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Abstract. The domain-specialised application of Named Entity Recog-
nition (NER) is known as Biomedical NER (BioNER), which aims to
identify and classify biomedical concepts that are of interest to researchers,
such as genes, proteins, chemical compounds, drugs, mutations, diseases,
and so on. The BioNER task is very similar to general NER but recognis-
ing Biomedical Named Entities (BNEs) is more challenging than recog-
nising proper names from newspapers due to the characteristics of biomed-
ical nomenclature. In order to address the challenges posed by BioNER,
seven machine learning models were implemented comparing a trans-
fer learning approach based on fine-tuned BERT with Bi-LSTM based
neural models and a CRF model used as baseline. Precision, Recall and
F1-score were used as performance scores evaluating the models on two
well-known biomedical corpora: JNLPBA and BIOCREATIVE IV (BC-
IV). Strict and partial matching were considered as evaluation criteria.
The reported results show that a transfer learning approach based on
fine-tuned BERT outperforms all others methods achieving the highest
scores for all metrics on both corpora.
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1 Introduction

Named Entity Recognition (NER) is a task that aims to recognise and classify
mentions of named entities in unstructured text into pre-defined semantic cat-
egories such as person, organisation, location, time expression, monetary value,
and so on. In Natural Language Processing (NLP), NER not only acts as a tool
for information extraction (IE), but plays an essential role in a variety of down-
stream applications such as information retrieval [7], text summarisation [13],
machine translation [2], question answering [14], and many other NLP tasks.

The interest in NER is not a novelty, but it has been increasing in recent years
due to the exponential growth of digital information that stimulated domain-
specific applications of NER in order to extract entity mentions not only from
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general texts, such as newspaper articles, but also from specialised texts. In many
applied research domains, NER is directly used to alleviate the problem of the
search and discovery of information, becoming an invaluable tool particularly in
those research areas where it is difficult for researchers to keep up with relevant
publications [20].

One specialised application of NER is known as Biomedical named entity
recognition (BioNER), which is defined as the task of identifying and classifying
Biomedical Named Entities (BNEs), technical terms referring to key concepts
that are of interest to biomedical researchers, such as gene, protein, chemical
compound, drug, mutation, disease, and so on. BioNER has gained increasing
attention from the research community. In fact, many works in medicine focus
on the analysis of scientific articles to find out hidden relationships between
BNEs, such as gene and protein, in order to drive experimental research [20].
Although a large body of systems are dedicated to extract BNEs in scientific
literature, BioNER tools can be applied to find all kinds of entities in any kind
of health related text, including radiology reports and clinical notes [19].

Generally, BioNER is considered a more challenging task compared to domain-
independent NER due to the characteristics of biomedical nomenclature. The
lack of standardised naming conventions, the frequent crossover in vocabulary,
the excessive use of abbreviations, synonyms and variations, the morphologi-
cal complexity due to the use of unusual characters such as Greek letters, dig-
its, punctuation – these are just some of the factors making the recognition of
BNEs particularly difficult for BioNER systems. Moreover, biomedical text of-
ten contains complex multi-word BNEs and, especially in the area of gene and
protein names, multi-word BNEs are rather the rule than the exception. Not
only multi-word BNEs are more difficult to identify, but in many cases there is
also no agreement on the exact borders of such names, making the evaluation
of BioNER tools complex [11]. For example, many BNEs may contain verbs and
adjectives that are embedded in names, making a legitimate gene or protein
name hard to distinguish from the general language text surrounding it. Lastly,
the biomedical domain is an expanding field where new concepts emerge daily
and new names are coined on a daily basis. In addition, new variants are always
created for already existing concepts since biomedical concepts are studied in
different branches of medicine which use different naming conventions.

To address these challenges, seven Machine Learning (ML) models were im-
plemented following a Sequence Tagging (ST) approach4. A transfer learning ap-
proach based on fine-tuned BERT is compared to Bi-LSTM-based neural models
and a CRF model used as baseline. The impact of pre-trained word embedding
models on the performances of neural models is also investigated. The com-
parison between models is carried out by evaluating the performances on two
well-known BioNER corpora.

The rest of the paper is structured as follows. Section 2 presents the data
used in this study. Section 3 outlines the models employed in our experiments,

4 The Colab notebooks used for running the experiments are available here:
https://github.com/cariello1/BioNER.
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which are described in Section 4. Section 5 discusses the results obtained and
finally section 6 summarises the conclusions of this study.

2 Data

BioNER models were evaluated using two benchmark corpora released during
well-known and popular shared competitions. The first one is the corpus of the
JNLPBA 2004 shared task, which is derived from the popular GENIA corpus.
The second one is the BIOCREATIVE (BC-IV) corpus used for the Track 2 of
BioCreative IV shared task. Both corpora were made publicly available in the
IOB2 annotation format.5 According to this schema, tokens are labelled with a
B-class tag at the beginning of every sequence that represents an entity, with an
I-class tag if the tokens are inside a sequence and with an O tag if the tokens
are outside of a sequence that represents an entity.

2.1 JNLPBA 2004 Shared Task Corpus

Derived from the GENIA corpus, JNLPBA [8] is a manually annotated collection
of articles extracted from the MEDLINE database. Compared to the 36 classes
of the original corpus, JNLPBA has 5 classes: protein, DNA, RNA, cell line
and cell type, and does not contain any nested or discontinuous entities. The
training set includes entirely the GENIA corpus, while the test set consists of 404
newly annotated MEDLINE abstracts from the GENIA project. The training set
contains 18,546 sentences for a total of 472,006 words, while the test set contains
3,856 sentences for a total of 96,780 words.

2.2 BioCreative IV CHEMDNER Corpus

BioCreative IV CHEMDNER (BC-IV) [10] is a collection of PubMed abstracts
which contains chemical entity mentions labelled manually by experts in the field,
following annotation guidelines specifically defined as part of the BioCreative IV
competition. No nested annotations or overlapping entity mentions are included.
The original fine-grained annotation schema including seven classes was collapsed
into one generic class, CHEMICAL. The training set contains 30,682 sentences
for a total of 891,948 words, while the test set contains 26,364 sentences for a
total of 766,033 words.

3 Models

Considering BioNER as a Sequence Tagging (ST) task, seven models were im-
plemented in order to solve BioNER and compare performances of a traditional
ML algorithm used as a baseline with the latest advanced neural models.

5 MTL-Bioinformatics-2016: https://github.com/cambridgeltl/MTL-Bioinformatics-
2016.
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3.1 Conditional Random Field

Conditional Random Fields (CRF) is a probabilistic graphical model, which pro-
vides a framework for modelling global probabilities based on some observations
of the local functions and representing a distribution over labels [3]. CRF has
the advantage over other ML algorithms to efficiently model dependencies be-
tween observations and labels, taking context into account. Among traditional
ML algorithms, CRF is known as the most popular solution for solving ST tasks
such as BioNER [9].

Given the morphological complexity behind BNEs, which are rich of unusual
characters, applying features that have been used for traditionally named entities
to identify biomedical instances could be insufficient. A specific set of features
that exploit biomedical nomenclature characteristics needs to be engineered, in
order to allow the algorithm to efficiently recognise BNEs [1].

3.2 Bi-LSTM Based Neural Networks

Bi-LSTM is a type of Recurrent Neural Network (RNN) that is widely used as
context-encoder for ST tasks such as BioNER. RNNs are able to model context
dependencies storing information during the sequential processing implementing
units with self-connections [15]. However, standard RNNs suffer from the ex-
ploding gradient problem, which is responsible for the reduction in the ability to
learn long-distance relationships, so that they have a limited application to real-
world ST. LSTMs extend RNNs with a memory cell unit consisting of several
gates to store and access information over long periods of time, efficiently mod-
elling dependencies between far apart sequence elements as well as consecutive
elements. Since LSTMs can access context only in one direction, Bidirectional
LSTMs (Bi-LSTMs) are used instead, in order to scan the data in both directions
and provide access to all surrounding context. Bi-LSTM combines the benefits
of long-range memory and bidirectional processing, which make this model per-
fectly suitable for ST [6].

3.3 Fine-tuned BERT

BERT [5] is a pre-trained system based on Transformer that can be fine-tuned to
solve specific language tasks. The Transformer [18] is a neural architecture which
dispenses with recurrence entirely relying only on the attention mechanism to
draw global dependencies between input and output. Since Transformers do not
rely on sequential processing, they can process an input sequence of words all at
once, allowing for much more parallelisation and requiring significantly less time
to train compared to Bi-LSTM-based models [17]. Since Transformers allowed for
a more efficient training on larger datasets than it was possible before they were
introduced, they drastically improved the prospects of using Transfer Learning
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for Natural Language Processing (NLP). Indeed, in the last years a shift has oc-
curred from the use of pre-trained word vectors for feature extraction to the use
of pre-trained systems such as BERT, that has been trained on a huge general
language dataset and can be fine-tuned to solve a wide variety of NLP tasks [12].

4 Experiments

The first experiment is aimed at training a CRF model, a traditional ML method
widely used for solving BioNER that is easy to implement, provides reasonable
results, and does not require much expertise and time to build. The CRF per-
formance is considered as a baseline for evaluating the performance of the other
models. For the CRF model, a specific set of features is used to allow the algo-
rithm to recognise BNEs. Linguistic features are selected exclusively to exploit
the characteristics of biomedical BNEs such as the morphological complexity. To
enable the model to capture contextual information, context features are also
provided in a 5-word window.

The first neural model implemented is a Bi-LSTM-based architecture that
uses Softmax layer as the decoding layer. The embedding layer is initialised
with random weights and computes word vectors during the learning process.
Learned representations of data are fed into a Bi-LSTM layer which extracts
contextual information. The output is then passed to another Bi-LSTM layer
so that the model learns even deeper, more abstract representations from data.
The decoding layer uses a Softmax function to transform scores into a probabil-
ity distribution over classes. Labels for each word are independently predicted
without taking into account dependencies between labels. In a second model,
Softmax was replaced with CRF to make the model capable of capturing rela-
tionships between entity labels. It has been shown indeed that for ST tasks it is
more beneficial to jointly decode label sequences using CRF than decoding each
label independently [4].

In the next models, the Bi-LSTM+CRF architecture was enhanced replac-
ing randomly initialised word vectors with different pre-trained distributed rep-
resentation models. First, Bi-LSTM+CRF was combined with pre-trained vec-
tors from FastText.6 Next, these vectors were replaced with a concatenation of
word-level and character-level representations using pre-trained word embedding
from GloVe7 and character embedding learned using an LSTM model. Charac-
ter representations are able to capture sub-word level information such as prefix,
suffix and orthographic characteristics enabling the model to handle the Out-
Of-Vocabulary (OOV) problem, which causes GloVe to return many zero values.
The last Bi-LSTM based neural model uses contextual embedding incorporating
into the embedding layer a pre-trained ELMo [16] model. This model does not
consider an additional character-level embedding, unlike the model with GloVe,
since ELMo already provides context-dependent character-level representations.

6 https://fasttext.cc/docs/en/crawl-vectors.html
7 https://nlp.stanford.edu/projects/glove/
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Finally, a fine-tuned BERT-Large model is employed. In the pre-processing
step, a WordPiece tokenizer is used in order to allow the model to process words
that it has never seen before by decomposing them into known sub-words. For
restoring the original tokenisation, a post-processing step is needed in order to
compare BERT outputs with those of the other models. The hyper-parameter
settings and all the fine-tuning procedure rely on the indication provided on the
original paper by Devlin et al. [5]. Due to the high number of parameters, the
model is trained on an NVIDIA Tesla K80 16GB GPU.

5 Results

The results obtained on the test set for both corpora are shown in Tables 1 and
2. Precision, Recall and F1-score are reported according to the strict matching
criterion, and the overall scores for JNLPBA are computed using micro-average.
The F1-score computed according to the partial matching criterion is also re-
ported. For what concerns the neural models, each model is run five times and
the final reported result is the average among the runs.

JNLPBA

Model Precision Recall F1 F1 (partial)

CRF 0.68 0.69 0.69 0.78
Bi-LSTM+Softmax 0.68 0.69 0.69 0.78

Bi-LSTM+CRF 0.68 0.70 0.69 0.77
FastText+Bi-LSTM+CRF 0.67 0.74 0.70 0.77

GloVe+Char+Bi-LSTM+CRF 0.68 0.75 0.71 0.79
ELMO+Bi-LSTM+CRF 0.63 0.77 0.69 0.78

Fine-tuned BERT 0.68 0.77 0.72 0.79
Table 1. Overall performance of the models on JNLPBA.

BIOCREATIVE IV

Model Precision Recall F1 F1 (partial)

CRF 0.86 0.73 0.79 0.83
Bi-LSTM+Softmax 0.85 0.74 0.79 0.83

Bi-LSTM+CRF 0.77 0.83 0.80 0.87
FastText+Bi-LSTM+CRF 0.82 0.77 0.80 0.88

GloVe+Char+Bi-LSTM+CRF 0.83 0.82 0.83 0.88
ELMO+Bi-LSTM+CRF 0.77 0.87 0.82 0.86

Fine-tuned BERT 0.89 0.87 0.88 0.93
Table 2. Overall performance of the models on BIOCREATIVE IV.

The overall results show that BERT outperforms the other models, since it
achieves the highest scores on both corpora. BERT proves to be able to effectively
recognise and classify BNEs, despite being a model trained on text different from
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the target domain. For JNLPBA the scores do not differ in terms of precision
compared to the other models but recall shows an improvement of 8% over the
baseline model. A slight increase is also recorded for the F1-score compared to the
baseline model, achieving 72% (against 69%) and 79% (against 78%) according
to, respectively, the strict and partial matching evaluation criteria. The second
and the third best performing models are respectively the Bi-LSTM+CRF that
incorporates the GloVe+Character embedding and the model that incorporates
the FastText embedding. A significant increase for the recall and a slight in-
crease for the F1-score are recorded for both strict and partial matching over
the baseline model. For BC-IV, instead, BERT stands out significantly over the
other models, achieving outstanding scores on all metrics. Specifically, BERT
outperforms the baseline model by 14% on recall and achieves an F1-score of
88% (against 79%) and 93% (against 83%) according to, respectively, the strict
and partial matching evaluation criteria. For what concerns the precision the
increase on the baseline is instead less remarkable. The BERT model outper-
forms also the second and the third best performing models that in this case
are, respectively, the Bi-LSTM+CRF that incorporates the GloVe+Character
embedding and the model that incorporates the ELMo embedding. A significant
increase is recorded for all the metrics with the exception of the recall, where
the ELMo model achieves a score comparable to BERT.

Using the GPU, the training of BERT on the BC-IV corpus requires only 20
minutes, while the Bi-LSTM models require more then 30 minutes. Therefore,
even if the use of a GPU is required to fine-tune BERT, this model clearly outper-
forms the other approaches for the recognition of BNEs on both the biomedical
test corpora.

6 Conclusion

Seven Machine Learning (ML) models were implemented following a Sequence
Tagging (ST) approach for solving BioNER on two well-known corpora. A trans-
fer learning approach based on fine-tuned BERT was compared with Bi-LSTM-
based neural models and a CRF model used as baseline. The fine-tuned BERT
model achieved the highest scores for all metrics on both corpora. Thus, accord-
ing to what emerged from these experiments, the use of pre-trained vectors has
a significant impact on the performance of the Bi-LSTM models, leading to an
OOV error reduction and an increase of the recall. In addition, the inclusion
of sub-word level information into the models proved to be particularly bene-
ficial for solving BioNER on both corpora. Based on these results, the use of
pre-trained transformer-based neural models such as BERT for solving BioNER
looks promising. Specifically, the advantage of using BERT for BioNER lies in
the fact that it can be employed as a ready-to-use model that can be easily fine-
tuned for solving the task, requiring significantly less time to train and achieving
superior performance scores compared to other approaches.
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