
pipeline.

only use the explicit relations which share the same
relative argument order with implicit relations (i.e.
argl, conn, arg?) in training the classifier so that
there is not any discrepancy in terms of the relation
structure between training and inference phases. In
total, 2558 (13.85%) explicit relations that do not
follow the (argl,conn,arg2) order are left out.

3.4 Final Model

In our experiments we combine the models in
two ways. The simplest way is a straightforward
pipeline approach, where the single most likely im-
plicit connective is predicted, and then fed to the
explicit relation classifier:

P(l|A1, Ag) =
Prap(l] argénax Pconn(ClA1, Ag), Ay, A3)

Even though the level of ambiguity in English dis-
course connectives is relatively low, we also try to
account for this ambiguity by marginalizing over
all connectives:

P(l|A1, Ag) =

> Puap(l|C, A1, A2) X Poonn(C| A1, Ag)
C

4 [Experiments

We follow the experimental setting of Huang and
Li (2019) which is originally adopted by (Ji et al.,
2015). The implicit relations in the PDTB 2.0 sec-
tions 21-22 are allocated as the test set whereas the
explicit relations in sections 2-20;23-24 are used
as the training and 0-1 as the development set of
the explicit relation classifier. The evaluation is
performed for both the four first-level and the most
common 11 second-level senses. For the former,
we report both per-class and the macro-average
F1-scores similar to Huang and Li (2019) whereas
the accuracy is also reported on the second level



Model Temp Cont Comp Exp \ 4-way \ 11-way
F-score ‘ Acc
Supervised 4585 57.74 5835 75.01 | 59.24 | 39.33 55.42
Gold Connective 7729 96.23 88.01 9342 | 88.74 | 57.56 78.87
Most Common Conn (but) 0.00 0.00 2445 0.07 6.13 268 11.60
Most Common Sense 0.00 0.00 000 6941 ]| 17.35 | 3.74 25.89
(Jietal., 2015) 19.26 41.39 25.74 68.08 | 38.62 - -
(Huang and Li, 2019) 31.25 48.04 25.15 59.15| 40.90 - -
BERT-base-uncased 14.97 29.06 32.05 59.45 | 33.88 | 13.88 23.16
+ Margin | 19.49 36.54 3248 5299 | 35.37 | 14.12 2445
BERT-large-cased 9.33 27.06 36.89 68.58 | 3547 | 12.29 24.55
+ Margin | 9.76 35.62 38.80 67.97 | 38.04 | 13.24 26.86
BERT-large-cased-wwm 10.89 36.29 42.69 62.38 | 38.06 | 16.79 27.23
+ Margin | 15.02 4197 41.81 60.80 | 39.90 | 17.50 28.74
BERT-large-uncased 25.69 30.55 30.10 62.50 | 37.21 | 15.57 25.25
+ Margin | 27.32 41.01 32.28 59.07 | 39.92 | 15.67 28.01
BERT-large-uncased-wwm 18.35 3520 40.19 58.88 | 38.15 | 16.47 26.80
+ Margin | 17.27 4293 41.16 55.61 | 39.24 | 17.26 29.17
DistilBERT-base-cased 16.77 46.19 23.19 39.07 | 31.31 | 15.87 22.71
+ Margin | 21.09 48.05 29.25 37.04 | 33.86 | 16.68 26.38
RoBERTa-base 9.65 19.64 3657 66.72 | 33.14 | 11.67 23.54
+ Margin | 9.18 22,77 3590 66.36 | 33.55 | 13.01 25.32
RoBERTa-large 10.79 30.32 48.35 68.44 | 3948 | 16.15 27.66
+ Margin | 13.30 33.19 49.52 67.90 | 4098 | 17.63 29.57
GPT2 16.60 31.96 35.79 62.62 | 36.74 | 11.68 24.04
+ Margin | 18.27 3731 3593 61.70 | 38.30 | 13.07 26.02
GPT2-large 1991 3527 4038 59.17 | 38.68 | 15.18 25.63
+ Margin | 23.17 40.55 40.30 60.39 | 41.10 | 16.03 27.50
GPT2-XL 21.59 30.88 40.18 63.01 | 3892 | 16.98 26.01
+ Margin | 23.06 34.49 42.66 6398 | 41.05 | 18.50 28.32

Table 2: The results of the proposed methodology with various pre-trained language models. The average per-
formance over four runs is reported (numbers within parentheses indicate the standard deviation). L stands for
’large’ and wwm stands for *whole-word-masking’. 7+ Margin” refers to the second inference strategy explained
in Section 3.4. Best scores are presented in bold, second bests are in italics (excluding the baselines).

senses following the standard in the literature. The
statistics of the used datasets are provided in Table
1.

The classifiers are implemented using the Trans-
formers library by Huggingface (Wolf et al., 2020).
We use the uncased BERT large model for the ex-
plicit relation classifier (Section 3.3). The model
is fine-tuned for ten epochs with a batch size of
16, learning rate of 5 x 107%. To optimize the
loss function, we use Adam with fixed weight de-
cay (Loshchilov and Hutter, 2018) and warm-up
linearly for the first 1K steps. The model is evalu-
ated with the step size of 500 and the one with the
best development performance is used as the final

model.

We mainly compare our results against the recent
unsupervised studies we are aware of (Huang and
Li, 2019; Ji et al., 2015). Additionally, we report
the performance of a number baselines and upper
bounds to put the results into a perspective:

e Most Common Sense: The performance
when the most common sense of each eval-
uation level is predicted for every relation in
the test set (Expansion for the first level; Con-
tingency.cause for the second).

e Most Common Connective: The perfor-
mance when the candidate with the most com-
mon explicit connective (but) is selected for



every relation in the test set.

e Gold Connective: The performance when
the candidate with the gold implicit connec-
tive is selected. This baseline also shows the
upper bound of the proposed pipeline (see
Section 3.

e Supervised baseline: This is the results of
the BERT classifier fine-tuned on the implicit
discourse relations.

5 Results and Discussion

5.1 Evaluation on PDTB

The results are provided in Table 2. Overall, the
4-way classification F-score ranges between 33.86
(DistilBERT) to 41.10 (GPT2-large) where three
models outperform the previous state-of-the-art
(RoBERTa-large, GPT2-large, GPT2-XL). More-
over, the performance is robust across different
sense levels as suggested by its relative perfor-
mance to the baselines in the more challenging
11-way classification.

In addition to the increase in the overall perfor-
mance, the most substantial gain is observed in
Comparison relations where the unsupervised state-
of-the-art is improved by almost 25% points to
49.52%, bringing it closer to the supervised base-
line (58.35%). The relatively successful perfor-
mance in Comparison relations hold for all lan-
guage models, suggesting that language models are
good at detecting the cues for these relations.

Marginalizing over all connectives leads con-
stant improvements with all language models.
Marginalization yields average gain of 2.12% when
with BERT-variants and 2.04% with GPT2 models.
This step alters only a small portion of predictions,
on average 10.1% of the predictions change after
marginalization. Relation-wise Contingency bene-
fits from this step most with the average increase
of 4.20%. In order to have a better insight, we
closely inspect the label shifts in RoOBERTa-large’s
predictions which reveals that the most frequent
label shift is from Expansion to Contingency rela-
tions (41.1%). These changes mostly occur when
there is a clear mismatch between the top con-
nective and others following it in terms of their
sense. To illustrate, Example 2 presents a relation,
label of which was changed from Expansion to
Contingency where the top five selected connec-
tives were: “and”,““as”,“because”,“since”, “for”’. Of
these connectives, only “and” dominantly conveys

Model Conn Sense
always ‘and’ 9.38 53.15
always ‘but’ 7.00 13.96
BERT-base-cased 14.43  38.43
BERT-base-uncased 14.85 43.40
BERT-large-cased-wwm 19.61 48.09
BERT-large-cased 15.69 43.31
BERT-large-uncased-wwm 16.67 45.98
BERT-large-uncased 16.39 46.85
DistilBERT-base-cased 13.45 35.18
RoBERTa-base 14.85 39.39
RoBERTa-large 1723 46.08
GPT2 13.87 35.37
GPT2-large 14.43  39.58
GPT2-XL 14.85 39.48

Table 3: The agreement in percent of the language mod-
els for connective and sense prediction (see text for de-
tails). The first two rows show the results when only the
respective connectives are predicted for all relations.

Expansion whereas others commonly convey Con-
tingency. Marginalization acts as a corrective step
in such cases and saves the model from depending
on the top-rank connective by allowing it to con-
sider the connective predictions with lower ranks.

(2) Experts are predicting a big influx of new
shows in 1990, when a service called ”au-
tomatic number information” will become
widely available. [IMP=because] This ser-
vice identifies each caller’s phone num-
ber, and it can be used to generate in-
stant mailing lists.

Finally, as for 11-way classification, the same
pattern also holds where marginalization leads to
the average of 1.07% and 2.27% improvement in
F-score and accuracy, respectively.

5.2 Evaluation of the Language Models via
Selected Candidates

In order to investigate how well the language mod-
els perform their task, we present in Table 3 the
agreement between the human-annotated implicit
connective and each model’s top-ranked connec-
tive* (column Conn) as well as the agreement be-
tween the most frequent sense of that top-ranked
connective and the gold sense label (column Sense).
From the low connective agreement figures, we see

“We limit this analysis only to the relations annotated with

an one-word gold implicit connective due to our design criteria
(see Section 3.1).
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Figure 2: The (truncated) confusion matrices between the predicted and gold connectives of the implicit relations
in PDTB 2.0 test set. The matrices are confined to relations with one of the most frequent 10 implicit connectives
for readability purposes. The x-axis presents the gold connectives whereas the y-axis shows the predictions.

that the models generally fail to prioritize the con-
nective favored by the annotators; yet, as evidenced
by the high sense agreement, they are able to se-
lect a connective which suits the given context and
thereby helps the explicit relation classifier. We
further illustrate the connective predictions of the
top language models from each family (RoBERTa-
large and GPT2-large) via confusion matrices in
Figure 2. As can be seen, the connective predic-
tions are very scattered showing that language mod-
els struggle to predict annotators’ decisions. How-
ever, we would like to note that matching human
annotators’ performance in connective insertion
does not yield informative insights due to ambigu-
ity; that is, for many implicit relations, there are
multiple connectives that work as fine. Therefore,
we suggest the evaluation focusing on the sense
conveyed by the implicit relation and the connec-
tive (column Sense) as a more reliable way to assess
the language models’ performance.

too harsh a criteria to assess the language mod-
els since in many cases, there are more than one
possible connectives that work as fine. Therefore,
we would like to note that the second evaluation,
matching the sense

Table 3 also suggests that BERT-based models
perform better when it comes to selecting a suitable
connective than the GPT2 family. We hypothesize
that this is because bidirectional gap-filling lan-
guage models have a training objective that is very

close to the type of candidates we use. Finally,
despite yielding the worst results, DistilBERT can
retain most of BERT-base’s performance (~ 97%),
proving that even the smaller models can be uti-
lized for the current task.

5.3 Cross-domain Evaluation

The limited number of the manual annotations does
not account for the whole data bottleneck problem
in discourse parsing, as the available corpora lack
textual variety as much as numbers. Inarguably,
PDTB is used as both the training and validation
data in the bulk of studies; hence, most research on
discourse parsing is confined to one domain. Unfor-
tunately, initial attempts show that sub-tasks of dis-
course parsing generalize poorly across-domains
(Stepanov and Riccardi, 2014).

In order to test how our pipeline generalizes to
another domain, we run a set of experiments on the
Biomedical Discourse Relation Bank (BioDRB)
(Prasad et al., 2011). BioDRB closely follows the
PDTB 2.0 annotation framework> and is annotated
over 24 full-text articles in the biomedical domain
which is quite different from that of PDTB. Proba-
bly due to this difference and its relatively smaller
size, BioDRB is mostly overlooked in computa-
tional studies. Consequently, there are only few

5Yet, BioDRB uses slightly different sense hierarchy. We
follow the instructions on (Prasad et al., 2011) to map the
senses back to PDTB 2.0 hierarchy.



Test set Full Data
4-way 11-way 4-way 11-way
Acc F1 Acc F1 Acc F1 Acc F1
Bi-LSTM baseline - - 32.97 - - - - -
(Bai and Zhao, 2018) - - 29.52 - - - - -
MaxEnt baseline 58.44 26.64 - - - - - -
(Shi and Demberg, 2019b) 77.34 43.03 | 45.19 - - - - -
BERT-base-uncased 54.15 30.29 | 36.98 14.59 | 5490 36.30 | 33.80 13.99
+ Margin | 52.11 30.15 | 36.69 1541 | 55.15 37.46 | 35.75 14.59
BERT-large-cased 75.37 26.51 | 37.12 10.29 | 72.28 30.11 | 32.19 8.28
+ Margin | 70.57 25.62 | 34.53 10.74 | 68.69 31.21 | 31.82 10.07
BERT-large-cased-wwm 62.36 24.59 | 3295 10.87 | 65.36 33.59 | 31.81 11.39
+ Margin | 56.99 2479 | 31.37 11.18 | 59.83 33.10 | 31.20 11.90
BERT-large-uncased 58.05 3043 | 3525 12.82 | 57.32 36.21 | 34.23 13.85
+ Margin | 57.24 31.84 | 37.99 15.58 | 57.01 37.73 | 35.23 14.54
BERT-large-uncased-wwm 61.22 3224 | 38.27 1529 | 60.05 37.49 | 34.58 14.09
+ Margin | 51.95 30.39 | 36.83 15.62 | 53.98 37.03 | 34.40 14.55
DistilBERT-base-cased 3951 23.62 | 2144 11.77 | 41.21 2893 | 21.78 10.47
+ Margin | 40.00 27.78 | 25.32 14.97 | 38.35 3043 | 23.89 11.56
GPT2 59.11 24.36 | 30.94 11.29 | 62.85 32.37 | 29.82 10.44
+ Margin | 58.86 24.53 | 30.36 12.15 | 62.12 33.69 | 30.66 11.62
GPT2-large 62.85 29.70 | 36.69 19.17 | 62.47 36.59 | 33.08 12.97
+ Margin | 60.81 29.48 | 34.82 15.18 | 61.91 38.33 | 33.86 13.61
GPT2-XL 58.86 33.54 | 35.11 16.23 | 59.19 39.86 | 34.22 14.75
+ Margin | 56.75 33.17 | 34.53 12.54 | 59.19 41.28 | 35.33 15.25
RoBERTa-base 78.70 29.70 | 37.84 12.92 | 74.73 33.52 | 33.45 10.22
+ Margin | 78.05 28.83 | 37.41 13.55 | 74.67 34.31 | 34.13 10.98
RoBERTa-large 71.38 28.44 | 37.84 13.21 | 71.26 35.77 | 32.42 11.25
+ Margin | 70.98 2846 | 38.13 13.49 | 71.42 37.71 | 33.70 12.93

Table 4: The results of the cross-domain experiments on BioDRB set. Test set refers to the results on the designated
test set of BioDRB whereas Full data is the whole corpus. All baselines are supervised and their results are taken

from (Shi and Demberg, 2019b).

results on BioDRB and unsurprisingly they are all
from supervised methods. We compare our results
with (Shi and Demberg, 2019b) which reports the
state-of-the-art cross-domain results, along with the
results from a number of baselines. For the sake
of comparability, we follow their experimental set-
tings and report both 4- and 11-way classification
results on the BioDRB test set®.

Additionally, as a more rigorous evaluation, we
also report results on the whole BioDRB corpus.
That way, we aim to free the evaluation of the gen-
eralization abilities of our pipeline from any bias
that may rise from using a certain sub-part of the
corpus. Finally, it must be noted that the LMs are

Swhich is originally suggested by (Xu et al., 2012) and
consists of the files GENIA_1421503 and GENIA_1513057

not fine-tuned in any way on the target corpus (Bio-
DRB) in either setting. The results are provided in
Table 4.

The results suggest that our pipeline has strong
cross-domain performance despite explicit relation
classifier’s being trained on only PDTB. In both
4-way and 11-way classification, we are able to
outperform the zero-shot performance of even the
supervised approaches, including the recent neural
approaches (Bai and Zhao, 2018). We hypothesize
that our two-step pipeline plays the key role in miti-
gating the domain-specific problems. Since we are
using the “raw” (unfinetuned) language models to
rank candidates, we are able to directly leverage
the knowledge of these models that they learn from
numerous domains thanks to their diverse training



data. Once the suitable connectives are highlighted
by the language model, the explicit relation classi-
fier can mainly rely on them to make the prediction;
hence, less affected by the domain change.

6 Conclusions

In addition to its inherent difficulty, implicit dis-
course relation classification becomes even more
challenging with the lack of sufficient data. In the
current study, we focus on the latter problem by
assuming the extreme low-resource scenario where
there are no labeled implicit discourse relations.
The data shortage is mitigated by leveraging the
contextual information of the available pre-trained
language models through explicitation of the im-
plicit relations. We show that the proposed pipeline,
despite its simplicity, is able to outperform the pre-
vious attempts. Furthermore, by taking another
step, we tested the proposed architecture in the
more challenging 11-way setting as well as on a
completely different domain. The experimental
results confirm that our model is robust and gen-
eralizes well, even compared to recent supervised
approaches.
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