
Minor changes make a difference: a case study on the consistency of
UD-based dependency parsers

Dmytro Kalpakchi
Division of Speech, Music and Hearing

KTH Royal Institute of Technology
Stockholm, Sweden
dmytroka@kth.se

Johan Boye
Division of Speech, Music and Hearing

KTH Royal Institute of Technology
Stockholm, Sweden
jboye@kth.se

Abstract

Many downstream applications are using dependency trees, and are thus relying on dependency
parsers producing correct, or at least consistent, output. However, dependency parsers are trained
using machine learning, and are therefore susceptible to unwanted inconsistencies due to biases
in the training data. This paper explores the effects of such biases in four languages – English,
Swedish, Russian, and Ukrainian – though an experiment where we study the effect of replacing
numerals in sentences. We show that such seemingly insignificant changes in the input can cause
large differences in the output, and suggest that data augmentation can remedy the problems.

1 Introduction

The Universal Dependencies (UD) resources have steadily grown over the years, and now treebanks
for over 100 languages are available. The UD community has made a tremendous effort in providing
a rich toolset for utilizing the treebanks for downstream applications, including pre-trained models for
dependency parsing (Straka et al., 2016; Qi et al., 2020) and tools for manipulating UD trees (Popel et
al., 2017; Peng and Zeldes, 2018; Kalpakchi and Boye, 2020).

Such an extensive infrastructure makes it more appealing to develop multilingual downstream applica-
tions based on UD, as a deterministic and more explainable competitor to the currently dominant neural
methods. It is also compelling to use UD-based metrics for evaluation in multilingual settings. In fact,
researchers have already started exploring such possibilities on both mentioned tracks. Kalpakchi and
Boye (2021) proposed a UD-based multilingual method for generating reading comprehension questions.
Chaudhary et al. (2020) designed a UD-based method for automatically extracting rules governing mor-
phological agreement. Pratapa et al. (2021) proposed a UD-based metric to evaluate the morphosyntactic
well-formedness of generated texts.

The authors of the latter two articles trained their own more robust versions of the dependency parsers,
suitable for their needs. The authors of the first article relied on the off-the-shelf model, making the
robustness of pre-trained dependency parsers crucial for the success of the downstream applications. For
instance, sentence simplification rules based on dependency trees might simply not fire due to a mistak-
enly identified head or dependency relation. In fact, state-of-the-art dependency parsers are somewhat
error-prone and not perfect, and assuming otherwise might potentially harm the performance of down-
stream applications. A more relaxed (and realistic) assumption is that the errors made by the parser
are at least consistent, so that potentially useful patterns for the task at hand can still be inferred from
data. These patterns might not always be linguistically motivated, but if the dependency parser makes
consistent errors, they can still be useful for the task at hand.

In this article, we perform a case study operating under this relaxed assumption and investigate the
consistency of errors while parsing sentences containing numerals. This step is useful, for instance, in
question generation (especially for reading comprehension in the history domain) or numerical entity
identification (e.g., distinguishing years from weights or distances).

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.



1. Create a common vector space for all substructres in both trees
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2. Calculate the dot product of the two vectors to get the CPTK

3. Optionally normalize to get NCPTK between 0 and 1

Figure 1: A simple example illustrating the concept behind convolu-
tion partial tree kernels (in practice the vector space is induced only
implicitly and CPTK is calculated using dynamic programming)
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Figure 2: A simple example
of a GRCT transformation

2 Background: Convolution partial tree kernels

In order to measure parser accuracy, metrics like Unlabelled or Labelled Attachment Score (UAS and
LAS, respectively) are often used. However, these metrics they do not fully reflect the usefulness of the
parsers in downstream applications. A minor error in attaching one dependency arc will result in a minor
decrease in UAS and LAS. In fact, the very same minor error might lead to a completely unusable tree
for the task at hand, depending on how close the error is to the root. Therefore, we need a metric that
penalizes errors more the closer the errors are to the root.

One metric possessing this desirable property is the convolution partial tree kernel (CPTK), originally
proposed by Moschitti (2006) as a similarity measure for dependency trees. The basic idea is to represent
trees as vectors in a common vector space, in such a way that the more common substructures two
given trees have, the higher the dot product is between the corresponding two vectors (as illustrated in
Figure 1). However, the vector space is induced only implicitly, whereas the dot product (the CPTK)
itself is calculated using a dynamic programming algorithm (for more details we refer to the original
article). CPTK values increase with the size of the trees, and thus can take any non-negative values,
making them hard to interpret. Hence, we use normalized CPTK (NCPTK) which takes values between
0 and 1, and is calculated as shown in Figure 1.

However, CPTKs can not handle labeled edges and were originally applied to dependency trees con-
taining only lexicals. In this article, we use an extension proposed by Croce et al. (2011), which includes
edge labels (DEPREL) as separate nodes. The resulting computational structure, the Grammatical Rela-
tion Centered Tree (GRCT), is illustrated in Figure 2. A dependency tree is transformed into a GRCT by
making each UPOS node a child of a DEPREL node and a father of a FORM node.

3 Method

To explore the consistency of errors while parsing numerals, we have used UD treebanks for 4 European
languages (2 Germanic and 2 Slavic). To simplify, we considered only sentences containing numer-
als representing years, later referred to as original sentences. We defined these numerals as 4 digits
surrounded by spaces, via the simple regular expression "(?<= )\d{4}(?= )". We then sampled
uniformly at random 50 integers between 1100 and 2100 using a fixed random seed, and replaced the
occurrences of the previously identified numerals in the original sentences by each of these numbers.
Thus, for every found original sentence in a treebank, we synthesized 50 augmented sentences (later
referred to as an augmented batch), only differing in the 4-digit numbers. We only substituted the first



found occurrence of a 4-digit number in a sentence. However, if the same number appeared multiple
times in the sentence, then all its occurrences were substituted.

Given such minor changes, a consistent dependency parser should output the same dependency tree for
every sentence in each augmented batch. These trees should not necessarily be the same as gold original
trees (although this is obviously desirable), but at the very least, the errors made in each augmented batch
should be of the same kind. We consider two trees to have the errors of the same kind, and thus belonging
to the same cluster of errors, if their dependency trees only differ in the 4-digit numerals. All DEPRELs,
UPOS tags and FEATS should be exactly the same for any two trees in the same cluster.

Evidently, not all 4-digit numbers in the original sentences were actually years, but the argument about
the consistency of errors still stands even if the numbers were amounts of money, temperatures, etc. The
magnitude of the numbers was not drastically changed (they are still 4-digit numbers), so the sentences
should remain intelligible also after substitution.

In order to evaluate both the consistency of errors and correctness of a dependency parser after intro-
ducing the changes above, we need to answer the following questions.

Q1 How many augmented batches are parsed completely correctly?

• if the corresponding original sentence is parsed correctly
• if the corresponding original sentence is parsed incorrectly

Q2 How many sentences in each augmented batch are parsed correctly on average?

• if the corresponding original sentence is parsed correctly
• if the corresponding original sentence is parsed incorrectly

Q3 How many augmented batches corresponding to incorrectly parsed original sentences have consis-
tent errors, i.e. have the same dependency trees within a batch except FORMs and LEMMAs?

Q4 On average, how many clusters of errors does an augmented batch with inconsistent errors have?

Q5 On average, how similar are dependency trees in the clusters found in Q4?

Answering Q1 to Q3 is trivial by parsing original and augmented sentences using a pre-trained de-
pendency parser and calculating descriptive statistics. To answer Q4 and Q5, we propose to calculate
NCPTK for each pair of trees in an augmented batch. To perform the calculations, we transform each
dependency tree to GRCT replacing FORMs (which will be different by experimental design) with the
FEATS. We can then construct an undirected graph, where each node is a dependency tree in the batch
and two nodes are connected if their NCPTK is exactly 1 (i.e., their dependency trees are identical).
Then the problem of finding error clusters in Q4 boils down to finding all maximal cliques in the induced
undirected graph, for which we use Bron–Kerbosch algorithm (Bron and Kerbosch, 1973). Similarity of
dependency trees in the given clusters can be assessed using the already calculated NCPTKs, which will
provide the answer to Q5.

In hopes of improving parsers’ performance and consistency of errors we have also tried to retrain the
tokenizer, lemmatizer, PoS tagger and dependency parser (later referred to as a pipeline) from scratch
using two approaches. The first approach relies on numeral augmentation and starts by sampling 20
four-digit integers using a different random seed (while ensuring no overlap with the previously used 50
integers). Using these 20 new numbers and the same procedure as before, we synthesized 20 additional
sentences per each previously found original sentence in the training and development treebanks. We
will refer to treebanks formed by original and newly synthesized sentences as augmented treebanks. The
second approach uses token substitution and replaces previously found four-digit integers with a special
token NNNN. The training and development treebanks after this procedure keep their size the same (in
constrast to the numeral augmentation method) and will be later referred to as substituted treebanks.

We have used Stanza (Qi et al., 2020) to get pretrained dependency parsers as well as to
train the whole pipeline from scratch and UDon2 (Kalpakchi and Boye, 2020) to perform the
necessary manipulations on dependency trees and calculate NCPTK. The code is available at
https://github.com/dkalpakchi/ud parser consistency.

https://github.com/dkalpakchi/ud_parser_consistency


4 Experimental results

4.1 Pretrained pipeline

We have started the experiment by parsing all original and augmented sentences in the training and de-
velopment treebanks of the respective languages. The results summary for the off-the-shelf parser are
presented in Table 1. To our surprise, some sentences were not segmented correctly, i.e. one sentence
became multiple, both among original and augmented sentences. However, we did not find any consis-
tent pattern: for instance, the Swedish parser made more segmentation errors for augmented sentences,
whereas all the other parsers exhibited the opposite. Nonetheless, we have excluded the cases with wrong
sentence segmentation from further analysis. The final number of sentences considered is shown in the
rows “Original considered” and “Augmented considered” in Table 1.

Metric English Swedish Russian Ukrainian
Train Dev Train Dev Train Dev Train Dev

Original in total 235 14 108 5 1420 270 103 29
Wrong sent. segm. 12 0 2 0 25 5 1 1
Original considered 223 14 106 5 1395 265 102 28
Corr. parsed sent. 53 1 76 1 360 53 27 2
Corr. parsed sent. (%) 23.8% 7.1% 71.7% 20% 25.8% 20% 26.5% 7.1%
Augmented in total 11150 700 5300 250 69750 13250 5100 1400
Wrong sent. segm. 0 0 17 14 13 0 0 0
Augmented considered 11150 700 5283 236 69737 13250 5100 1400
Corr. parsed sent. 2689 50 3525 43 17787 2540 1227 100
Corr. parsed sent. (%) 24.1% 7.1% 66.7% 18.2% 25.5% 19.2% 24.1% 7.1%

Table 1: Results of parsing the original and augmented sentences with pre-trained parsers from Stanza.
“Corr” stands for “Correctly”, “sent” stands for sentence(s)

We have excluded metrics commonly used within UD community, e.g. UAS, LAS or BLEX, because
for these metrics we observed only minor changes (less than 1 percentage point). Another argument
for omitting these metrics is that while they are useful in comparing different parsers, they do not fully
reflect the usefulness of the parsers in downstream applications. In fact, even a minor error in attaching
one dependency arc might lead to a completely wrong tree for the task at hand (depending on how close
the error is to the root). Keeping this in mind, we compared accuracy on the sentence level only (reported
in the rows “Correctly parsed” in Table 1). We deemed a sentence to be correctly parsed if the NCPTK
between its dependency tree and its gold counterpart was 1. We transformed all trees to GRCT and
replaced FORM with FEATS, thus requiring not only all DEPREL to be identical, but also all UPOS and
FEATS. As can be seen, the number of correctly parsed sentences is either on par or worse for augmented
sentences, reaching a performance drop of 5 percentage points for the Swedish training set!

Results of a more detailed analysis needed for answering questions 1 - 5 (posed in Section 3) are
reported in Tables 2 - 5. We adopt the following notation for these tables: “Original +” (“Original -”)
indicates cases when the original sentence was correctly (incorrectly) parsed. “QX” indicates a row with
data necessary for answering question X, “Corr” stands for “Correct(ly)”, “sent” stands for sentences.

We observe a number of interesting patterns from these reports. If the original sentences are incorrectly
parsed, the vast majority of sentences in the corresponding augmented batches will also be incorrectly
parsed (see mean and median in Q2 rows for “Original -”). The fact that an original sentence is correctly
parsed does not mean that all sentences in augmented batches will be correctly parsed (see mean and
median in Q2 rows for “Original +”). In fact, the number of wrong batches in such a case can be
surprisingly large, e.g. 24 (31.5%) for the Swedish training set.



Metric Training set Development set
Original + Original - Original + Original -

Batches considered 53 170 1 13
Completely corr. batches (Q1) 49 0 1 0
Corr. parsed sent. within a batch (Q2)

Mean (SD) 49 (6.14) 0.54 (3.67) 50 (0) 0 (0)
Median (Min - Max) 50 (5 - 50) 0 (0 - 37) 50 (50 - 50) 0 (0 - 0)

Batches with consistent errors (Q3) 0 101 NA 4
Number of error clusters (Q4)

Mean (SD) 2 (0) 2.63 (0.95) NA 3.89 (2.64)
Median (Min - Max) 2 (2 - 2) 2 (2 - 7) NA 3 (2 - 10)

Between-cluster NCPTK (Q5)
Mean (SD) 0 (0) 0.07 (0.15) NA 0.04 (0.09)
Median (Min - Max) 0 (0 - 0) 0 (0 - 0.8) NA 0 (0 - 0.28)

Table 2: A detailed analysis of the parsing results for English using a pretrained pipeline

Metric Training set Development set
Original + Original - Original + Original -

Batches considered 76 30 1 4
Completely corr. batches (Q1) 52 0 0 0
Corr. parsed sent. within a batch (Q2)

Mean (SD) 45.05 (10.77) 3.37 (10.5) 43 (0) 0 (0)
Median (Min - Max) 50 (0 - 50) 0 (0 - 42) 43 (43 - 43) 0 (0 - 0)

Batches with consistent errors (Q3) 0 16 0 1
Number of error clusters (Q4)

Mean (SD) 2.29 (0.68) 2.43 (1.05) 2 (0) 2.33 (0.47)
Median (Min - Max) 2 (2 - 4) 2 (2 - 5) 2 (2 - 2) 2 (2 - 3)

Between-cluster NCPTK (Q5)
Mean (SD) 0.04 (0.12) 0.04 (0.11) 0 (0) 0.0002 (0.0003)
Median (Min - Max) 0 (0 - 0.67) 0 (0 - 0.37) 0 (0 - 0) 0 (0 - 0.0008)

Table 3: A detailed analysis of the parsing results for Swedish using a pretrained pipeline

Metric Training set Development set
Original + Original - Original + Original -

Batches considered 360 1035 53 212
Completely corr. batches (Q1) 341 0 48 0
Corr. parsed sent. within a batch (Q2)

Mean (SD) 48.85 (6.34) 0.19 (2.11) 47.87 (7.81) 0.01 (0.21)
Median (Min - Max) 50 (2 - 50) 0 (0 - 41) 50 (3 - 50) 0 (0 - 3)

Batches with consistent errors (Q3) 0 860 0 173
Number of error clusters (Q4)

Mean (SD) 2.21 (0.69) 2.16 (0.43) 2.2 (0.4) 2.13 (0.4)
Median (Min - Max) 2 (2 - 5) 2 (2 - 4) 2 (2 - 3) 2 (2 - 4)

Between-cluster NCPTK (Q5)
Mean (SD) 0.08 (0.18) 0.04 (0.14) 0 (0) 0.08 (0.2)
Median (Min - Max) 0 (0 - 0.67) 0 (0 - 0.75) 0 (0 - 0) 0 (0 - 0.72)

Table 4: A detailed analysis of the parsing results for Russian using a pretrained pipeline



Metric Training set Development set
Original + Original - Original + Original -

Batches considered 27 75 2 26
Completely corr. batches (Q1) 24 0 2 0
Corr. parsed sent. within a batch (Q2)

Mean (SD) 45.41 (13.14) 0.01 (0.11) 50 (0) 0 (0)
Median (Min - Max) 50 (4 - 50) 0 (0 - 1) 50 (50 - 50) 0 (0 - 0)

Batches with consistent errors (Q3) 0 52 NA 11
Number of error clusters (Q4)

Mean (SD) 2 (0) 2.61 (1.37) NA 2.8 (0.9)
Median (Min - Max) 2 (2 - 2) 2 (2 - 8) NA 3 (2 - 5)

Between-cluster NCPTK (Q5)
Mean (SD) 0 (0) 0.12 (0.22) NA 0.06 (0.19)
Median (Min - Max) 0 (0 - 0) 0 (0 - 0.775) NA 0 (0 - 0.77)

Table 5: A detailed analysis of the parsing results for Ukrainian using a pretrained pipeline

The errors in augmented batches are not consistent. The degree of inconsistency varies between the
languages ranging from around 17% (175 of 1035) for the Russian training set to 75% (3 of 4) for the
Swedish development set (see Q3 rows). The average observed inconsistency of errors is around 44%.
The degree of inconsistency has a similar magnitude between the training and development sets. The
most typical number of error clusters is 2 and maximum observed is 10 (see Q4 rows). The trees between
the error clusters have mostly low NCPTK (see Q5 rows) indicating either a large number of errors or
errors occurring early on (close to the root). We provide some examples of batches with inconsistent
errors in the Appendix.

4.2 Pipeline trained from scratch on treebanks with numeral augmentation
We have repeated the same experiment as in the previous section, but with a pipeline trained from scratch
on augmented treebanks (as outlined in Section 3). The results summary is reported in Table 6.

Metric English Swedish Russian Ukrainian
Train Dev Train Dev Train Dev Train Dev

Original in total 235 14 108 5 1420 270 103 29
Wrong sent. segm. 5 0 3 0 18 5 0 0
Original considered 230 14 105 5 1402 265 103 29
Corr. parsed sent. 230 0 97 2 976 48 102 3
Corr. parsed sent. (%) 100% 0% 92.4% 40% 69.6% 18.1% 99% 10.3%
Augmented in total 11500 700 5250 250 70100 13250 5150 1450
Wrong sent. segm. 0 0 0 0 13 0 0 0
Augmented considered 11500 700 5250 250 70087 13250 5150 1450
Corr. parsed sent. 11452 0 4864 100 49005 2437 5100 133
Corr. parsed sent. (%) 99.6% 0% 92.7% 40% 69.9% 18.4% 99% 9.2%

Table 6: Results of parsing the original and augmented sentences with the pipeline trained on augmented
treebanks. “Corr” stands for “Correctly”, “sent” stands for sentence(s). Performance improvements with
respect to the pre-trained parser (see Table 1) are indicated in bold.

Retraining with numeral augmentation resulted in a clear and substantial performance boost for all
languages, especially for the training treebanks. Performance boost on the development treebanks is less
pronounced and sometimes leads to a slight performance degradation. We attribute this to a possible
overfitting, indicating that 20 samples per an original sentence might have been too many and the proce-
dure needs to be refined in future. Nevertheless, the detailed analysis, reported in Appendix, shows that
the number of wrong sentence segmentations decreased for all languages and a consistency of errors is



either better or on par with the pretrained counterparts. The number of error clusters got reduced to a
maximum of 4 compared to 10 for the off-the-shelf parser.

4.3 Pipeline trained from scratch on treebanks with token substitution

We have repeated the same experiment as in the previous section, but with a pipeline trained from scratch
on substituted treebanks (as outlined in Section 3). The results summary is reported in Table 7.

Metric English Swedish Russian Ukrainian
Train Dev Train Dev Train Dev Train Dev

Substituted in total 235 14 108 5 1420 270 103 29
Wrong sent. segm. 14 0 1 0 10 1 2 1
Substituted considered 221 14 107 5 1410 269 101 28
Corr. parsed sent. 81 1 73 2 341 59 23 2
Corr. parsed sent. (%) 36.7% 7.1% 68.2% 40% 24.2% 21.9% 22.8% 7.1%

Table 7: Results of parsing the substituted sentences with the pipeline trained on treebanks with token
susbtitution. “Corr” stands for “Correctly”, “sent” stands for sentence(s). Performance improvements
with respect to the pre-trained parser (see Table 1) are indicated in bold.

Retraining with token substitution resulted in a slight performance boost for Russian and Swedish
on the development treebanks and a slight performance degradation on the training treebanks for all
languages except English. Interestingly, more sentences have been segmented correctly for Russian and
Swedish, while the parsers for English and Ukrainian produce more segmentation errors compared to
pre-trained parsers. At the same time, more sentences have been segmented incorrectly compared to
the numeral augmentation method (except for Russian). Given that all models were re-trained with the
same default seed from Stanza, we are unsure what this can be attributed to, other than the choice of
the token NNNN itself. The tokenization model in Stanza is based on unit (character) embeddings, so a
tokenization model might benefit from a token without letters or just from replacing all 4-digit numerals
with one fixed integer, say 0000. This is, however, highly speculative and requires further investigation.

An obvious advantage of token substitution is that the errors become consistent (since no clusters of
errors could potentially be formed). However, the observed effect on performance suggests that token
substitution with this specific token NNNN is not the best solution to the problem.

5 Conclusion

We have observed that such a minor change as changing one 4-digit number for another leads to sur-
prising performance fluctuations for pretrained parsers. Furthermore, we have noted the errors to be
inconsistent, making the development of downstream applications more complicated. To alleviate the
issue we tried out two methods and trained two proof-of-concept pipelines from scratch. One of the
methods, namely the numeral augmentation scheme, resulted in substantial performance gains.

Finally, the results of the experiment suggest that UD treebanks might be biased towards specific
time intervals, e.g. the 19th and 20th centuries. Bias in the data leads to bias in the models making it
harder to use the parser for some downstream applications, e.g. in the history domain. The results of
this experiment also prompt a further and more extensive investigation of possible other biases, such as
names of geographical entities, gender pronouns, currencies, etc.
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Appendix A Details of the experimental setup

We have experimented with the training and development sets of the following treebanks: UD English-
EWT, UD Swedish-Talbanken, UD Russian-SynTagRus, UD Ukrainian-IU. For sampling 50 integers
used for validating the parser’s performance, we have seeded Numpy’s random number generator with
the 1000th prime number (7919). For sampling 20 integers used for augmenting treebanks for re-training,
we chosen the 999th prime number (7907) as the random seed. Then we sampled 100 integers, filtered
out all overlapping with the previously sampled 50 and then taken the first 20 integers of the remainder.



Appendix B Detailed results for the pipeline trained from scratch

Metric Training set Development set
Original + Original - Original + Original -

Batches considered 230 0 0 14
Completely corr. batches (Q1) 229 NA NA 0
Corr. parsed sent. within a batch (Q2)

Mean (SD) 49.79 (3.16) NA NA 0 (0)
Median (Min - Max) 50 (2 - 50) NA NA 0 (0 - 0)

Batches with consistent errors (Q3) 0 NA NA 4
Number of error clusters (Q4)

Mean (SD) 2 (0) NA NA 2.6 (0.8)
Median (Min - Max) 2 (2 - 2) NA NA 2 (2 - 4)

Between-cluster NCPTK (Q5)
Mean (SD) 0 (0) NA NA 0.05 (0.1)
Median (Min - Max) 0 (0 - 0) NA NA 0 (0 - 0.31)

Table 8: A detailed analysis of the parsing results for English using a retrained pipeline

Metric Training set Development set
Original + Original - Original + Original -

Batches considered 97 8 2 3
Completely corr. batches (Q1) 97 0 2 0
Corr. parsed sent. within a batch (Q2)

Mean (SD) 50 (0) 1.75 (4.63) 50 (0) 0 (0)
Median (Min - Max) 50 (50 - 50) 0 (0 - 14) 50 (50 - 50) 0 (0 - 0)

Batches with consistent errors (Q3) NA 7 NA 1
Number of error clusters (Q4)

Mean (SD) NA 3 (0) NA 2 (0)
Median (Min - Max) NA 3 (3 - 3) NA 2 (2 - 2)

Between-cluster NCPTK (Q5)
Mean (SD) NA 0 (0) NA 0.04 (0.04)
Median (Min - Max) NA 0 (0 - 0) NA 0.04 (0 - 0.08)

Table 9: A detailed analysis of the parsing results for Swedish using a retrained pipeline

Metric Training set Development set
Original + Original - Original + Original -

Batches considered 976 426 48 217
Completely corr. batches (Q1) 950 1 44 0
Corr. parsed sent. within a batch (Q2)

Mean (SD) 49.58 (3.63) 1.44 (7.75) 49.77 (0.92) 0.22 (2.92)
Median (Min - Max) 50 (2 - 50) 0 (0 - 50) 50 (45 - 50) 0 (0 - 43)

Batches with consistent errors (Q3) 0 369 0 149
Number of error clusters (Q4)

Mean (SD) 2.08 (0.27) 2.09 (0.34) 2 (0) 2.13 (0.4)
Median (Min - Max) 2 (2 - 3) 2 (2 - 4) 2 (2 - 2) 2 (2 - 4)

Between-cluster NCPTK (Q5)
Mean (SD) 0.05 (0.14) 0.08 (0.18) 0.13 (0.22) 0.07 (0.2)
Median (Min - Max) 0 (0 - 0.5) 0 (0 - 0.67) 0.003 (0 - 0.5) 0 (0 - 0.87)

Table 10: A detailed analysis of the parsing results for Russian using a retrained pipeline



Metric Training set Development set
Original + Original - Original + Original -

Batches considered 102 1 3 26
Completely corr. batches (Q1) 102 0 2 0
Corr. parsed sent. within a batch (Q2)

Mean (SD) 50 (0) 0 (0) 44.33 (8.01) 0 (0)
Median (Min - Max) 50 (50 - 50) 0 (0 - 0) 50 (33 - 50) 0 (0 - 0)

Batches with consistent errors (Q3) NA 1 0 13
Number of error clusters (Q4)

Mean (SD) NA NA 2 (0) 2.46 (0.75)
Median (Min - Max) NA NA 2 (2 - 2) 2 (2 - 4)

Between-cluster NCPTK (Q5)
Mean (SD) NA NA 0.29 (0) 0.09 (0.22)
Median (Min - Max) NA NA 0.29 (0.29 - 0.29) 0 (0 - 0.67)

Table 11: A detailed analysis of the parsing results for Ukrainian using a retrained pipeline

Appendix C Examples of batches with inconsistent errors

In this section we report dependency trees from the augmented batch with the largest observed number of
error clusters (which happened to be 10 clusters for the English development set). The original sentences
in these clusters were too long, so we have pruned the dependency trees to include only the differing
subtrees. The cluster sizes and included numerals are as follows:

Cluster 1. 2 trees (numerals 1505, 1505)

Cluster 2. 3 trees (numerals 1798, 1777, 1817)

Cluster 3. 3 trees (numerals 1872, 1844, 1883)

Cluster 4. 3 trees (numerals 1361, 1338, 1427)

Cluster 5. 4 trees (numerals 1704, 1605, 1662, 1562)

Cluster 6. 5 trees (numerals 1420, 1344, 1295, 1504, 1299)

Cluster 7. 5 trees (numerals 1625, 1599, 1564, 1564, 1493)

Cluster 8. 6 trees (numerals 1128, 2024, 1147, 1182, 2030, 1205)

Cluster 9. 7 trees (numerals 1964, 1308, 1415, 1413, 1404, 1967, 1413)

Cluster 10. 8 trees (numerals 1774, 1721, 1759, 1759, 1461, 1731, 1724, 1832)
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Figure 3: An example truncated dependency tree from cluster 1
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Figure 4: An example truncated dependency tree from cluster 2
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Figure 5: An example truncated dependency tree from cluster 3
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Figure 6: An example truncated dependency tree from cluster 4
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Figure 7: An example truncated dependency tree from cluster 5
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Figure 8: An example truncated dependency tree from cluster 6
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Figure 9: An example truncated dependency tree from cluster 7
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Figure 10: An example truncated dependency tree from cluster 8
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Figure 11: An example truncated dependency tree from cluster 9
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Figure 12: An example truncated dependency tree from cluster 10
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