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Introduction

Welcome to TextGraphs, the Workshop on Graph-Based Methods for Natural Language Processing.
The fifteenth edition of our workshop is being organized online on June 11, 2021, in conjunction with
the 2021 Annual Conference of the North American Chapter of the Association for Computational
Linguistics (NAACL-2021).

The workshops in the TextGraphs series have published and promoted the synergy between the field of
Graph Theory (GT) and Natural Language Processing (NLP). The mix between the two started small,
with graph theoretical frameworks providing efficient and elegant solutions for NLP applications. Graph-
based solutions initially focused on single-document part-of-speech tagging, word sense disambiguation,
and semantic role labeling, and became progressively larger to include ontology learning and information
extraction from large text collections. Nowadays, graph-based solutions also target on Web-scale
applications such as information propagation in social networks, rumor proliferation, e-reputation,
multiple entity detection, language dynamics learning, and future events prediction, to name a few.

The target audience comprises researchers working on problems related to either Graph Theory or graph-
based algorithms applied to Natural Language Processing, Social Media, and the Semantic Web.

This year, we received 22 submissions and accepted 17 of them for oral presentation (12 long papers
and 5 short papers). Similarly to the last year, we organized a shared task on Multi-Hop Inference
for Explanation Regeneration. The goal of the task was to provide detailed gold explanations for
standardized elementary science exam questions by selecting facts from a knowledge base. This year’s
shared task on multi-hop explanation regeneration attracted four teams. Three participants’ reports along
with the shared task overview by its organizers are also presented at the workshop.

We would like to thank our invited speakers Laura Dietz (University of New Hampshire) and Jure
Leskovec (Stanford University) for their talks. We are also thankful to the members of the program
committee for their valuable and high-quality reviews. All submissions have benefited from their expert
feedback. Their timely contribution was the basis for accepting an excellent list of papers and making
the fourteenth edition of TextGraphs a success.

Alexander Panchenko, Fragkiskos D. Malliaros, Varvara Logacheva, Abhik Jana, Dmitry Ustalov, Peter
Jansen.

TextGraphs-15 Organizers

June 2021
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Abstract

Contextual advertising provides advertisers
with the opportunity to target the context
which is most relevant to their ads. The large
variety of potential topics makes it very chal-
lenging to collect training documents to build
a supervised classification model or compose
expert-written rules in a rule-based classifica-
tion system. Besides, in fine-grained classifi-
cation, different categories often overlap or co-
occur, making it harder to classify accurately.

In this work, we propose wiki2cat, a method
to tackle large-scaled fine-grained text classi-
fication by tapping on the Wikipedia category
graph. The categories in the IAB taxonomy
are first mapped to category nodes in the graph.
Then the label is propagated across the graph
to obtain a list of labeled Wikipedia documents
to induce text classifiers. The method is ideal
for large-scale classification problems since it
does not require any manually-labeled docu-
ment or hand-curated rules or keywords. The
proposed method is benchmarked with various
learning-based and keyword-based baselines
and yields competitive performance on pub-
licly available datasets and a new dataset con-
taining more than 300 fine-grained categories.

1 Introduction

Despite the fast advancement of text classification
technologies, most text classification models are
trained and applied to a relatively small number
of categories. Popular benchmark datasets con-
tain from two up to tens of categories, such as
SST2 dataset for sentiment classification (2 cate-
gories) (Socher et al., 2013), AG news dataset (4
categories) (Zhang et al., 2015) and 20 Newsgroups
dataset (Lang, 1995) for topic classification.

In the meantime, industrial applications often in-
volve fine-grained classification with a large num-
ber of categories. For example, Walmart built a
hybrid classifier to categorize products into 5000+
product categories (Sun et al., 2014), and Yahoo

built a contextual advertising classifier with a tax-
onomy of around 6000 categories (Broder et al.,
2007). Unfortunately, both systems require a huge
human effort in composing and maintaining rules
and keywords. Readers can neither reproduce their
system nor is the system or data available for com-
parison.

In this work, we focus on the application of
contextual advertising (Jin et al., 2017), which al-
lows advertisers to target the context most relevant
to their ads. However, we cannot fully utilize its
power unless we can target the page content using
fine-grained categories, e.g., “coupé”’ vs. “hatch-
back” instead of “automotive” vs. “sport”. This
motivates a classification taxonomy with both high
coverage and high granularity. The commonly used
contextual taxonomy introduced by Interactive Ad-
vertising Bureau (IAB) contains 23 coarse-grained
categories and 355 fine-grained categories 1. Fig-
ure 1 shows a snippet of the taxonomy.

Figure 1: Snippet of IAB Content Categorization Tax-
onomy.

Large online encyclopedias, such as Wikipedia,
contain an updated account of almost all topics.
Therefore, we ask an essential question: can we
bootstrap a text classifier with hundreds of cat-
egories from Wikipedia without any manual la-
beling?

We tap on and extend previous work on
Wikipedia content analysis (Kittur et al., 2009) to
automatically label Wikipedia articles related to

1https://www.iab.com/guidelines/
taxonomy/
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each category in our taxonomy by Wikipedia cat-
egory graph traversal. We then train classification
models with the labeled Wikipedia articles. We
compare our method with various learning-based
and keyword-based baselines and obtain a compet-
itive performance.

2 Related Work

2.1 Text Classification Using Knowledge Base

Large knowledge bases like Wikipedia or DMOZ
content directory cover a wide range of topics.
They also have a category hierarchy in either tree or
graph structure, which provides a useful resource
for building text classification models. Text clas-
sification using knowledge bases can be broadly
categorized into two main approaches: vector space
model and semantic model.

Vector space model aims to learn a category vec-
tor by aggregating the descendant pages and per-
form nearest neighbor search during classification.
A pruning is usually performed first based on the
depth from the root node or the number of child
pages to reduce the number of categories. Subse-
quently, each document forms a document vector,
which is aggregated to form the category vector.
Lee et al. (2013) used tf-idf representation of the
document, while Kim et al. (2018) combined word
embeddings and tf-idf representations to obtain a
better performance.

In semantic models, the input document is
mapped explicitly to concepts in the knowledge
base. The concepts are used either in conjunction
with bag-of-words representation (Gabrilovich and
Markovitch, 2006) or stand-alone (Chang et al.,
2008) to assign categories to the document.

Gabrilovich and Markovitch (2006) used a
feature generator to predict relevant Wikipedia
concepts (articles) related to the input document.
These concepts are orthogonal to the labels in spe-
cific text classification tasks and are used to en-
rich the representation of the input document. Ex-
periments on multiple datasets demonstrated that
the additional concepts helped improve the perfor-
mance. Similarly, Zhang et al. (2013) enriched the
document representation with both concepts and
categories from Wikipedia.

Chang et al. (2008) proposed Dataless clas-
sification that maps both input documents and
category names into Wikipedia concepts using
Explicit Semantic Analysis (Gabrilovich et al.,
2007). The idea is similar to Gabrilovich and

Markovitch (2006), except (1) the input is mapped
to a real-valued concept vector instead of a discrete
list of related categories, and (2) the category name
is mapped into the same semantic space, which
removes the need for labeled documents.

Most recently, Chu et al. (2020) improved text
classification by utilizing naturally labeled docu-
ments such as Wikipedia, Stack Exchange subareas,
and Reddit subreddits. Instead of training a tradi-
tional supervised classifier, they concatenate the
category name and the document and train a bi-
nary classifier, determining whether the document
is related to the category. They benchmarked their
proposed method extensively on 11 datasets cover-
ing topical and sentiment classification.

Our work is most similar to Lee et al. (2013).
However, they only evaluated on random-split
Wikipedia documents, while we apply the model to
a real-world large-scale text classification problem.
We also employed a graph traversal algorithm to
label the documents instead of labeling all descen-
dant documents.

2.2 Wikipedia Content Analysis

Some previous work tried to understand the dis-
tribution of topics in Wikipedia for data analysis
and visualization (Mesgari et al., 2015). Kittur
et al. (2009) calculated the distance between each
page to top-level category nodes. They then as-
signed the category with the shortest distance to
the page. With this approach, they provided the first
quantitative analysis of the distribution of topics in
Wikipedia.

Farina et al. (2011) extended the method by al-
lowing traversing upward in the category graph
and assigning categories proportional to the dis-
tance instead of assigning the category with the
shortest-path only. More recently, Bekkerman and
Donin (2017) visualized Wikipedia by building a
two-level coarse-grained/fine-grained graph repre-
sentation. The edges between categories capture
the co-occurrence of categories on the same page.
They further pruned edges between categories that
rarely appear together. The resulting graph contains
441 largest categories and 4815 edges connecting
them.

3 Method

We propose wiki2cat, a simple framework using
Wikipedia to bootstrap text categorizers. We
first map the target taxonomy to correspond-

2



Figure 2: Overview of wiki2cat, a framework to bootstrap large-scale text classifiers from Wikipedia. We first map
user-defined categories to category nodes in the Wikipedia category graph. Then, we traverse the category graph
to label documents automatically. Lastly, we use the labeled documents to train a supervised classifier.

ing Wikipedia categories (briefed in Section 3.1).
We then traverse the Wikipedia category graph
to automatically label Wikipedia articles (Sec-
tion 3.2). Finally, we induce a classifier from the
labeled Wikipedia articles (Section 3.3). Figure 2
overviews the end-to-end process of building clas-
sifiers under the wiki2cat framework.

3.1 Mapping the Target Taxonomy to
Wikipedia Categories

Wikipedia contains 2 million categories, which
is 4 orders of magnitude larger than IAB taxon-
omy. We index all Wikipedia category names in
Apache Lucene 2 and use the IAB category names
to query the closest matches. We perform the
following: 1) lemmatize the category names in
both taxonomies, 2) index both Wikipedia cate-
gory names and their alternative names from redi-
rect links (e.g., “A.D.D.” and “Attention deficit
disorder”), 3) split conjunction category names
and query separately (e.g., “Arts & Entertainment”
→ “Arts”, “Entertainment”), and 4) capture small
spelling variations with string similarity 3.

Out of all 23 coarse-grained and 355 fine-grained
categories in IAB taxonomy, 311 categories (82%)
can be mapped trivially. Their category names
either match exactly or contain only small varia-
tions. E.g., the IAB category “Pagan/Wiccan” is
matched to three Wikipedia categories “Paganism”,
“Pagans”, and “Wiccans”. One author of this paper
took roughly 2 hours to curate the remaining 67
categories manually and provided the mapping to
Wikipedia categories. Out of the 67 categories, 23

2https://lucene.apache.org
3We use Jaro-Winkler string similarity with a threshold of

0.9 to automatically map IAB categories to Wikipedia cate-
gories.

are categories that cannot be matched automatically
because the category names look very different,
e.g., “Road-Side Assistance” and “Emergency road
services”. The rest are categories where the system
can find a match, but the string similarity is below
the threshold (e.g., correct: “Chronic Pain” and
“Chronic Pain Syndromes”; incorrect: “College Ad-
ministration” and “Court Administration”). We use
the curated mapping in subsequent sections.

3.2 Labeling Wikipedia Articles by Category
Graph Traversal

With the mapping between IAB and Wikipedia cat-
egories, we can anchor each IAB category as nodes
in the Wikipedia category graph 4, referred to as
the root category nodes. Our task then becomes
to obtain a set of labeled Wikipedia articles by
performing graph traversal from the root category
nodes. From each root category node, the cate-
gory graph can be traversed using the breadth-first
search algorithm to obtain a list of all descendant
categories and pages.

One may argue that we can take all descendant
pages of a Wikipedia category to form the labeled
set. However, in Wikipedia page A belongs to
category B does not imply a hypernym relation.
In fact, some pages have a long list of categories,
most of which are at their best remotely related
to the main content of the page. E.g., the page
“Truck Stop Women” 5 is a descendant page of the
category “Trucks”. However, it is a 1974 film, and

4We construct the category graph using the “subcat” (sub-
category) relation in the Wikipedia dump. The graph contains
both category nodes and page nodes. Pages all appear as
leaf nodes while category nodes can be either internal or leaf
nodes.

5https://en.wikipedia.org/wiki/Truck_
Stop_Women
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Figure 3: Intuition of the pruning for the category “Trucks”. The page “Ford F-Max” belongs to four categories.
Three of which can be traversed from “Trucks” and one cannot (marked in red and italic).

the main content of the page is about the plot and
the cast.

We label Wikipedia pages using a competition-
based algorithm following Kittur et al. (2009) and
Farina et al. (2011). We treat each category node
from which a page can be traversed as a candidate
category and evaluate across all candidate cate-
gories to determine the final category(s) for the
page.

Firstly, all pages are pruned based on the per-
centage of their parent categories that can be tra-
versed from the root category. Figure 3 shows two
Wikipedia pages with a snippet of their ancestor
categories. Both pages have a shortest distance of 2
to the category “Trucks”. However, the page “Ford
F-Max” is likely more related to “Trucks” than the
page “Camping and Caravanning Club” because
most of its parent categories can be traversed from
“Trucks”. We empirically set the threshold that we
will prune a page with respect to a root category
if less than 30% of its parent categories can be
traversed from the root category.

While the categories in IAB taxonomy occur in
parallel, the corresponding categories in Wikipedia
may occur in a hierarchy. For example, the cate-
gory “SUVs” and “Trucks” are in parallel in IAB
taxonomy but “SUVs” is a descendant category
of “Trucks” in Wikipedia (Trucks ›Trucks by type
›Light trucks ›Sport utility vehicles). While travers-
ing from the root category node, we prune all the
branches corresponding to a competing category.

Pruning alone will not altogether remove the
irrelevant content, because the degree of seman-
tic relatedness is not considered. We measure the

semantic relatedness between a page and a cate-
gory based on two factors, namely the shortest path
distance and the number of unique paths between
them. Previous work depends only on the short-
est path distance (Kittur et al., 2009; Farina et al.,
2011). We observe that if a page is densely con-
nected to a category via many unique paths, it is
often an indication of a strong association. We
calculate the weight w of a page with respect to a
category as follows:

w =
k∑

i=0

1

2di
(1)

where k is the number of unique paths between
the page and the category node, and di is the dis-
tance between the two in the ith path. To calculate
the final list of categories, the weights for all com-
peting categories are normalized to 1 by summing
over each candidate category j and the categories
which have a weight higher than 0.3 are returned
as the final assigned categories.

wj =

kj∑

i=0

1

2dij
/(
∑

j

kj∑

i=0

1

2dij
) (2)

The labeling process labeled in total 1.16 million
Wikipedia articles. The blue scattered plot in Fig-
ure 4 plots the number of labeled training articles
per fine-grained category in log-10 scale. We can
see that the majority of the categories have between
100 to 10k articles.
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Figure 4: Blue: # of automatically labeled Wikipedia articles per fine-grained category in log-10 scale. (mean=2.95,
std=0.86). Orange: # of articles per fine-grained category in the full test set in log-10 scale (mean=1.94, std=0.78).

3.3 Training Contextual Classifiers

The output of the algorithm described in Sec-
tion 3.2 is a set of labeled Wikipedia pages. In the-
ory, we can apply any supervised learning method
to induce classifiers from the labeled dataset. The
focus of this work is not to introduce a novel model
architecture, but to demonstrate the effectiveness
of the framework to bootstrap classifiers without
manual labeling. We experiment with three simple
and representative classification models. The first
model is a linear SVM with tf-idf features, which is
a competitive baseline for many NLP tasks (Wang
and Manning, 2012). The second model is a cen-
troid classifier, which is commonly used in large-
scale text classification (Lee et al., 2013). It aver-
ages the tf-idf vectors of all documents belonging
to each category and classifies by searching for
the nearest category vector. The third model uses
BERT (Devlin et al., 2019) to generate the semantic
representation from the text and uses a single-layer
feed-forward classification head on top. We freeze
the pre-trained BERT model and train only the clas-
sification head for efficient training.

The number of labeled Wikipedia documents for
each category is highly imbalanced. Minority cate-
gories contain only a handful of pages, while some
categories have hundreds of thousands of pages.
We perform random over- and downsampling to
keep 1k documents for each fine-grained category
and 20k documents for each coarse-grained cate-
gory to form the training set. 6

6We use the original dataset without sampling for the cen-
troid classifier since it is not affected by label imbalance.

4 Experiments

4.1 Evaluation Datasets

We evaluated our method using three contextual
classification datasets. The first two are coarse-
grained evaluation datasets published by Jin et al.
(2020) covering all IAB tier-1 categories except for
“News” (totaling 22 categories). The datasets are
collected using different methods (news-crawl-v2
dataset (nc-v2) by mapping from news categories;
browsing dataset by manual labelling) and contain
2,127 and 1,501 documents separately 7.

We compiled another dataset for fine-grained
classification comprising of documents labeled
with one of the IAB tier-2 categories. The full
dataset consists of 134k documents and took an ef-
fort of multiple person-year to collect. The sources
of the dataset are news websites, URLs occurring
in the online advertising traffic and URLs crawled
with keywords using Google Custom Search 8.

The number of documents per category can be
overviewed in Figure 4 (the orange scatter plot). 23
out of 355 IAB tier-2 categories are not included
in the dataset because they are too rare and are not
present in our data source. So there are in total
332 fine-grained categories in the datasets. Due
to company policy, we can publish only a random
sample of the dataset with ten documents per cate-
gory 9. We report the performance on both datasets

7https://github.com/YipingNUS/
nle-supplementary-dataset

8https://developers.google.com/
custom-search/

9https://github.com/YipingNUS/
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for future work to reproduce our result. To our
best knowledge, this dataset will be the only pub-
licly available dataset for fine-grained contextual
classification.

We focus on classifying among fine-grained cat-
egories under the same parent category. Figure 5
shows the number of fine-grained categories under
each coarse category. While the median number
of categories is 10, the classification is challenging
because categories are similar to each other.

Figure 5: Number of fine-grained categories per coarse-
grained category in our fine-grained contextual classifi-
cation evaluation dataset.

4.2 Experimental Settings

Throughout this paper, we use the Wikipedia dump
downloaded on 10 December 2019. After removing
hidden categories and list pages, the final category
graph contains 14.9 million articles, 1.9 million
categories and 37.9 million links. The graph is
stored in Neo4J database 10 and occupies 4.7GB
disk space (not including the page content).

We use the SGD classifier implementation in
scikit-learn 11 with default hyperparameters for lin-
ear SVM. Words are weighted using tf-idf with a
minimum term frequency cutoff of 3. We imple-
ment the centroid classifier using TfidfVectorizer
in scikit-learn and use numpy to implement the
nearest neighbor classification.

For BERT, we use DistilBERT implementation
by HuggingFace 12, a model which is both smaller
and faster than the original BERT-base model. We
use a single hidden layer with 256 units for the
feed-forward classification head. The model is im-
plemented in PyTorch and optimized with Adam
optimizer with a learning rate of 0.01.

contextual-eval-dataset
10https://neo4j.com
11https://scikit-learn.org
12https://huggingface.co/transformers/

model_doc/distilbert.html

We compare wiki2cat with the following base-
lines:
• Keyword voting (kw voting): predicts the

category whose name occurs most frequently
in the input document. If none of the category
names is present, the model predicts a random
label.
• Dataless (Chang et al., 2008): maps the in-

put document and the category name into the
same semantic space representing Wikipedia
concepts using Explicit Semantic Analysis
(ESA) (Gabrilovich et al., 2007).
• Doc2vec (Le and Mikolov, 2014): similar to

the Dataless model. Instead of using ESA, it
uses doc2vec to generate the document and
category vector.
• STM (Li et al., 2018): seed-guided topic

model. The state-of-the-art model on coarse-
grained contextual classification. Underlying,
STM calculates each word’s co-occurrence
and uses it to “expand” the knowledge be-
yond the given seed words. For coarse-grained
classification, STM used hand-curated seed
words while STM,Slabel used category names
as seed words. Both were trained by Jin
et al. (2020) on a private in-domain dataset.
We also trained STM using our Wikipedia
dataset, referred to as STM,Dwiki. For fine-
grained classification, we report only the re-
sult of STM,Slabel since no previously pub-
lished seed words are available.

Keyword voting and Dataless do not require any
training document. Both Doc2vec and STM require
unlabeled training corpus. We copy the coarse-
grained classification result for Doc2vec, STM, and
STM,Slabel from Jin et al. (2020). For fine-grained
classification, we train Doc2vec and STM,Slabel
using the same set of Wikipedia documents as in
wiki2cat.

4.3 Result of Coarse-Grained Contextual
Classification

We present the performance of various models on
nc-v2 and browsing dataset in Table 1.

We can observe that wiki2cat using SVM as
the learning algorithm outperformed Dataless and
Doc2vec baseline. However, it did not perform
as well as STM. The STM model was trained us-
ing a list of around 30 carefully chosen keywords
for each category. It also used in-domain unla-
beled documents during training, which we do not
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Model
nc-v2 browsing
acc maF1 acc+ maF1

kw voting .196 .180 .251 .189
Dataless .412 .377 .536 .392
Doc2vec .480 .461 .557 .424
STM .623 .607 .794 .625
STM,Slabel .332 .259 .405 .340
STM,Dwiki .556 .533 .780 .595
w2csvm .563 .539 .659 .523
w2ccentroid .471 .426 .675 .523
w2cbert .440 .403 .621 .482

Table 1: Performance of various models on IAB coarse-
grained classification datasets. The best performance is
highlighted in bold.

use. Jin et al. (2020) demonstrated that the choice
of seed keywords has a significant impact on the
model’s accuracy. STM,Slabel is the result of STM
using only unigrams in the category name as seed
keywords. Despite using the same learning algo-
rithm as STM, its performance was much worse
than using hand-picked seed words.

To investigate the contribution of the in-domain
unlabeled document to STM’s superior perfor-
mance, we trained an STM model with the
manually-curated keywords in Jin et al. (2020) and
the Wikipedia dataset we used to train wiki2cat
(denoted as STM,Dwiki). There is a noticeable
decrease in performance in STM,Dwiki without in-
domain unlabeled documents. It underperformed
w2csvm on nc-v2 dataset and outperformed it on
browsing dataset.

w2ccentroid performed slightly better than
w2csvm on the browsing dataset but worse on the
nc-v2 dataset. Surprisingly, BERT did not perform
as well as the other two much simpler models. We
conjecture there are two possible causes. Firstly,
BERT has a limitation of sequence length (max-
imum 512 words). The average sequence length
of news-crawl-v2 and browsing datasets are 1,470
and 350 words. Incidentally, there was a more
substantial performance gap between BERT and
SVM on the news-crawl-v2 dataset. Secondly, our
training corpus consists of only Wikipedia articles,
while the model was applied to another domain.
Therefore, the contextual information that BERT
captured may be irrelevant or even counterproduc-
tive. We leave a more in-depth analysis to future
work and adhere to the SVM and Centroid model
hereafter.

4.4 Impact of Graph Labeling Algorithms

Model
nc-v2 browsing
acc maF1 acc+ maF1

w2c .563 .539 .659 .523
w2cchild .325 .289 .340 .322
w2cdescendant .539 .503 .607 .481
w2cmin−dist .533 .498 .612 .489
w2cno−pruning .488 .466 .608 .491

Table 2: Performance of the SVM model trained with
datasets labeled using different labeling algorithms.

We now turn our attention to the impact of dif-
ferent graph labeling algorithms on the final clas-
sification accuracy. We compare our graph label-
ing method introduced in Section 3.2 with three
methods mentioned in previous work, namely la-
beling only immediate child pages (child), labeling
all descendant pages (descendant), assigning the
label with shortest distance (min-dist) as well as
another baseline removing the pruning step from
our method (no-pruning). We use an SVM model
with the same hyperparameters as w2csvm. Their
performance is shown in Table 2.

Using only the immediate child pages led to poor
performance. Firstly, it limited the number of train-
ing documents. Some categories have only a dozen
of immediate child pages. Secondly, the authors of
Wikipedia often prefer to assign pages to specific
categories instead of general categories. They as-
sign a page to a general category only when it is
ambiguous. Despite previous work in Wikipedia
content analysis advocated using shortest distance
to assign the topic to articles (Kittur et al., 2009;
Farina et al., 2011), we did not observe a substan-
tial improvement using shortest distance over using
all descendant pages. Our graph labeling method
outperformed all baselines, including its modified
version without pruning.

4.5 Result of Fine-Grained Contextual
Classification

Table 3 presents the result on fine-grained classi-
fication. We notice a performance difference on
the full and sample dataset. However, the relative
performance of various models on the two datasets
remains consistent.

A first observation is that the keyword voting
baseline performed very poorly, having 7.5-10.8%
accuracy. It shows that the category name itself
is not enough to capture the semantics. E.g., the
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Model
Full dataset Sample dataset
acc maF1 acc maF1

kw voting .108 .018 .075 .025
Dataless .428 .376 .477 .462
Doc2vec .246 .152 .253 .211
STM,Slabel .493 .370 .533 .464
w2csvm .542∗ .464∗ .646∗ .627∗
w2ccentroid .548∗ .451∗ .595∗ .566∗

Table 3: Performance of various models on IAB fine-
grained classification datasets. * indicates a statisti-
cally significant improvement from baselines with p-
value<0.05 using single-sided sample T-test.

category “Travel> South America” does not match
a document about traveling in Rio de Janeiro or
Buenos Aires but will falsely match content about
“South Korea” or “United States of America”.

Dataless and STM outperformed the keyword
voting baseline by a large margin. However,
wiki2cat is clearly the winner, outperforming these
baselines by 5-10%. It demonstrated that the au-
tomatically labeled documents are helpful for the
more challenging fine-grained classification task
where categories are more semantically similar and
harder to be specified with a handful of keywords.

5 Conclusions and Future Work

We introduced wiki2cat, a simple framework to
bootstrap large-scale fine-grained text classifiers
from Wikipedia without having to label any docu-
ment manually. The method was benchmarked on
both coarse-grained and fine-grained contextual ad-
vertising datasets and achieved competitive perfor-
mance against various baselines. It performed es-
pecially well on fine-grained classification, which
both is more challenging and requires more man-
ual labeling in a fully-supervised setting. As an
ongoing effort, we are exploring using unlabeled
in-domain documents for domain adaptation to
achieve better accuracy.
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Abstract

We present Graformer, a novel Transformer-
based encoder-decoder architecture for graph-
to-text generation. With our novel graph self-
attention, the encoding of a node relies on all
nodes in the input graph – not only direct neigh-
bors – facilitating the detection of global pat-
terns. We represent the relation between two
nodes as the length of the shortest path between
them. Graformer learns to weight these node-
node relations differently for different attention
heads, thus virtually learning differently con-
nected views of the input graph. We evaluate
Graformer on two popular graph-to-text gener-
ation benchmarks, AGENDA and WebNLG,
where it achieves strong performance while
using many fewer parameters than other ap-
proaches.1

1 Introduction

A knowledge graph (KG) is a flexible data struc-
ture commonly used to store both general world
knowledge (Auer et al., 2008) and specialized infor-
mation, e.g., in biomedicine (Wishart et al., 2018)
and computer vision (Krishna et al., 2017). Gen-
erating a natural language description of such a
graph (KG→text) makes the stored information
accessible to a broader audience of end users.
It is therefore important for KG-based question
answering (Bhowmik and de Melo, 2018), data-
to-document generation (Moryossef et al., 2019;
Koncel-Kedziorski et al., 2019) and interpretability
of KGs in general (Schmitt et al., 2020).

Recent approaches to KG→text employ encoder-
decoder architectures: the encoder first computes
vector representations of the graph’s nodes, the de-
coder then uses them to predict the text sequence.
Typical encoder choices are graph neural networks
based on message passing between direct neighbors
in the graph (Kipf and Welling, 2017; Veličković

1Our code is publicly available: https://github.
com/mnschmit/graformer

et al., 2018) or variants of Transformer (Vaswani
et al., 2017) that apply self-attention on all nodes
together, including those that are not directly con-
nected. To avoid losing information, the latter ap-
proaches use edge or node labels from the shortest
path when computing the attention between two
nodes (Zhu et al., 2019; Cai and Lam, 2020). As-
suming the existence of a path between any two
nodes is particularly problematic for KGs: a set of
KG facts often does not form a connected graph.

We propose a flexible alternative that neither
needs such an assumption nor uses label infor-
mation to model graph structure: a Transformer-
based encoder that interprets the lengths of shortest
paths in a graph as relative position information
and thus, by means of multi-head attention, dy-
namically learns different structural views of the
input graph with differently weighted connection
patterns. We call this new architecture Graformer.

Following previous work, we evaluate
Graformer on two benchmarks: (i) the AGENDA
dataset (Koncel-Kedziorski et al., 2019), i.e., the
generation of scientific abstracts from automati-
cally extracted entities and relations specific to
scientific text, and (ii) the WebNLG challenge
dataset (Gardent et al., 2017), i.e., the task of
generating text from DBPedia subgraphs. On both
datasets, Graformer achieves more than 96% of
the state-of-the-art performance while using only
about half as many parameters.

In summary, our contributions are as follows:
(1) We develop Graformer, a novel graph-to-text
architecture that interprets shortest path lengths as
relative position information in a graph self-atten-
tion network. (2) Graformer achieves competitive
performance on two popular KG-to-text genera-
tion benchmarks, showing that our architecture can
learn about graph structure without any guidance
other than its text generation objective. (3) To fur-
ther investigate what Graformer learns about graph
structure, we visualize the differently connected
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graph views it has learned and indeed find differ-
ent attention heads for more local and more global
graph information. Interestingly, direct neighbors
are considered particularly important even without
any structural bias, such as introduced by a graph
neural network. (4) Analyzing the performance
w.r.t. different input graph properties, we find evi-
dence that Graformer’s more elaborate global view
on the graph is an advantage when it is important
to distinguish between distant but connected nodes
and truly unreachable ones.

2 Related Work

Most recent approaches to graph-to-text generation
employ a graph neural network (GNN) based on
message passing through the input graph’s topology
as the encoder in their encoder-decoder architec-
tures (Marcheggiani and Perez-Beltrachini, 2018;
Koncel-Kedziorski et al., 2019; Ribeiro et al., 2019;
Guo et al., 2019). As one layer of these encoders
only considers immediate neighbors, a large num-
ber of stacked layers can be necessary to learn
about distant nodes, which in turn also increases
the risk of propagating noise (Li et al., 2018).

Other approaches (Zhu et al., 2019; Cai and Lam,
2020) base their encoder on the Transformer archi-
tecture (Vaswani et al., 2017) and thus, in each
layer, compute self-attention on all nodes, not only
direct neighbors, facilitating the information flow
between distant nodes. Like Graformer, these ap-
proaches incorporate information about the graph
topology with some variant of relative position em-
beddings (Shaw et al., 2018). They, however, as-
sume that there is always a path between any pair
of nodes, i.e., there are no unreachable nodes or
disconnected subgraphs. Thus they use an LSTM
(Hochreiter and Schmidhuber, 1997) to compute
a relation embedding from the labels along this
path. However, in contrast to the AMR2 graphs
used for their evaluation, KGs are frequently dis-
connected. Graformer is more flexible and makes
no assumption about connectivity. Furthermore,
its relative position embeddings only depend on
the lengths of shortest paths i.e., purely structural
information, not labels. It thus effectively learns
differently connected views of its input graph.

Deficiencies in modeling long-range dependen-
cies in GNNs have been considered a serious limi-
tation before. Various solutions orthogonal to our
approach have been proposed in recent work: By

2abstract meaning representation

incorporating a connectivity score into their graph
attention network, Zhang et al. (2020) manage to
increase the attention span to k-hop neighborhoods
but, finally, only experiment with k = 2. Our graph
encoder efficiently handles dependencies between
much more distant nodes. Pei et al. (2020) define
an additional neighborhood based on Euclidean
distance in a continuous node embedding space.
Similar to our work, a node can thus receive infor-
mation from distant nodes, given their embeddings
are close enough. However, Pei et al. (2020) com-
pute these embeddings only once before training
whereas in our approach node similarity is based
on the learned representation in each encoder layer.
This allows Graformer to dynamically change node
interaction patterns during training.

Recently, Ribeiro et al. (2020) use two GNN
encoders – one using the original topology and one
with a fully connected version of the graph – and
combine their output in various ways for graph-to-
text generation. This approach can only see two
extreme versions of the graph: direct neighbors and
full connection. Our approach is more flexible and
dynamically learns a different structural view per
attention head. It is also more parameter-efficient
as our multi-view encoder does not need a separate
set of parameters for each view.

3 The Graformer Model

Graformer follows the general multi-layer encoder-
decoder pattern known from the original Trans-
former (Vaswani et al., 2017). In the following, we
first describe our formalization of the KG input and
then how it is processed by Graformer.

3.1 Graph data structure

Knowledge graph. We formalize a knowledge
graph (KG) as a directed, labeled multigraph
GKG = (V,A, s, t, lV , lA, E ,R) with V a set of
vertices (the KG entities), A a set of arcs (the KG
facts), s, t : A → V functions assigning to each
arc its source/target node (the subject/object of a
KG fact), and lV : V → E , lA : A→ R providing
labels for vertices and arcs, where R is a set of
KG-specific relations and E a set of entity names.
Token graph. Entity names usually consist of
more than one token or subword unit. Hence, a
tokenizer tok : E → Σ∗T is needed that splits an
entity’s label into its components from the vocab-
ulary ΣT of text tokens. Following recent work
(Ribeiro et al., 2020), we mimic this composition-
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Figure 1: Different representations of the same KG
(types are omitted for clarity).

ality of node labels in the graph structure by split-
ting each node into as many nodes as there are
tokens in its label. We thus obtain a directed hyper-
graph GT = (VT , A, sT , tT , lT , lA,ΣT ,R, same),
where sT , tT : A → P (VT ) now assign a set of
source (resp. target) nodes to each (hyper-) arc
and all nodes are labeled with only one token, i.e.,
lT : VT → ΣT . Unlike Ribeiro et al. (2020), we

additionally keep track of all token nodes’ origins:
same : VT → P (VT × Z) assigns to each node n
all other nodes n′ stemming from the same entity to-
gether with the relative position of lT (n) and lT (n′)
in the original tokenized entity name. Fig. 1b shows
the token graph corresponding to the KG in Fig. 1a.
Incidence graph. For ease of implementation,
our final data structure for the KG is the hyper-
graph’s incidence graph, a bipartite graph where
hyper-arcs are represented as nodes and edges are
unlabeled: G = (N,E, l,Σ, { SAMEp | p ∈ Z })
where N = VT ∪ A is the set of nodes, E =
{ (n1, n2) | n1 ∈ sT (n2) ∨ n2 ∈ tT (n1) } the set
of directed edges, l : N → Σ a label function,
and Σ = ΣT ∪ R the vocabulary. We intro-
duce SAMEp edges to fully connect same clus-
ters: SAMEp = { (n1, n2) | (n2, p) ∈ same(n1) }
where p differentiates between different relative po-
sitions in the original entity string, similar to (Shaw
et al., 2018). See Fig. 1c for an example.

3.2 Graformer encoder
The initial graph representationH(0) ∈ R|N |×d is
obtained by looking up embeddings for the node la-
bels in the learned embedding matrix E ∈ R|Σ|×d,
i.e., H(0)

i = el(ni)E where el(ni) is the one-hot-
encoding of the ith node’s label.

To compute the node representation H(L) in
the Lth layer, we follow Vaswani et al. (2017),
i.e., we first normalize the input from the previ-
ous layerH(L−1) via layer normalization LN , fol-
lowed by multi-head graph self-attention SelfAttg
(see § 3.3 for details), which – after dropout reg-
ularization Dr and a residual connection – yields
the intermediate representation I (cf. Eq. (1)). A
feedforward layer FF with one hidden layer and
GeLU (Hendrycks and Gimpel, 2016) activation
computes the final layer output (cf. Eq. (2)). As
recommended by Chen et al. (2018), we apply an
additional layer normalization step to the output
H(LE) of the last encoder layer LE .

I(L) = Dr(SelfAttg(LN (H(L−1)))) +H(L−1)

(1)

H(L) = Dr(FF (LN (I(L)))) + I(L) (2)

SelfAttg computes a weighted sum ofH(L−1):

SelfAttg(H)i =

|N |∑

j=1

αgij(HjW
Vg) (3)

whereW Vg ∈ Rd×d is a learned parameter matrix.
12



In the next section, we derive the definition of
the graph-structure-informed attention weights αgij .

3.3 Self-attention for text and graphs with
relative position embeddings

In this section, we describe the computation of at-
tention weights for multi-head self-attention. Note
that the formulas describe the computations for one
head. The output of multiple heads is combined as
in the original Transformer (Vaswani et al., 2017).
Text self-attention. Shaw et al. (2018) intro-
duced position-aware self-attention in the Trans-
former by (i) adding a relative position embedding
AK ∈ RM×M×d toX’s key representation, when
computing the softmax-normalized attention scores
αi between Xi ∈ Rd and the complete input em-
bedding matrix X ∈ RM×d (cf. Eq. (4)), and
(ii) adding a second type of position embedding
AV ∈ RM×M×d toX’s value representation when
computing the weighted sum (cf. Eq. (5)):

αi = σ

(
XiW

Q(XWK + AK
i )>√

d

)
(4)

Vi =

n∑

j=1

αij(XjW
V + AV

ij) (5)

where σ (·) denotes the softmax function, i.e.,

σ (b)i =
exp (bi)∑J
j=1 exp (bj)

, for b ∈ RJ .

Recent work (Raffel et al., 2019) has adopted
a simplified form where value-modifying embed-
dings AV are omitted and key-modifying embed-
dings AK are replaced with learned scalar embed-
dings S ∈ RM×M that – based on relative position
– directly in- or decrease attention scores before
normalization, i.e., Eq. (4) becomes Eq. (6).

αi = σ

(
XiW

Q(XWK)>√
d

+ Si

)
(6)

Shaw et al. (2018) share their position embed-
dings across attention heads but learn separate em-
beddings for each layer as word representations
from different layers can vary a lot. Raffel et al.
(2019) learn separate S matrices for each attention
head but share them across layers. We use Raffel
et al. (2019)’s form of relative position encoding
for text self-attention in our decoder (§ 3.4).
Graph self-attention. Analogously to self-
attention on text, we define our structural graph

VT A

s v d w e l c u1 u2
s 0 4 5 2 2 2 1 1 3
v -4 0 4 2 2 2 1 1 3
d -5 -4 0 2 2 2 1 1 3
w -2 -2 -2 0 2 2 -1 ∞ 1
e -2 -2 -2 -2 0 4 -3 -1 -1
l -2 -2 -2 -2 -4 0 -3 -1 -1
c -1 -1 -1 1 3 3 0 ∞ 2
u1 -1 -1 -1 ∞ 1 1 ∞ 0 ∞
u2 -3 -3 -3 -1 1 1 -2 ∞ 0

Figure 2: R matrix for the graph in Fig. 1c (δmax = 3).

self-attention as follows:

αgi = σ

(
HiW

Qg(HWKg)>√
d

+ γ(R)i

)
(7)

WKg ,WQg ∈ Rd×d are learned matrices and γ :
Z∪{∞} → R looks up learned scalar embeddings
for the relative graph positions inR ∈ RN×N .

We define the relative graph position Rij be-
tween the nodes ni and nj with respect to two
factors: (i) the text relative position p in the orig-
inal entity name if ni and nj stem from the same
original entity, i.e., (ni, nj) ∈ SAMEp for some p
and (ii) shortest path lengths otherwise:

Rij =





∞, if δ(ni, nj) =∞
and δ(nj , ni) =∞

encode(p), if (ni, nj) ∈ SAMEp

δ(ni, nj), if δ(ni, nj) ≤ δ(nj , ni)
−δ(nj , ni), if δ(ni, nj) > δ(nj , ni)

(8)
where δ(ni, nj) is the length of the shortest path
from ni to nj , which we define to be ∞ if and
only if there is no such path. encode maps a text
relative position p ∈ Z \ {0} to an integer outside
δ’s range to avoid clashes. Concretely, we use
encode(p) := sgn(p) · δmax + p where δmax is the
maximum graph diameter, i.e., the maximum value
of δ over all graphs under consideration.

Thus, we model graph relative position as the
length of the shortest path using either only for-
ward edges (Rij > 0) or only backward edges
(Rij < 0). Additionally, two special cases are con-
sidered: (i) Nodes without any purely forward or
purely backward path between them (Rij = ∞)
and (ii) token nodes from the same entity. Here
the relative position in the original entity string p is
encoded outside the range of path length encodings
(which are always in the interval [−δmax , δmax ]).
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In practice, we use two thresholds, nδ and np.
All values of δ exceeding nδ are set to nδ and anal-
ogously for p. This limits the number of different
positions a model can distinguish.
Intuition. Our definition of relative position in
graphs combines several advantages: (i) Any node
can attend to any other node – even unreachable
ones – while learning a suitable attention bias for
different distances. (ii) SAMEp edges are treated
differently in the attention mechanism. Thus, en-
tity representations can be learned like in a reg-
ular transformer encoder, given that tokens from
the same entity are fully connected with SAMEp
edges with p providing relative position informa-
tion. (iii) The lengths of shortest paths often have
an intuitively useful interpretation in our incidence
graphs and the sign of the entries in R also cap-
tures the important distinction between incoming
and outgoing paths. In this way, Graformer can,
e.g., capture the difference between the subject and
object of a fact, which is expressed as a relative
position of −1 vs. 1. The subject and object nodes,
in turn, see each other as 2 and −2, respectively.

Fig. 2 shows theR matrix corresponding to the
graph from Fig. 1c. Note how token nodes from
the same entity, e.g., s, v, and d, form clusters as
they have the same distances to other nodes, and
how the relations inside such a cluster are encoded
outside the interval [−3, 3], i.e., the range of short-
est path lengths. It is also insightful to compare
node pairs with the same value inR. E.g., both s
and w see e at a distance of 2 because the entities
SVD and word2vec are both the subject of a fact
with embedding learning as the object. Likewise,
s sees both c and u1 at a distance of 1 because its
entity SVD is subject to both corresponding facts.

3.4 Graformer decoder

Our decoder follows closely the standard Trans-
former decoder (Vaswani et al., 2017), except for
the modifications suggested by Chen et al. (2018).
Hidden decoder representation. The initial de-
coder representation Z(0) ∈ RM×d embeds the
(partially generated) target text T ∈ RM×|Σ|, i.e.,
Z(0) = TE. A decoder layer L then obtains a
contextualized representation via self-attention as
in the encoder (§ 3.2):

C(L) = Dr(SelfAtt t(LN (Z(L−1)))) +Z(L−1)

(9)
SelfAtt t differs from SelfAttg by using different
position embeddings in Eq. (7) and, obviously, Rij

is defined in the usual way for text. C(L) is then
modified via multi-head attention MHA on the out-
putH(LE) of the last graph encoder layer LE . As
in § 3.2, we make use of residual connections, layer
normalization LN , and dropout Dr :

U (L) = Dr(MHA(LN (C(L)),H(LE))) +C(L)

(10)

Z(L) = Dr(FF (LN (U (L)))) +U (L) (11)

where

MHA(C,H)i =

|N |∑

j=1

αij(HjW
Vt) (12)

αi = σ

(
CiW

Qt(HWKt)>√
d

)
(13)

Generation probabilities. The final representa-
tion Z(LD) of the last decoder layer LD is used to
compute the probability distribution Pi ∈ [0, 1]|Σ|

over all words in the vocabulary Σ at time step i:

Pi = σ
(
Z

(LD)
i E>

)
(14)

Note that E ∈ R|Σ|×d is the same matrix that is
also used to embed node labels and text tokens.

3.5 Training
We train Graformer by minimizing the standard
negative log-likelihood loss based on the likelihood
estimations described in the previous section.

4 Experiments

4.1 Datasets
We evaluate our new architecture on two popular
benchmarks for KG-to-text generation, AGENDA
(Koncel-Kedziorski et al., 2019) and WebNLG
(Gardent et al., 2017). While the latter contains
crowd-sourced texts corresponding to subgraphs
from various DBPedia categories, the former was
automatically created by applying an information
extraction tool (Luan et al., 2018) on a corpus of
scientific abstracts (Ammar et al., 2018). As this
process is noisy, we corrected 7 train instances
where an entity name was erroneously split on a
special character and, for the same reason, deleted
1 train instance entirely. Otherwise, we use the data
as is, including the train/dev/test split.

We list the number of instances per data split,
as well as general statistics about the graphs in Ta-
ble 1. Note that the graphs in WebNLG are human-
authored subgraphs of DBpedia while the graphs
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AGENDA WebNLG

#instances in train 38,719 18,102
#instances in val 1,000 872
#instances in test 1,000 971

#relation types 7 373
avg #entities in KG 13.4 4.0
% connected graphs 0.3 99.9
avg #graph components 8.4 1.0
avg component size 1.6 3.9

avg #token nodes in graph 98.0 36.0
avg #tokens in text 157.9 31.5
avg % text tokens in graph 42.7 56.1
avg % graph tokens in text 48.6 49.0

Vocabulary size |Σ| 24,100 2,100
Character coverage in % 99.99 100.0

Table 1: Statistics of AGENDA and the dataset from the
WebNLG challenge as used in our experiments. Upper
part: data splits and original KGs. Lower part: token
graphs and BPE settings.

in AGENDA were automatically extracted. This
leads to a higher number of disconnected graph
components. Nearly all WebNLG graphs consist
of a single component, i.e., are connected graphs,
whereas for AGENDA this is practically never the
case. We also report statistics that depend on the
tokenization (cf. § 4.2) as factors like the length of
target texts and the percentage of tokens shared ver-
batim between input graph and target text largely
impact the task difficulty.

4.2 Data preprocessing
Following previous work on AGENDA (Ribeiro
et al., 2020), we put the paper title into the graph
as another entity. In contrast to Ribeiro et al.
(2020), we also link every node from a real en-
tity to every node from the title by TITLE2TXT and
TXT2TITLE edges. The type information provided
by AGENDA is, as usual for KGs, expressed with
one dedicated node per type and HAS-TYPE arcs
that link entities to their types. We keep the original
pretokenized texts but lowercase the title as both
node labels and target texts are also lowercased.

For WebNLG, we follow previous work (Gar-
dent et al., 2017) by replacing underscores in entity
names with whitespace and breaking apart camel-
cased relations. We furthermore follow the evalua-
tion protocol of the original challenge by convert-
ing all characters to lowercased ASCII and separat-
ing all punctuation from alphanumeric characters
during tokenization.

For both datasets, we train a BPE vocabulary us-
ing sentencepiece (Kudo and Richardson, 2018) on

the train set, i.e., a concatenation of node labels and
target texts. See Table 1 for vocabulary sizes. Note
that for AGENDA, only 99.99% of the characters
found in the train set are added to the vocabulary.
This excludes exotic Unicode characters that occur
in certain abstracts.

We prepend entity and relation labels with dedi-
cated 〈E〉 and 〈R〉 tags.

4.3 Hyperparameters and training details

We train Graformer with the Adafactor optimizer
(Shazeer and Stern, 2018) for 40 epochs on
AGENDA and 200 epochs on WebNLG. We re-
port test results for the model yielding the best
validation performance measured in corpus-level
BLEU (Papineni et al., 2002). For model selection,
we decode greedily. The final results are generated
by beam search. Following Ribeiro et al. (2020),
we couple beam search with a length penalty (Wu
et al., 2016) of 5.0. See Appendix A for more
details and a full list of hyperparameters.

4.4 Epoch curriculum

We apply a data loading scheme inspired by the
bucketing approach of Koncel-Kedziorski et al.
(2019) and length-based curriculum learning (Pla-
tanios et al., 2019): We sort the train set by target
text length and split it into four buckets of two times
40% and two times 10% of the data. After each
training epoch, the buckets are shuffled internally
but their global order stays the same from shorter
target texts to longer ones. This reduces padding
during batching as texts of similar lengths stay to-
gether and introduces a mini-curriculum from pre-
sumably easier examples (i.e., shorter targets) to
more difficult ones for each epoch. This enables
us to successfully train Graformer even without a
learning rate schedule.

5 Results and Discussion

5.1 Overall performance

Table 2 shows the results of our evaluation on
AGENDA in terms of BLEU (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005), and
CHRF++ (Popović, 2017). Like the models we
compare with, we report the average and standard
deviation of 4 runs with different random seeds.

Our model outperforms previous Transformer-
based models that only consider first-order neigh-
borhoods per encoder layer (Koncel-Kedziorski
et al., 2019; An et al., 2019). Compared to the very
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BLEU METEOR CHRF++ #P

Ours 17.80 ±0.31 22.07 ±0.23 45.43 ±0.39 36.3

GT 14.30 ±1.01 18.80 ±0.28 – –
GT+RBS 15.1 ±0.97 19.5 ±0.29 – –
CGE-LW 18.01 ±0.14 22.34 ±0.07 46.69 ±0.17 69.8

Table 2: Experimental results on AGENDA. GT (Graph
Transformer) from (Koncel-Kedziorski et al., 2019);
GT+RBS from (An et al., 2019); CGE-LW from
(Ribeiro et al., 2020). Number of parameters in mil-
lions.

BLEU METEOR CHRF++ #P

Ours 61.15 ±0.22 43.38 ±0.17 75.43 ±0.19 5.3

UPF-FORGe 40.88 40.00 – –
Melbourne 54.52 41.00 70.72 –
Adapt 60.59 44.00 76.01 –

Graph Conv. 55.90 39.00 – 4.9
GTR-LSTM 58.60 40.60 – –
E2E GRU 57.20 41.00 – –

CGE-LW-LG 63.69 ±0.10 44.47 ±0.12 76.66 ±0.10 10.4

Table 3: Experimental results on the WebNLG test set
with seen categories. CGE-LW-LG from (Ribeiro et al.,
2020); Adapt, Melbourne and UPF-FORGe from (Gar-
dent et al., 2017); Graph Conv. from (Marcheggiani and
Perez-Beltrachini, 2018); GTR-LSTM from (Trisedya
et al., 2018); E2E GRU from (Castro Ferreira et al.,
2019). Number of parameters in millions.

recent models by Ribeiro et al. (2020), Graformer
performs very similarly. Using both a local and a
global graph encoder, Ribeiro et al. (2020) combine
information from very distant nodes but at the same
time need extra parameters for the second encoder.
Graformer is more efficient and still matches their
best model’s BLEU and METEOR scores within a
standard deviation.

The results on the test set of seen categories
of WebNLG (Table 3) look similar. Graformer
outperforms most original challenge participants
and more recent work. While not performing on
par with CGE-LW on WebNLG, Graformer still
achieves more than 96% of its performance while
using only about half as many parameters.

5.2 Performance on different types of graphs

We investigate whether Graformer is more suitable
for disconnected graphs by comparing its perfor-
mance on different splits of the AGENDA test set
according to two graph properties: (i) the average
number of nodes per connected component (µc)
and (ii) the largest diameter across all of a graph’s

µc BLEU METEOR CHRF++

< 1.25 Ours 15.44 20.59 43.23
(213) CGE-LW 15.34 20.64 43.56

< 1.5 Ours 17.45 22.03 45.67
(338) CGE-LW 17.29 22.32 45.88

< 2.0 Ours 18.94 22.86 46.49
(294) CGE-LW 19.46 23.76 47.78

≥ 2.0 Ours 21.72 24.22 48.79
(155) CGE-LW 20.97 24.98 49.83

(a) Average size µc of graph components.

d BLEU METEOR CHRF++

1 Ours 16.48 21.16 43.94
(368) CGE-LW 16.33 21.16 44.16

2 Ours 18.46 22.70 46.85
(414) CGE-LW 18.20 23.14 47.28

≥ 3 Ours 19.44 23.17 47.29
(218) CGE-LW 20.32 24.42 49.25

(b) Largest diameter d across all of a graph’s components.

Table 4: Performance of a single run on the test split of
AGENDA w.r.t. different input graph properties. The
number of data points in each split is indicated in paren-
theses.

components (d).
We can see in Table 4 that the performance of

both Graformer and CGE-LW (Ribeiro et al., 2020)
increases with more graph structure (larger µc and
d), i.e., more information leads to more accurate
texts. Besides, Graformer outperforms CGE-LW
on BLEU for graphs with smaller components (0 <
µc < 1.5) and smaller diameters (d<3). Although
METEOR and CHRF++ scores always favor CGE-
LW, the performance difference is also smaller for
cases where BLEU favors Graformer.

We conjecture that Graformer benefits from its
more elaborate global view, i.e., its ability to dis-
tinguish between distant but connected nodes and
unreachable ones. CGE-LW’s global encoder can-
not make this distinction because it only sees a
fully connected version of the graph.

Curiously, Graformer’s BLEU is also better for
larger components (µc ≥ 2.0). With multiple larger
components, Graformer might also better distin-
guish nodes that are part of the same component
from those that belong to a different one.

Only for 1.5 < µc < 2.0, CGE-LW clearly
outperforms Graformer in all metrics. It seems that
Graformer is most helpful for extreme cases, i.e.,
when either most components are isolated nodes or
when isolated nodes are the exception.
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Figure 3: Attention bias γ learned by Graformer on the two datasets. SAMEp edges are omitted.

Model BLEU METEOR CHRF++

Graformer 18.09 22.29 45.77

-length penalty 17.99 22.19 45.63
-beam search 17.33 21.74 44.87
-epoch curriculum 13.55 18.91 39.22

Table 5: Ablation study for a single run on the test
portion of AGENDA.

5.3 Ablation study

In a small ablation study, we examine the impact
of beam search, length penalty, and our new epoch
curriculum training. We find that beam search and
length penalty do contribute to the overall perfor-
mance but to a relatively small extent. Training
with our new epoch curriculum, however, proves
crucial for good performance. Platanios et al.
(2019) argue that curriculum learning can replace
a learning rate schedule, which is usually essential
to train a Transformer model. Indeed we success-
fully optimize Graformer without any learning rate
schedule, when applying the epoch curriculum.

6 Learned graph structure

We visualize the learned attention bias γ for dif-
ferent relative graph positions Rij (cf. § 3.3; esp.
Eq. (7)) after training on AGENDA and WebNLG
in Fig. 3. The eight attention heads (x-axis) have
learned different weights for each graph position
Rij (y-axis). Note that AGENDA has more pos-
sible Rij values because nδ = 6 whereas we set

nδ = 4 for WebNLG.
For both datasets, we notice that one attention

head primarily focuses on global information (5 for
AGENDA, 4 for WebNLG). AGENDA even dedi-
cates head 6 entirely to unreachable nodes, showing
the importance of such nodes for this dataset. In
contrast, most WebNLG heads suppress informa-
tion from unreachable nodes.

For both datasets, we also observe that nearer
nodes generally receive a high weight (focus on
local information): In Fig. 3b, e.g., head 2 concen-
trates solely on direct incoming edges and head 0
on direct outgoing ones. Graformer can learn em-
pirically based on its task where direct neighbors
are most important and where they are not, show-
ing that the strong bias from graph neural networks
is not necessary to learn about graph structure.

7 Conclusion

We presented Graformer, a novel encoder-decoder
architecture for graph-to-text generation based on
Transformer. The Graformer encoder uses a novel
type of self-attention for graphs based on shortest
path lengths between nodes, allowing it to detect
global patterns by automatically learning appro-
priate weights for higher-order neighborhoods. In
our experiments on two popular benchmarks for
text generation from knowledge graphs, Graformer
achieved competitive results while using many
fewer parameters than alternative models.
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A Hyperparameter details

For AGENDA and WebNLG, a minimum and max-
imum decoding length were set according to the

Hyperparameter WebNLG AGENDA

model dimension d 256 400
# heads 8 8
# encoder layers LE 3 4
# decoder layers LD 3 5
feedforward dimension 512 2000
attention dropout 0.3 0.1
dropout 0.1 0.1
input dropout 0.0 0.1
text self-attention range nt 25 50
graph self-attention range nδ 4 6
SAME range np 10 10
gradient accumulation 3 2
gradient clipping 1.0 1.0
label smoothing 0.25 0.3
L2 regularizer 3 · 10−3 3 · 10−4

batch size 4 8

# beams 2 2
length penalty 5.0 5.0

Table 6: Hyperparameters used to obtain final experi-
mental results on WebNLG and AGENDA.

shortest and longest target text in the train set. Ta-
ble 6 lists the hyperparameters used to obtain final
results on both datasets. Input dropout is applied
on the word embeddings directly after lookup for
node labels and target text tokens before they are
fed into encoder or decoder. Attention dropout is
applied to all attention weights computed during
multi-head (self-)attention.

For hyperparameter optimization, we only train
for the first 10 (AGENDA) or 50 (WebNLG)
epochs to save time. We use a combination of
manual tuning and a limited number of randomly
sampled runs. For the latter we apply Optuna with
default parameters (Akiba et al., 2019; Bergstra
et al., 2011) and median pruning, i.e., after each
epoch we check if the best performance so far is
worse than the median performance of previous
runs at the same epoch and if so, abort. For hyper-
parameter tuning, we decode greedily and measure
performance in corpus-level BLEU (Papineni et al.,
2002).

B Qualitative examples

Table 7 shows three example generations from
our Graformer model and the CGE-LW system by
Ribeiro et al. (2020). Often CGE-LW generations
have a high surface overlap with the reference text
while Graformer texts fluently express the same
content.

20



Ref. julia morgan has designed many sig-
nificant buildings , including the los
angeles herald examiner building .

CGE-LW julia morgan has designed many sig-
nificant buildings including the los
angeles herald examiner building .

Ours one of the significant buildings de-
signed by julia morgan is the los
angeles herald examiner building .

Ref. asam pedas is a dish of fish cooked
in a sour and hot sauce that comes
from indonesia .

CGE-LW the main ingredients of asam pedas
are fish cooked in a sour and hot
sauce and comes from indonesia .

Ours the main ingredients of asam pedas
are fish cooked in sour and hot
sauce . the dish comes from indone-
sia .

Ref. banana is an ingredient in binignit
which is a dessert . a cookie is also
a dessert .

CGE-LW banana is an ingredient in binignit ,
a cookie is also a dessert .

Ours a cookie is a dessert , as is binignit ,
which contains banana as one of its
ingredients .

Table 7: Example references and texts generated by
CGE-LW (Ribeiro et al., 2020) and Graformer (marked
Ours) for samples from the WebNLG test set. In case of
multiple references, only one is shown for brevity.
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Abstract

Knowledge Graphs (KGs) have become in-
creasingly popular in the recent years. How-
ever, as knowledge constantly grows and
changes, it is inevitable to extend existing KGs
with entities that emerged or became relevant
to the scope of the KG after its creation. Re-
search on updating KGs typically relies on ex-
tracting named entities and relations from text.
However, these approaches cannot infer enti-
ties or relations that were not explicitly stated.
Alternatively, embedding models exploit im-
plicit structural regularities to predict missing
relations, but cannot predict missing entities.
In this article, we introduce a novel method to
enrich a KG with new entities given their tex-
tual description. Our method leverages joint
embedding models, hence does not require en-
tities or relations to be named explicitly. We
show that our approach can identify new con-
cepts in a document corpus and transfer them
into the KG, and we find that the performance
of our method improves substantially when ex-
tended with techniques from association rule
mining, text mining, and active learning.

1 Introduction

Knowledge graphs (KGs) have gained popular-
ity as a versatile, general-purpose, and domain-
independent model to represent information and
are the major backbone for many applications on
the web (Noy et al., 2019). KGs express knowl-
edge as collections of head-relation-tail statements,
named triples, e.g. (:Cheney, :vice-of, :Bush)
expresses that Cheney is the vice president of Bush.
Since KGs are mostly built through automatic pro-
cesses (Carlson et al., 2010; Dong et al., 2014) they
are often incomplete, e.g. a KG may contain the
fact that Cheney was the vice-president of Bush,
but not that Cheney is a US citizen. In addition,
KGs evolve and require maintenance: they grow
and change as the knowledge they describe expands
and adapts to the real world.

The problem of deriving missing portions of
knowledge is known as KG completion. So far,
the problem has been tackled by link prediction, i.e.
finding relationships between previously known en-
tities in the graph. In this paper, we focus on the
problem of adding and integrating new entities into
the KG—a task we call entity prediction. This is
different from link prediction, where entities are
ex-ante partially described in the KG. In entity pre-
diction, we discover the existence of an entity from
an external source and the KG neither contains the
entity nor any information about how it relates to
the other entities in the KG.

As external source, we target document corpora,
which describe the entities and the relations be-
tween them. For example, a document corpus like
Wikipedia contains a description of Joe Biden and
his relations with Obama (vice president) and Ch-
eney (successor). This lead to our core research
question: given a KG G and a document corpus
D, how can we complete G with entities (textually)
described in D but not yet contained in G?

As a solution, we represent the KG and docu-
ment corpus in a common metric space and exploit
this space in conjunction with user feedback and
graph features to derive statements describing the
new entities. Specifically, we leverage joint embed-
ding models for creating a numerical space to repre-
sent the KG and the background source. Whereas
KG embedding models give good performance on
the link prediction task (Cai et al., 2018a), joint
embedding models combine a KG with a document
corpus to draw conclusions in terms of similarity
between documents and KG entities. Our experi-
ments determine that joint embedding models are
well-founded methods to propose new entities to
a KG. We also discuss how the prediction perfor-
mance can be improved by integrating user feed-
back and explicit graph features.

The next section discusses related literature and
introduces relevant notations. Section 4 outlines
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our solution based on joint embedding models, user
feedback, and graph features. Section 5 describes
the experimental setup and evaluates our hypothe-
ses. Finally, Section 6 presents overall conclusions
and outlines future work.

2 Related work

Like in our scenario, ontology population and on-
tology enrichment1 extract information from docu-
ments (Petasis et al., 2011). Ontology population
adds instances to an existing ontology, whereas the
structure of the ontology remains unchanged. In
contrast to our problem it does not need to learn
relations between instances and assumes an ontol-
ogy to guide the information extraction process
(Buitelaar et al., 2006; Etzioni et al., 2004; Peta-
sis et al., 2013). Ontology enrichment inserts new
concepts or relations into an ontology. It differs
from our setting in that it extends the schema of an
ontology, using its concepts, instances, and schema
constraints, while we solely rely on relationships
between entities (Faure et al., 1998; Cimiano and
Völker, 2005; Hahn and Marko, 2002).

KG enrichment aims at completing a given
KG with new statements, or identifying erroneous
ones (Paulheim, 2017), by predicting entity types
(Nickel and Tresp, 2013; Socher et al., 2013) or
links (Oren et al., 2007; Socher et al., 2013). In con-
trast, our goal is to complete a KG by adding new
entities and statements related to them. (Paulheim,
2017) states that no such approach was known until
2015 and to the best of our knowledge, this has not
changed meanwhile.

Automatic Knowledge Base Construction
(AKBC) methods such as NELL or OpenIE
approach a similar problem by means of text
processing. They extract named entities and
relations from a document, then arrange them
as a KG (Verga and McCallum, 2016; Mitchell
et al., 2018; Martínez-Rodríguez et al., 2018).
Similarly, Entity Linking extracts named entities
from text, then disambiguates and links them
with a background database (Hoffart et al., 2014).
These approaches assume that all entities and all
relations are explicitly mentioned in the text under
their canonical name. In contrast, we consider the
scenario where entities are not stated in the text
but described implicitly.

1In this study we do not distinguish between KG and ontol-
ogy. We opt for ontology when it is used to refer to a known
problem in literature, i.e. ontology population.

3 Background

This section presents the key concepts and notation
used throughout the paper.

Knowledge graphs. We define a knowledge
graph as G := (V,R, E), with V a set of ver-
tices (entities), R a set of relations, and E a set
of directed edges, also known as statements. A
statement is a triple (h, r, t) ∈ E , with h, t ∈ V
the head/tail entities, and r ∈ R the relation. For
example, the sentence “Joe Biden is the vice presi-
dent of Barack Obama” is represented by the triple
(:Biden, :vice-of, :Obama). Let U be the the uni-
verse of the entities which can be described. V
identifies the entities described in G, and V ⊂ U ,
i.e., G does not include all possible entities that
may be described, which is the case in real KGs.

KG embedding. Embedding models create a nu-
meric, low-dimensional representation of a KG by
learning a latent vector (embedding) for each KG
entity and relation. Ideally, the distance between
entity embeddings resembles the relatedness of
the KG entities, e.g. the embeddings of :Biden
and :Obama are close. Embedding models exploit
structural regularities in the KG by defining an
optimization problem in terms of a loss function
that incorporates the graph’s structure, as well as
embeddings of a given size.

(Bordes et al., 2013) introduced the TransE em-
bedding model, based on the idea that a relation
r is a translation from the source entity h to the
target entity t in the embedding space, i.e.:

L ∼
∑

(h,r,t)∈E
‖h+ r− t‖2 (1)

We denote embeddings in bold font and elements
of V ∪R in italic, e.g. h and r are the embeddings
of h ∈ V and r ∈ R, respectively.

While there exists a range of embedding models
(Wang et al., 2017; Cai et al., 2018b), we focus on
TransE due to its popularity and conceptual clarity.

Joint embedding models. Not only do embed-
ding models exist for KGs but also for text
(Mikolov et al., 2013; Le and Mikolov, 2014).
Joint embedding models combine two embed-
ding models for different modalities, allowing
to compare embeddings between them while
maintaining the characteristics of the individual
models. These models make two principal as-
sumptions. First, each document d from a cor-
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pus D is a textual description of a single en-
tity e ∈ U , e.g. the Wikipedia document
dB (https://en.wikipedia.org/wiki/
Joe_Biden) describes the entity eB (:Biden).
The description may be implicit, i.e. not actually
mention the entity name, and can mention other
entities. Second, the two modalities are linked to
each other via known correspondences. We de-
fine the correspondences as a bijective function
m : D → U , and its inverse m′ : U → D, e.g.
m[dB] = eB and m′[eB] = dB .

Two joint embedding models are KADE and
StarSpace. Both take a KG G, a document cor-
pus D, and known correspondences m as input.
They then create embeddings for each document,
entity, and relation in a shared embedding space
such that embeddings of a document and a corre-
sponding entity are, i.e. d ∼ e if m[d] = e. KADE
(Baumgartner et al., 2018) joins the TransE KG
embedding model and the par2vec document em-
bedding model (Le and Mikolov, 2014) by adding
a regularizer term (weighted by λ) to both models,
then training them in an alternating fashion. The
regularization forces embeddings of corresponding
documents and entities to be close to each other:

LKADE
Docs ∼ LDocs + λd

∑

d∈D
‖d−m[d]‖

LKADE
KG ∼ LKG + λg

∑

e∈V

∥∥e−m′[e]
∥∥

StarSpace (Wu et al., 2018) models entities, rela-
tions, and words as atomic features, and defines ob-
jects as aggregates over these features. A document
embedding thus becomes the sum of its words’ em-
beddings. It then learns feature embeddings by
minimizing the distance (inner product or cosine)
between related objects:

LSS ∼
∑

(h,r,t)∈E
dst(h+r, t)+

∑

e∈V
dst(e,

∑

w∈m′[e]
w)

4 Approach

As inputs, our approach receives a KG G, a docu-
ment corpus D, and correspondences m between
the two modalities. While every entity has at least
one corresponding document, we assume a number
of surplus documents in D that are not associated
with any entity in G. A surplus document can either
describe a novel entity we want to add to G or its as-
sociation to an existing entity in G is unknown. The
problem of entity prediction can then be divided
into two subproblems:
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(a) The goal of entity prediction is to add the entity
:Biden and all red edges to the KG.

(b) The entity embedding is inferred from the document
embedding in a joint embedding space.

:Obama :USA :Bush :Cheney
:citizen 0.8 0.4 0.75 0.78
:senior 0.5 0.9 0.6 0.7
:preceded 0.6 0.98 0.7 0.65
:vice-of 0.1 0.8 0.3 0.5

(c) Triple plausibility is estimated via the KG embed-
ding loss on joint embeddings (lower is better).

Figure 1: An example of entity prediction via a joint
embedding model.

1. Identify whether a surplus document describes
a novel entity. E.g. a document that describes
the entity :Biden which is not part of the KG
in Figure 1a.

2. Add an entity e∗ to G and propose edges
between e∗ and the graph’s current entities
V . E.g. in Figure 1a, we would ideally add
:Biden and all red colored edges.

We address both problems in the next sections by
describing how our method adds one entity to the
KG. For multiple entities, we repeat the procedure
for each one independently, and leave an approach
that updates the KG and its embeddings incremen-
tally as future work to study.

4.1 Novelty detection

We first discuss how to distinguish surplus docu-
ments that describe novel entities from those that
have an unknown association to an entity in G. We
approach this task as a binary classification prob-
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lem: a surplus document is either an alternative
description of an entity in G or a novel entity. Our
intuition is that documents that describe the same
entity are more similar to each other than to the
remaining documents in the corpus. Since joint em-
beddings preserve the characteristics of the the doc-
ument embedding, we measure the document simi-
larity via the embedding distance. Hence, we train
the joint embedding model, then compute the dis-
tances between surplus document’s embedding to
the other document embeddings. We compute the
mean, variance, minimum, maximum, percentiles,
span, entropy, and skew of these distances, concate-
nate them with the surplus document’s embedding,
and use the resulting feature vector as input to a
binary classifier.

4.2 Triple reconstruction

Next, we discuss how to derive new triples that
have e∗ as head or tail entity. This task is chal-
lenging because the number of possible triples is
2|V||R|, which is orders of magnitude larger than
the average number of triples an entity typically
takes part in2. In the remainder of this section we
describe the three components we use to tackle this
challenge. First, we measure a potential triple’s
plausibility in a joint embedding space. Second,
we propose a method to find likely relations with
the help of user feedback. Third, we incorporate
explicit features of the graph’s structure into the
previous methods. For the sake of brevity, we only
discuss the case where e∗ is in the head position.
Triple loss. We first look into the joint embedding
space to retrieve the most plausible triples. Joint
embedding models strive to produce the same em-
bedding for a corresponding document and entity.
Therefore, they suggest that the entity e∗ is located
at the same position in the embedding space as its
corresponding document d, i.e. e∗:= d. This is
exemplified in Figure 1b: it shows the embeddings
of all entities and documents, with corresponding
items close to each other. Since :Biden is missing
from the graph, its embedding is proposed to be at
the position of the document describing it.

KG embedding models define a triple loss
L(h, r, t) that expresses the plausibility of a triple:
KADE uses TransE’s triple loss ‖h+ r− t‖2,
StarSpace defines it as dst(h + r, t). We com-
pute the triple loss for every possible triple and

2In FB15k-237 the average entity only occurs in about 21
out of 302’455 possible triples.

collect them in a loss matrix Se
∗
: R|R|×|V|, where

each cell is defined as:

Se
∗
r,e = L(e∗, r, e) (2)

Figure 1c presents an example triple loss matrix.
For the sake of readability, we omit indices of S if
possible, e.g. we use Se

∗
r to indicate the row Se

∗
r,·.

For the triple reconstruction, we are mostly inter-
ested in the ranking of losses — the triple with the
lowest value in S is the most plausible one, irrespec-
tive of the actual value. We therefore rank triples
in S in ascending order, i.e. assign the lowest rank
to the triple that the embedding model determines
to be the most plausible. Without further infor-
mation, it is optimal to select the N lowest ranked
triples in Se

∗
, which we denote as the TopN method.

User feedback. We refine the triple reconstruction
from joint embedding models by incorporating ad-
ditional information from a user’s feedback. The
main challenge of the triple reconstruction is that
the number of true triples to restore is much lower
than the number of possible triples. To circumvent
this issue, we split the triple reconstruction into
two subtasks: First, we identify relations r ∈ R
present at e∗, then we identify the tail entities given
the previously found relations. We propose to in-
volve the user in the first subtask, then to solve the
second one autonomously. This is because there
are typically fewer relations than vertices in a KG,
thus the user has to take fewer decisions while their
feedback’s impact is maximized.

We formalize this idea in the UF procedure in
Algorithm 1. We employ a logistic classifier to dis-
tinguish relations that should be present at e∗ from
those that should not. The inputs to the classifier
are the triple loss statistics of one relation r, i.e.
the mean, median, variance, minimum, maximum,
quantiles, entropy, and skew of Se

∗
r . Its output is

the likelihood of e∗ having any triple with relation
r. Out of the M most likely relations we then ask a
user to select a correct one. For the chosen relation
r we add the triples with the lowest ranks in Se

∗
r .

Since e∗ can have multiple triples with the same
relation to different entities, we pick the Nr lowest
ranked ones, whereas Nr is the average number of
r-triples (i.e. triples with relation r) at entities in G.
In addition, we discard triples that have a rank in
Se
∗

larger than a threshold θ. The process repeats
until the user judges that no relation is valid.

One issue of UF is that the algorithm terminates
without proposing any triple if the initial set of
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Algorithm 1: UF: Iterative triple reconstruction
with user feedback. The || symbol denotes list con-
catenation.

Input: Knowledge graph G, proposed entity e∗ and
its loss matrix Se

∗

Result: List of proposed triples [(e∗, r, t)]

/* Build relation features */
1 features← [] ;
2 for r ∈ R do
3 features(r)← [avg(Se

∗
r ), var(Se

∗
r ), . . . ] ;

4 end
/* Predict initial candidate

relations */
5 candidates←M highest scoring relations according

to clf(features(r)) ;
6 feedback← let the user select one relation from

candidates ;

/* Select triples and iterate */
7 triples = [] ;
8 while feedback is valid do
9 r← feedback ;

10 Nr ← mean number of r-triples on vertices
having at least one r-triple ;

11 s← dNre lowest ranked triples in Se
∗
r ;

12 triples← triples || items of s whose rank in Se
∗

is lower than θ;
13 candidates←M highest scoring relations

according to clf(features(r)) ;
14 feedback← let the user select one true relation

from candidates ;
15 end
16 return triples ;

relations suggested to the user lacks a valid one.
To prevent this problem, we introduce UF-s, which
keeps generating initial candidate relations (line 5
in Algorithm 1) until the user selects one of them,
then continues in the same way as UF.
Graph features We further improve the triple re-
construction performance by exploiting the graph
structure. In the following, we define two features
and integrate them into the UF method.

The first feature focuses on improving the selec-
tion of a relation in UF. Once a user has selected
a relation, we use this new evidence to improve
the estimate of other relations’ likelihoods. For
this, we use the confidence measure (CO) from
Association Rule Learning (Agrawal et al., 1993),
which expresses how certain we are about an entity
having a relation ri if we know that it has rj :

conf(rj ⇒ ri) = p(ri|rj) =
|{h|(h, rj , ·) ∈ E} ∩ {h|(h, ri, ·) ∈ E}|

|{h|(h, rj , ·) ∈ E}|
We integrate the confidence into UF by multiplying
it with the respective likelihood predicted by the
clf classifier. Note that this notion of confidence

assumes that both ri and rj have the same direction,
e.g. e∗ in the head position. To incorporate the case
where their direction differs (i.e. one is inbound,
the other outbound to e∗), we modify Algorithm 1
to alternate between reconstructing triples with e∗

in the head and tail position.
The second feature helps with finding the tail en-

tities under a given relation. With no other informa-
tion than the graph, it is reasonable to add an edge
from e∗ to the entity that is most frequently used
with the given relation. This measure is especially
informative if the relation occurs at few entities.
To express these ideas, we use the BM25 weight-
ing scheme (BM ), popular in information retrieval
(Robertson and Zaragoza, 2009). It assigns a large
weight to an edge if the entity is likely to have the
relation (term frequency) and if having that relation
is also informative (document frequency). We inte-
grate this feature into the UF method by dividing
each value in Se

∗
by its BM25 score.

Both of these features can be calculated in a sin-
gle pass over the graph, i.e. they have complexity
O (|E|). Training an embedding model requires
multiple iterations over the graph, making their
complexity O (k|E|) with k typically in the thou-
sands. Therefore, calculating the graph statistics
does not impact the scalability of the method.

5 Results

In this section, we first describe the experimen-
tal setup, then discuss the novelty detection, and
finally show the triple reconstruction results.

5.1 Setup

We evaluate our methods on FB15k-237 and
DBP50, two popular KGs for KG embedding
model benchmarking (Toutanova and Chen, 2015;
Shi and Weninger, 2018). For entities from either
KG, we select a random section of their respective
Wikipedia article as corresponding document. To
ensure that our methods do not learn from explicitly
mentioned entity names, we replace all mentions
of any of the entity label’s words with ’entity’. For
example, if the label is ’Joe Biden’, we replace
any occurrence of ’Joe’ and ’Biden’ with ’entity’.
We then apply tokenization, normalization, and
stopword removal on the documents. Finally, we
remove entities from the graphs that cannot be as-
sociated with a unique document. Table 1 reports
the resulting dataset sizes.

To test our methods, we randomly sample k =
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FB15k-237 DBP50
Entitites 14’375 24’005

Relations 236 351
Total Triples 300’423 33’486
Train triples 263’907 31’336

Unique words 90’824 66’745

Table 1: Dataset sizes

100 entities from each KG and remove them from
the respective graph, leaving k surplus documents
in both datasets. We then sample another k of the
remaining entities in both KGs and add a second
document to each of them, again randomly selected
from their Wikipedia article and preprocessed in
the same way as before. We omit these documents
from the known correspondencesm. This produces
a total of 2 · k surplus documents: For half of them
no entity exists in the KG, the other half of them
have existing yet unknown entities in the graph.

We then train StarSpace and KADE on the KGs
and corpora. As our goal is not to get the best
performance out of the embedding models, we use
common parameters for these models: for KADE
we set λd = λg = 0.01, for StarSpace we use the
inner product. In both cases, we use embedding
vectors of size 100 and we train for 1000 epochs.

5.2 Novelty detection results

We first discuss the results of novelty detection
with joint embedding models. We hypothesize that
joint embedding models have a higher accuracy in
distinguishing novel from unassociated documents
than other unsupervised document models.
Experiment 1: Novelty classification. To test
the novelty detection, we train a boosting decision
stumps classifier on the 2 · k surplus documents,
whereas half of them describe a novel entity, half of
them describe an existing one. We compare KADE
document embeddings to a bag-of-word document
representation, and evaluate the classifier in a 10-
fold cross-validation setting.

Table 2 shows the two classifiers’ performances
in terms of accuracy (overall correct classification),
type-I (mistaken as novel) and type-II errors (mis-
taken as unassociated), precision, and recall. The
bag-of-words model achieves near-random accu-
racy, while KADE embeddings achieve a substan-
tially higher performance. The advantage of KADE
is mostly in its lower type-I error rate, which pre-
vents redundancy, i.e. that existing entities are
being added a second time to the KG.

FB15k-237 DBP50
KADE BoW KADE BoW

Accuracy 0.640 0.505 0.585 0.515
Type-I error 0.190 0.285 0.205 0.275
Type-II error 0.170 0.210 0.210 0.210
Precision 0.626 0.501 0.578 0.511
Recall 0.650 0.590 0.573 0.581

Table 2: Performance of classifying documents as de-
scribing a novel or existing entity. Higher accuracy,
precision, and recall are better, while lower type-I and
type-II errors are better.

5.3 Triple reconstruction results
In the following, we compare the different triple re-
construction methods and their variations. First, we
discuss the triple reconstruction considering only
the embedding model’s triple loss (TopN). Second,
we investigate the impact of the separation into re-
lation and triple prediction with user feedback (UF,
UF-s). Third, we compare different combinations
of graph features (BM , CO, or both) on their ef-
fect on Algorithm 1. Last, we discuss how much
effort the different procedures inflict on the user.

We evaluate our methods on the binary classifi-
cation metrics precision and recall. The precision
indicates the portion of correct triples out of all pro-
posed triples. The recall measures the portion of
correctly proposed triples out of all correct triples.
We apply our methods on the k novel entities indi-
vidually and report the averaged metrics.
Experiment 2: Joint embedding model. In this
experiment, we study how joint embedding models
perform in the triple reconstruction task. Specifi-
cally, we compare the two joint embedding meth-
ods StarSpace and KADE in the TopN setting,
and investigate how well the document embedding
serves as embedding of the novel entity, as pro-
posed by these models. To test the latter, we train
a TransE model on the KG (without the k omitted
entities) and derive the embedding of a novel entity
e∗ according to TransE’s loss function, i.e.

argmin
e∗

∑

(e∗,r,t)

‖e∗ + r− t‖+
∑

(h,r,e∗)

‖h+ r− e∗‖

by using triples from the original KG. We denote
this as Oracle, as it computes the optimal entity em-
bedding from ground-truth data. As lower baseline,
we use random embeddings (Random). For each
entity embedding (from a baseline or joint embed-
ding space), we select triples as specified by TopN.
We set N = 10 which gave the best performance
in our experiments. We hypothesize that the triple
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(a) Entity restoration with joint embeddings.
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(b) Impact of user feedback.
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(c) Impact of user feedback and graph features combined.
Marker shapes indicate the user feedback method, their color
the graph features.

Vanilla BM CO BM+CO
FB15k-237 (upper baseline 103.658)

UF 26.798 27.237 20.943 20.937
UF-s 29.002 29.329 23.799 23.800

DBP50 (upper baseline 80.562)
UF 30.740 30.738 32.677 32.677

UF-s 64.037 64.037 66.429 66.429

(d) Number of user decisions per method and graph feature
(lower is better).

Figure 2: Experimental results for FB15k-237 (left plots) and DBP50 (right plots). The red ellipses show the
variance. Note that axes have different scales.

reconstruction performs substantially better with
joint embeddings than the Random baseline.

Figure 2a shows the precision and recall of TopN
with embeddings from the different models. It
shows that KADE performs substantially better
than StarSpace in both metrics and datasets, mean-
ing that the more constrained document model used
by KADE is advantageous in the entity prediction
task. As expected, the performance of StarSpace
and KADE lies between the two baselines, however
compared to the Oracle baseline their performance
is unsatisfactory, motivating further improvements.

Experiment 3: User feedback. Next, we hypoth-
esise that user feedback increases precision and
recall in the triple reconstruction task. For these
experiments, we use KADE embeddings, θ = 500,
and M = 10. Since a user study would exceed the
scope of this experiment, we provide user feedback
by automatically selecting one random correct rela-
tion out of the suggested ones. Out of the k entities
omitted from the KG, one is selected as e∗. The
other omitted entities are used to train the classifier
clf by constructing features from their triple loss
matrices as stated in Section 4.2 and using their
triples from the ground-truth KG as training tar-
gets. We repeat this procedure for all k entities,
and report the averaged evaluation metrics.

Figure 2b contrasts the UF and UF-s methods
with TopN and an upper bound Upper. The Up-
per baseline knows all true relations of e∗, then
picks the lowest ranked N triples for each of them,
according to Se

∗
. Varying N shifts the trade-off

between precision and recall, whereas we use the
N that maximizes the F1 score (i.e. the harmonic
mean of precision and recall). Note that like Or-
acle, this baseline is not practically viable as it
uses ground-truth information, but rather indicates
the maximum performance that could be achieved
given the triple loss of the joint embeddings.

Figure 2b shows that that the user feedback has a
positive impact on at least one of the two evaluation
metrics, and that UF-s improves over UF with an
average increase of 13.43% in precision and 9.83%
in recall. The latter is expected, since UF-s has a
guaranteed initial relation. In FB15k-237, the user
feedback improves recall by 76.95%, implying that
the classifier learns relations present at e∗. While
more relations are considered, the ratio of correctly
selected triples does not improve with UF, meaning
that the ranking of triples within one relation is
about as accurate as the rankings in the full triple
loss matrix. In DBP50, the precision increases
much more than the recall. In contrast to FB15k-
237, this dataset is sparser (about 2.5 triples per
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vertex), which makes it harder to find relations.
However, once a relation is known, the triple scores
from the joint embedding model are reliable, i.e.
the true triples have low ranks and are thus selected.

Experiment 4: Graph statistics. As the last part
of our triple reconstruction method we evaluate the
combination of user feedback and graph features.
We first hypothesize that combining UF and UF-s
with either BM or CO increases their precision
and recall. Our second hypothesis is that the combi-
nation ofBM andCO yields an improvement over
having only one of them. For this experiment, we
use the same setup as in the previous one and apply
the BM25 parameters b = 0.75 and k1 = 2.0. Fig-
ure 2c shows the use of the different graph features
in UF, UF-s, and the Upper baseline, and includes
TopN as lower baseline. Vanilla indicates no graph
features were in effect. Note that the Upper base-
line is not affected by the CO feature as it does not
select relations iteratively.

On FB15k-237, the BM feature improves the
precision by 23.05%, while the CO feature in-
creases the recall by 6.10% (at the cost of slightly
lowering the precision). The combination of both
features (BM + CO) amplifies these effects, with
an improvement of 23.11% in recall and 22.02% in
precision. These observations relate to how the fea-
tures affect the different parts of Algorithm 1: CO
helps in finding more relations, hence increases the
recall; BM increases the number of retrieved true
triples of a given relation, hence increases the pre-
cision. These effects are greater on UF-s than on
UF because the user provides at least one relation,
which in turn allows the graph features to become
more effective. On DBP50, the graph features have
no significant effect in our methods nor the Upper
baseline; instead, the variance is larger than the
difference between the methods. We attribute this
to the sparsity of the dataset, since it provides too
few samples to estimate frequencies accurately and
small differences in the triple selection have a huge
impact on the precision and recall.

Experiment 5: User involvement. To evaluate
the user workload, we measure how many relations
a user has to judge during the triple reconstruction
task, assuming that the user reports the first valid
relation they find in each iteration.

Figure 2d shows the number of judgements of
UF, UF-s, their variations, and an upper baseline.
The upper baseline expresses the case where at
most one relation is valid in each iteration. The

lower baseline is 2M = 20 since the user has to
review all presented relations at least once.

It is apparent that UF-s involves more judge-
ments than UF, which comes from two factors: A
higher effort to find an initial relation, and more
subsequent iterations. We further observe that the
number of judgements is substantially lower than
the upper baseline in FB15k-237, meaning that it
finds multiple valid relations per iteration. On the
other hand, it is more difficult to find a valid rela-
tion in DBP50, hence the user workload is higher,
especially in UF-s. Graph features generally show
a positive impact in FB15k-237 and a marginal neg-
ative effect in DBP50, in particular the CO feature
as it affects which relations are shown to the user.

6 Conclusion and Future Work

In this paper, we studied the problem of integrating
new entities into a KG given their textual descrip-
tion. We exploited joint embeddings to identify
entity candidates, and combined information from
the joint embedding model with user feedback and
graph features to improve the triple reconstruction.
Our method solely relies on structural patterns in
the data and does not need explicit mentions of en-
tities or relations in the text. Our experiments sug-
gest that joint embeddings are viable methods for
entity prediction, and confirm that user feedback
and graph features have a substantial impact on
the triple reconstruction. In particular, experiments
indicate that user feedback, features on relations
(CO), and features on entities (BM ) treat different
aspects of the problem, making their combination
more successful than using only one of them.

Comparing the results with the upper baselines
shows that there is room for improvement. A pos-
sible way to fill this gap is to integrate explicit
information into the process, e.g. considering the
schema or the semantics of the relations or entities.
Another approach is to study the incremental addi-
tion of new entities and triples: We restore entities
and triples independently of each other, however,
the restoration provides new information that can
be exploited subsequently. Finally, our method
could be extended in a straight-forward manner to
other external data sources such as images, or to
predict novel relations instead of entities.
Acknowledgements. We thank the Swiss National
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Abstract

This paper studies the problem of cross-
document event coreference resolution
(CDECR) that seeks to determine if event
mentions across multiple documents refer to
the same real-world events. Prior work has
demonstrated the benefits of the predicate-
argument information and document context
for resolving the coreference of event men-
tions. However, such information has not been
captured effectively in prior work for CDECR.
To address these limitations, we propose a
novel deep learning model for CDECR that
introduces hierarchical graph convolutional
neural networks (GCN) to jointly resolve
entity and event mentions. As such, sentence-
level GCNs enable the encoding of important
context words for event mentions and their
arguments while the document-level GCN
leverages the interaction structures of event
mentions and arguments to compute document
representations to perform CDECR. Extensive
experiments are conducted to demonstrate the
effectiveness of the proposed model.

1 Introduction

Event coreference resolution (ECR) aims to clus-
ter event-triggering expressions in text such that
all event mentions in a group refer to the same
unique event in real world. We are interested in
cross-document ECR (CDECR) where event men-
tions might appear in the same or different docu-
ments. For instance, consider the following sen-
tences (event mentions) S1 and S2 that involve
“leaving” and “left” (respectively) as event trigger
words (i.e., the predicates):

S1: O’Brien was forced into the drastic step of leaving
the 76ers.

S2: Jim O’Brien left the 76ers after one season as coach.

An CDECR system in this case would need to
recognize that both event mentions in S1 and S2
refer to the same event.

A major challenge in CDECR involves the
necessity to model entity mentions (e.g., “Jim
O’Brien”) that participate into events and reveal
their spatio-temporal information (Yang et al.,
2015) (called event arguments). In particular, as
event mentions might be presented in different sen-
tences/documents, an important evidence for pre-
dicting the coreference of two event mentions is to
realize that the two event mentions have the same
participants in the real world and/or occur at the
same location and time (i.e., same arguments).

Motivated by this intuition, prior work for
CDECR has attempted to jointly resolve cross-
document coreference for entities and events so
the two tasks can mutually benefit from each other
(iterative clustering) (Lee et al., 2012). In fact,
this iterative and joint modeling approach has re-
cently led to the state-of-the-art performance for
CDECR (Barhom et al., 2019; Meged et al., 2020).
Our model for CDECR follows this joint coref-
erence resolution method; however, we advance
it by introducing novel techniques to address two
major limitations from previous work (Yang et al.,
2015; Kenyon-Dean et al., 2018; Barhom et al.,
2019), i.e., the inadequate mechanisms to capture
the argument-related information for representing
event mentions and the use of only lexical features
to represent input documents.

As the first limitation with the event argument-
related evidence, existing methods for CDECR
have mainly captured the direct information of
event arguments for event mention representa-
tions, thus failing to explicitly encode other im-
portant context words in the sentences to reveal
fine-grained nature of relations between arguments
and triggers for ECR (Yang et al., 2015; Barhom
et al., 2019). For instance, consider the corefer-
ence prediction between the event mentions in S1
and the following sentence S3 (with “leave” as the
event trigger word):

S3: The baseball coach Jim O’Brien decided to leave the
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Figure 1: The pruned dependency tree for the event mention
in S1. The trigger is red while argument heads are blue.

club on Thursday.

The arguments for the event mention in S3 in-
volves “The baseball coach Jim O’Brien”, “the
club”, and “Monday”. If an entity coreference
resolution system considers the entity mention
pairs (“O’Brien” in S1, “The baseball coach Jim
O’Brien” in S3) and (“the 76ers” in S1 and “the
club” in S3) as being coreferred, a CDECR sys-
tem, which only concerns event arguments and
their coreference information, would incorrectly
predict the coreference between the event mentions
in S1 and S3 in this case. However, if the CDECR
system further models the important words for the
relations between event triggers and arguments (i.e.,
the words “was forced” in S1 and “decided” in S3),
it can realize the unwillingness of the subject for
the position ending event in S1 and the self intent
to leave the position for the event in S3. As such,
this difference can help the system to reject the
event coreference for S1 and S3.

To this end, we propose to explicitly identify
and capture important context words for event trig-
gers and arguments in representation learning for
CDECR. In particular, our motivation is based on
the shortest dependency paths between event trig-
gers and arguments that have been used to reveal
important context words for their relations (Li et al.,
2013; Sha et al., 2018; Veyseh et al., 2020a, 2021).
As an example, Figure 1 shows the dependency tree
of S1 where the shortest dependency path between
“O’Brien” and “leaving” can successfully include
the important context word “forced”. As such, for
each event mention, we leverage the shortest de-
pendency paths to build a pruned and argument-
customized dependency tree to simultaneously con-
tain event triggers, arguments and the important
words in a single structure. Afterward, the struc-
ture will be exploited to learn richer representation
vectors for CDECR.

Second, for document representations, previous

work on CDECR has proved that input documents
also provide useful context information for event
mentions (e.g., document topics) to enhance the
clustering performance (Kenyon-Dean et al., 2018).
However, the document information is only cap-
tured via lexical features in prior work, e.g., TF-
IDF vectors (Kenyon-Dean et al., 2018; Barhom
et al., 2019), leading to the poor generalization to
unseen words/tokens and inability to encapsulate
latent semantic information for CDECR. To this
end, we propose to learn distributed representation
vectors for input documents to enrich event men-
tion representations and improve the generalization
of the models for CDECR. In particular, as entity
and event mentions are the main objects of inter-
est for CDECR, our motivation is to focus on the
context information from these objects to induce
document representations for the models. To im-
plement this idea, we propose to represent input
documents via interaction graphs between their en-
tity and event mentions, serving as the structures to
generate document representation vectors.

Based on those motivations, we introduce a
novel hierarchical graph convolutional neural net-
work (GCN) that involves two levels of GCN mod-
els to learn representation vectors for the itera-
tive and joint model for CDECR. In particular,
sentence-level GCNs will consume the pruned de-
pendency trees to obtain context-enriched represen-
tation vectors for event and entity mentions while
a document-level GCN will be run over the entity-
event interaction graphs, leveraging the mention
representations from the sentence-level GCNs as
the inputs to generate document representations
for CDECR. Extensive experiments show that the
proposed model achieves the state-of-the-art res-
olution performance for both entities and events
on the ECB+ dataset. To our knowledge, this is
the first work that utilizes GCNs and entity-event
interaction graphs for coreference resolution.

2 Related Work

ECR is considered as a more challenging task than
entity coreference resolution due to the more com-
plex structures of event mentions that require argu-
ment reasoning (Yang et al., 2015). Previous work
for within-document event resolution includes pair-
wise classifiers (Ahn, 2006; Chen et al., 2009),
spectral graph clustering methods (Chen and Ji,
2009), information propagation (Liu et al., 2014),
markov logic networks (Lu et al., 2016), and deep
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learning (Nguyen et al., 2016). For only cross-
document event resolution, prior work has consid-
ered mention-pair classifiers for coreference that
use granularities of event slots and lexical features
of event mentions for the features (Cybulska and
Vossen, 2015b,a). Within- and cross-document
event coreference have also been solved simulta-
neously in previous work (Lee et al., 2012; Bejan
and Harabagiu, 2010; Adrian Bejan and Harabagiu,
2014; Yang et al., 2015; Choubey and Huang, 2017;
Kenyon-Dean et al., 2018). The most related works
to us involve the joint models for entity and event
coreference resolution that use contextualized word
embeddings to capture the dependencies between
the two tasks and lead to the state-of-the-art perfor-
mance for CDECR (Lee et al., 2012; Barhom et al.,
2019; Meged et al., 2020).

Finally, regarding the modeling perspective, our
work is related to the models that use GCNs to
learn representation vectors for different NLP tasks,
e.g., event detection (Lai et al., 2020; Veyseh et al.,
2019) and target opinion word extraction (Vey-
seh et al., 2020b), applying both sentence- and
document-level graphs (Sahu et al., 2019; Tran
et al., 2020; Nan et al., 2020; Tran and Nguyen,
2021; Nguyen et al., 2021). However, to our knowl-
edge, none of the prior work has employed GCNs
for ECR.

3 Model

Given a set of input documents D, the goal of
CDECR is to cluster event mentions in the doc-
uments of D according to their coreference. Our
model for CDECR follows (Barhom et al., 2019)
that simultaneously clusters entity mentions in D
to benefit from the inter-dependencies between en-
tities and events for coreference resolution. In this
section, we will first describe the overall framework
of our iterative method for joint entity and event
coreference resolution based on (Barhom et al.,
2019) (a summary of the framework is given in
Algorithm 1). The novel hierarchical GCN model
for inducing mention1 representation vectors will
be discussed afterward.
Iterative Clustering for CDECR: Following
(Barhom et al., 2019), we first cluster the input
document set D into different topics to improve
the coreference performance (the set of document
topics is called T ). As we use the ECB+ dataset

1We use mentions to refer to both event and entity men-
tions.

(Cybulska and Vossen, 2014) to evaluate the mod-
els in this work, the training phase directly utilizes
the golden topics of the documents while the test
phase applies the K-mean algorithm for document
clustering as in (Barhom et al., 2019). Afterward,
given a topic t 2 T with the corresponding docu-
ment subset Dt ⇢ D, our CDECR model initial-
izes the entity and event cluster configurations E0

t

and V 0
t (respectively) where: E0

t involves within-
document clusters of the entity mentions in the
documents in Dt, and V 0

t simply puts each event
mention presented in Dt into its own cluster (lines 2
and 3 in Algorithm 1). In the training phase, E0

t is
obtained from the golden within-document corefer-
ence information of the entity mentions (to reduce
noise) while the within-document entity mention
clusters returned by Stanford CoreNLP (Manning
et al., 2014) are used for E0

t in the test phase, fol-
lowing (Barhom et al., 2019). For convenience, the
sets of entity and event mentions in Dt are called
ME

t and MV
t respectively.

Algorithm 1 Training algorithm

1: for t 2 T do
2: E0

t  Within-doc clusters of entity mentions
3: V 0

t  Singleton event mentions in MV
t

4: k  1
5: while 9 meaningful cluster-pair merge do
6: //Entities
7: Generate entity mention representations

RE(mei , V
k�1

t ) for all mei 2ME
t

8: Compute entity mention-pair coreference scores
SE(mei , mej )

9: Train RE and SE using the gold entity mention
clusters

10: Ek
t  Agglomeratively cluster ME

t based on
SE(mei , mej )

11: //Events
12: Generate event mention representations

RV (mvi , E
k
t ) for all mvi 2MV

t

13: Compute event mention-pair coreference scores
SV (mvi , mvj )

14: Train RV and SV using the gold entity mention
clusters

15: V k
t  Agglomeratively cluster MV

t based on
SV (mvi , mvj )

16: k  k + 1
17: end while
18: end for

Given the initial configurations, our iterative al-
gorithm involves a sequence of clustering itera-
tions, generating new cluster configurations Ek

t

and V k
t for entities and events (respectively) af-

ter each iteration. As such, each iteration k per-
forms two independent clustering steps where en-
tity mentions are clustered first to produce Ek

t ,
followed by event mention clustering to obtain
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V k
t (alternating the clustering). Starting with the

entity clustering at iteration k, each entity men-
tion mei is first transformed into a representa-
tion vector RE(mei , V

k�1
t ) (line 7 in Algorithm

1) that is conditioned on not only the specific con-
text of mei but also the current event cluster con-
figuration V k�1

t (i.e., to capture the event-entity
inter-dependencies). Afterward, a scoring func-
tion SE(mei , mej ) is used to compute the coref-
erence probability/score for each pair of entity
mentions, leveraging their mention representations
RE(mei , V

k�1
t ) and RE(mej , V

k�1
t ) at the cur-

rent iteration (RE and SE will be discussed in the
next section) (line 8). An agglomerative cluster-
ing algorithm then utilizes these coreference scores
to cluster the entity mentions, leading to a new
configuration Ek

t for entity mention clusters (line
10). Given Ek

t , the same procedure is applied to
cluster the event mentions for iteration k, includ-
ing: (i) obtaining an event representation vector
RV (mvi , E

k
t ) for each event mention mvi based

on the current entity cluster configuration Ek
t , (ii)

computing coreference scores for the event mention
pairs via the scoring function SV (mvi , mvj ), and
(iii) performing agglomerative clustering for the
event mentions to produce the new configuration
V k

t for event clusters (lines 12, 13, and 15).

Note that during the training process, the param-
eters of the representation and scoring functions for
entities RE and SE (or for events with RV and SV )
are updated/optimized after the coreference scores
are computed for all the entity (or event) mention
pairs. This corresponds to lines 9 and 14 in Algo-
rithm 1 (not used in the test phase). In particular,
the loss function to optimize RE and SE in line
9 is based on the cross-entropy over every pair of
entity mentions (mei , mej ) in ME

t : Lent,coref
t =

�Pmei 6=mej
yent

ij log SE(mei , mej ) � (1 �
yent

ij ) log(1 � SE(mei , mej ) where yent
ij is a

golden binary variable to indicate whether mei and
mej corefer or not (symmetrically for Lenv,coref

t

to train RV and SV in line 14). Also, we use
the predicted configurations Ek

t and V k�1
t in the

mention representation computation (instead of the
golden clusters as in yent

ij for the loss functions)
during both the training and test phases to achieve
a consistency (Barhom et al., 2019).

Finally, we note that the agglomerative cluster-
ing in each iteration of our model also starts with
the initial clusters as in E0

t and V 0
t , and greed-

ily merges multiple cluster pairs with the high-

est cluster-pair scores until all the scores are be-
low a predefined threshold �. In this way, the al-
gorithm first focuses on high-precision merging
operations and postpones less precise ones until
more information is available. The cluster-pair
score SC(ci, cj) for two clusters ci and cj (mention
sets) at some algorithm step is based on averaging
mention linkage coreference scores: SC(ci, cj) =

1
|ci||cj |

P
mi2ci,mj2cj

S⇤(mi, mj) (Barhom et al.,
2019) where ⇤ can be E or V depending on whether
ci and cj are entity or event clusters (respectively).

Mention Representations: Let m be a men-
tion (event or entity) in a sentence W =
w1, w2, . . . , wn of n words (wi is the i-th word)
where wa is the head word of m. To prepare W
for the mention representation computation and
achieve a fair comparison with (Barhom et al.,
2019), we first convert each word wi 2 W into
a vector xi using the ELMo embeddings (Peters
et al., 2018). Here, xi is obtained by running the
pre-trained ELMo model over W and averaging
the hidden vectors for wi at the three layers in
ELMo. This transforms W into a sequence of vec-
tors X = x1, x2, . . . , xn for the next steps. The
mention representations in our work are based on
two major elements, i.e., the modeling of important
context words for event triggers and arguments,
and the induction of document presentations.

(i) Modeling Important Context Words: A mo-
tivation for representation learning in our model
is to capture event arguments and important con-
text words (for the relations between event triggers
and arguments) to enrich the event mention repre-
sentations. In this work, we employ a symmetric
intuition to compute a representation vector for
an entity mention m, aiming to encode associated
predicates (i.e., event triggers that accept m as an
argument W ) and important context words (for the
relations between the entity mention and associ-
ated event triggers). As such, following (Barhom
et al., 2019), we first identify the attached argu-
ments (if m is an event mention) or predicates
(if m is an entity mention) in W for m using a
semantic role labeling (SRL) system. In particu-
lar, we focus on four semantic roles of interest:
Arg0, Arg1, Location, and Time. For conve-
nience, let Am = {wi1 , . . . , wio} ⇢ W be the set
of head words of the attached event arguments or
event triggers for m in W based on the SRL sys-
tem and the four roles (o is the number of head
words). In particular, if m is an event mention,
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Am would involve the head words of the entity
mentions that fill the four semantic roles for m
in W . In contrast, if m is an entity mention, Am

would capture the head words of the event trig-
gers that take m as an argument with one of the
four roles in W . Afterward, to encode the impor-
tant context words for the relations between m and
the words in Am, we employ the shortest depen-
dency paths Pij between the head word wa of m
and the words wij 2 Am. As such, starting with
the dependency tree of Gm = {N m, Em} of W
(N m involves the words in W ), we build a pruned
tree Ĝm = {N̂ m, Êm} of Gm to explicitly focus
on the mention m and its important context words
in the paths Pij . Concretely, the node set N̂ m of
Ĝm contains all the words in the paths Pij (N̂ m =S

j=1..o Pij ) while the edge set Êm preserves the
dependency connections in Gm of the words in
N̂ m (Êm = {(a, b)|a, b 2 N̂ m, (a, b) 2 Em}). As
such, the pruned tree Ĝm helps to gather the rele-
vant context words for the coreference resolution
of m and organize them into a single dependency
graph, serving as a rich structure to learn a repre-
sentation vector for m2 (e.g., in Figure 1).
(ii) Graph Convolutional Networks: The context
words and structure in Ĝm suggest the use of Graph
Convolutional Networks (GCN) (Kipf and Welling,
2017; Nguyen and Grishman, 2018) to learn the
representation vector for m (called the sentence-
level GCN). In particular, the GCN model in this
work involves several layers (i.e., L layers in our
case) to compute the representation vectors for the
nodes in the graph Ĝm at different abstract levels.
The input vector h0

v for the node v 2 N̂ m for GCN
is set to the corresponding ELMo-based vectors in
X . After L layers, we obtain the hidden vectors
hL

v (in the last layer) for the nodes v 2 N̂ m. We
call sent(m) = [hL

vm
, max_pool(hL

v |v 2 N̂ m)]
the sentence-level GCN vector that will be used
later to represent m (vm is the corresponding node
of the head word of m in N̂ m).
(iii) GCN Interaction: Our discussion about the
sentence-level GCN so far has been agnostic to
whether m is an event or entity mention and the
straightforward approach is to apply the same GCN
model for both entity and event mentions. How-
ever, this approach might limit the flexibility of the
GCN model to focus on the necessary aspects of
information that are specific to each coreference

2If Am is empty, the pruned tree Ĝm only contains the
head word of m.

resolution task (i.e., events or entities). For exam-
ple, event coreference might need to weight the
information from event arguments and important
context words more than those for entity coref-
erence (Yang et al., 2015). To this end, we pro-
pose to apply two separate sentence-level GCN
models for event and entity mentions, which share
the architecture but differ from the parameters, to
enhance representation learning (called Gent and
Gevn for entities and events respectively). In ad-
dition, to introduce a new source of training sig-
nals and promote the knowledge transfer between
the two GCN networks, we propose to regularize
the GCN models so they produce similar repre-
sentation vectors for the same input sentence W .
In particular, we apply both GCN models Gent

and Gevn over the full dependency tree3 Gm us-
ing the ELMo-based vectors X for W as the input.
This produces the hidden vectors hent

1 , . . . , hent
n

and henv
1 , . . . , henv

n in the last layers of Gent and
Gevn for W . Afterward, we compute two ver-
sions of representation vectors for W based on
max-pooling: hent = max_pool(hent

1 , . . . , hent
n ),

henv = max_pool(henv
1 , . . . , henv

n ). Finally, the
mean squared difference between hent and henv

is introduced into the overall loss function to reg-
ularize the models: Lreg

m = ||hent � henv||22. As
this loss is specific to mention m, it will be com-
puted independently for event and entity mentions
and added into the corresponding training loss
(i.e., lines 9 or 14 in Algorithm 1). In partic-
ular, the overall training loss for entity mention
coreference resolution in line 9 of Algorithm 1 is:
Lent

t = ↵entLent,coref
t +(1�↵ent)

P
me2ME

t
Lreg

me

while those for event mention coreference res-
olution is: Lenv

t = ↵envLenv,coref
t + (1 �

↵env)
P

mv2MV
t

Lreg
mv (line 14). Here, ↵ent and

↵env are the trade-off parameters.
(iv) Document Representation: As motivated in
the introduction, we propose to learn representa-
tion vectors for input documents to enrich men-
tion representations and improve the generaliza-
tion of the models (over the lexical features for
documents). As such, our principle is to employ
entity and event mentions (the main objects of in-
terest in CDECR) and their interactions/structures
to represent input documents (i.e., documents as
interaction graphs of entity and event mentions).
Given the mention m of interest and its correspond-

3We tried the pruned dependency tree Ĝm in this regular-
ization, but the full dependency tree Gm led to better results.
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ing document d 2 Dt, we start by building an
interaction graph Gdoc = {N doc, Edoc} where the
node set N doc involves all the entity and event men-
tions in d. For the edge set Edoc, we leverage two
types of information to connect the nodes in N doc:
(i) predicate-argument information: we establish
a link between the nodes for an event mention x
and an entity mention y in N doc if y is an argu-
ment of x for one of the four semantic roles, i.e.,
Arg0, Arg1, Location, and Time (identified
by the SRL system), and (ii) entity mention coref-
erence: we connect any pairs of nodes in N doc that
correspond to two coreferring entity mentions in
d (using the gold within-document entity corefer-
ence in training and the predicted one in testing,
as in E0

t ). In this way, Gdoc helps to emphasize on
important objects of d and enables intra- and inter-
sentence interactions between event mentions (via
entity mentions/arguments) to produce effective
document representations for CDECR.

In the next step, we feed the interaction graph
Gdoc into a GCN model Gdoc (called the document-
level GCN) using the sentence-level GCN-based
representations of the entity and event mentions
in N doc (i.e., sent(m)) as the initial vectors for
the nodes (thus called a hierarchical GCN model).
The hidden vectors produced by the last layer
of Gdoc for the nodes in Gdoc is called {hd

u|u 2
N doc}. Finally, we obtain the representation
vector doc(m) for d based on the max-pooling:
doc(m) = max_pool(hd

u|u 2 N doc).

(v) Final Representation: Given the represen-
tation vectors learned so far, we form the final
representation vector for m (RE(m, V k�1

t ) or
RV (m, Ek

t ) in lines 7 or 12 of Algorithm 1) by
concatenating the following vectors:

(1) The sentence- and document-level GCN-
based representation vectors for m (i.e., sent(m)
and doc(m)).

(2) The cluster-based representation
cluster(m) = [Arg0m,Arg1m,Locationm

,Timem]. Taking Arg0m as an example, it is
computed by considering the mention m0 that is
associated with m via the semantic role Arg0 in
W using the SRL system. Here, m0 is an event
mention if m is an entity mention and vice versa
(Arg0 = 0 if m0 does not exist). As such, let c
be the cluster in the current configuration (i.e.,
V k�1

t or Ek
t ) that contain m0. We then obtain

Arg0m by averaging the ELMo-based vectors
(i.e., X = x1, . . . , xn) of the head words of the

mentions in c: Arg0m = 1/|c|Pq2c xhead(q)

(head(q) is the index of the head word of mention
q in W ). Note that as the current entity cluster con-
figuration Ek

t is used to generate the cluster-based
representations if m is an event mention (and vice
verse), it serves as the main mechanism to enable
the two coreference tasks to interact and benefit
from each other. These vectors are inherited from
(Barhom et al., 2019) for a fair comparison.

Finally, given two mentions m1 and m2, and
their corresponding representation vectors R(m1)
and R(m2) (as computed above), the coreference
score functions SE and SV send the concatenated
vector [R(m1), R(m2), R(m1) � R(m2)] to two-
layer feed-forward networks (separate ones for SE

and SV ) that involve the sigmoid function in the
end to produce coreference score for m1 and m2.
Here, � is the element-wise product. This com-
pletes the description of our CDECR model.

4 Experiments

Dataset: We use the ECB+ dataset (Cybulska and
Vossen, 2014) to evaluate the CDECR models in
this work. Note that ECB+ is the largest dataset
with both within- and cross-document annotation
for the coreference of entity and event mentions so
far. We follow the setup and split for this dataset
in prior work to ensure a fair comparison (Cybul-
ska and Vossen, 2014; Kenyon-Dean et al., 2018;
Barhom et al., 2019; Meged et al., 2020). In partic-
ular, this setup employs the annotation subset that
has been validated for correctness by (Cybulska
and Vossen, 2014) and involves a larger portion of
the dataset for training. In ECB+, only a part of
the mentions are annotated. This setup thus utilizes
gold-standard event and entity mentions in the eval-
uation and does not require special treatment for
unannotated mentions (Barhom et al., 2019).

Note that there is a different setup for ECB+ that
is applied in (Yang et al., 2015) and (Choubey and
Huang, 2017). In this setup, the full ECB+ dataset
is employed, including the portions with known
annotation errors. In test time, such prior work uti-
lizes the predicted mentions from a mention extrac-
tion tool (Yang et al., 2015). To handle the partial
annotation in ECB+, those prior work only eval-
uates the systems on the predicted mentions that
are also annotated as the gold mentions. However,
as shown by (Upadhyay et al., 2016), this ECB+
setup has several limitations (e.g., the ignorance
of clusters with a single mention and the separate
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evaluation for each sub-topic). Following (Barhom
et al., 2019), we thus do not evaluate the systems
on this setup, i.e., not comparing our model with
those models in (Yang et al., 2015) and (Choubey
and Huang, 2017) due to the incompatibility.
Hyper-Parameters: To achieve a fair comparison,
we utilize the preprocessed data and extend the
implementation for the model in (Barhom et al.,
2019) to include our novel hierarchical GCN model.
The development dataset of ECB+ is used to tune
the hyper-parameters of the proposed model (called
HGCN). The suggested values and the resources
for our model are reported in Appendix A.
Comparison: Following (Barhom et al., 2019), we
compare HGCN with the following baselines:

(i) LEMMA (Barhom et al., 2019): This first
clusters documents to topics and then groups event
mentions that are in the same document clusters
and share the head lemmas.

(ii) CV (Cybulska and Vossen, 2015b): This is a
supervised learning method for CDECR that lever-
ages discrete features to represent event mentions
and documents. We compare with the best reported
results for this method as in (Barhom et al., 2019).

(iii) KCP (Kenyon-Dean et al., 2018): This is
a neural network model for CDECR. Both event
mentions and document are represented via word
embeddings and hand-crafted binary features.

(iv) C-KCP (Barhom et al., 2019): This is the
KCP model that is retrained and tuned using the
same document clusters in the test phase as in
(Barhom et al., 2019) and our model.

(v) BSE (Barhom et al., 2019): This is a joint res-
olution model for cross-document coreference of
entity and event mentions, using ELMo to compute
representations for the mentions.

(v) BSE-DJ (Barhom et al., 2019): This is a
variant of BSE that does not use the cluster-based
representations cluster(m) in the mention repre-
sentations, thus performing event and entity coref-
erence resolution separately.

(vii) MCS (Meged et al., 2020): An extension of
BSE where some re-ranking features are included.
Note that BSE and MCS are the current state-of-
the-art (SOTA) models for CDECR on ECB+.

For cross-document entity coreference resolu-
tion, we compare our model with the LEMMA
and BSE models in (Barhom et al., 2019), the only
works that report the performance for event men-
tions on ECB+ so far. Following (Barhom et al.,
2019), we use the common coreference resolution

metrics to evaluate the models in this work, includ-
ing MUC (Vilain et al., 1995), B3, CEAF-e (Luo,
2005), and CoNLL F1 (average of three previous
metrics). The official CoNLL scorer in (Pradhan
et al., 2014) is employed to compute these metrics.
Tables 1 and 2 show the performance (F1 scores)
of the models for cross-document resolution for
entity and event mentions (respectively). Note that
we also report the performance of a variant (called
HGCN-DJ) of the proposed HGCN model where
the cluster-based representations cluster(m) are
excluded (thus separately doing event and entity
resolution as BSE-DJ).

Model MUC B3 CEAF-e CoNLL
LEMMA (Barhom et al., 2019) 78.1 77.8 73.6 76.5
CV (Cybulska and Vossen, 2015b) 73.0 74.0 64.0 73.0
KCP (Kenyon-Dean et al. 2019) 69.0 69.0 69.0 69.0
CKCP (Barhom et al., 2019) 73.4 75.9 71.5 73.6
BSE-DJ (Barhom et al., 2019) 79.4 80.4 75.9 78.5
BSE (Barhom et al., 2019) 80.9 80.3 77.3 79.5
MCS (Meged et al., 2020) 81.6 80.5 77.8 80.0
HGCN-DJ 81.3 80.8 76.1 79.4
HGCN (proposed) 83.1 82.1 78.8 81.3

Table 1: The cross-document event coreference resolu-
tion performance (F1) on the ECB+ test set.

Model MUC B3 CEAF-e CoNLL
LEMMA (Barhom et al., 2019) 76.7 65.6 60.0 67.4
BSE-DJ (Barhom et al., 2019) 78.7 69.9 61.6 70.0
BSE (Barhom et al., 2019) 79.7 70.5 63.3 71.2
HGCN-DJ 80.1 70.7 62.2 71.0
HGCN (proposed) 82.1 71.7 63.4 72.4

Table 2: The cross-document entity coreference resolu-
tion performance (F1) on the ECB+ test set.

As can be seen, HGCN outperforms the all the
baselines models on both entity and event coref-
erence resolution (over different evaluation met-
rics). In particular, the CoNLL F1 score of HGCN
for event coreference is 1.3% better than those for
MCS (the prior SOTA model) while the CoNLL
F1 improvement of HGCN over BSE (the prior
SOTA model for entity coreference on ECB+) is
1.2%. These performance gaps are significant with
p < 0.001, thus demonstrating the effectiveness
of the proposed model for CDECR. Importantly,
HGCN is significantly better than BSE, the most
direct baseline of the proposed model, on both en-
tity and event coreference regardless of whether
the cluster-based representations cluster(m) for
joint entity and event resolution is used or not. This
testifies to the benefits of the proposed hierarchi-
cal model for representation learning for CDECR.
Finally, we evaluate the full HGCN model when
ELMo embeddings are replaced with BERT embed-
dings (Devlin et al., 2019), leading to the CoNLL
F1 scores of 79.7% and 72.3% for event and entity
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coreference (respectively). This performance is ei-
ther worse (for events) or comparable (for entities)
than those for EMLo, thus showing the advantages
of ELMo for our tasks on ECB+.
Ablation Study: To demonstrate the benefits of
the proposed components for our CDECR model,
we evaluate three groups of ablated/varied models
for HGCN. First, for the effectiveness of the pruned
dependency tree Ĝm and the sentence-level GCN
models Gent and Genv, we consider the following
baselines: (i) HGCN-Sentence GCNs: this model
removes the sentence-level GCN models Gent and
Genv from HGCN and directly feed the ELMo-
based vectors X of the mention heads into the
document-level GCN Gdoc (the representation vec-
tor sent(m) is thus not included), and (ii) HGCN-
Pruned Tree: this model replaces the pruned de-
pendency tree Ĝm with the full dependency tree
Gm in the computation. Second, for the advantage
of the GCN interaction between Gent and Genv,
we examine two baselines: (iii) HGCN with One
Sent GCN: this baseline only uses one sentence-
level GCN model for both entity and event men-
tions (the regularization loss Lreg

m for Gent and
Genv is thus not used as well), and (iv) HGCN-
Lreg

m : this baseline still uses two sentence-level
GCN models but excludes the regularization term
Lreg

m from the training losses. Finally, for the bene-
fits of the document-level GCN Gdoc, we study the
following variants: (v) HGCN-Gdoc: this model
removes the document-level GCN model from
HGCN, thus excluding the document representa-
tions doc(m) from the mention representations, (vi)
HGCN-Gdoc+TFIDF: this model also excludes
Gdoc, but it includes the TF-IDF vectors for doc-
uments, based on uni-, bi- and tri-grams, in the
mention representations (inherited from (Kenyon-
Dean et al., 2018)), and (vii) HGCN-Gdoc+MP: in-
stead of using the GCN model Gdoc, this model ag-
gregates mention representation vectors produced
by the sentence-level GCNs (sent(m)) to obtain
the document representations doc(m) using max-
pooling. Table 3 presents the performance of the
models for event coreference on the ECB+ test set.

Model MUC B3 CEAF-e CoNLL
HGCN (full) 83.1 82.1 78.8 81.3
HGCN-Sentence GCNs 79.7 80.7 76.4 79.0
HGCN-Pruned Tree 81.8 81.1 77.1 80.0
HGCN with One Sent GCN 82.1 81.0 76.3 79.8
HGCN-Lreg

m 81.6 81.6 77.6 80.3
HGCN-Gdoc 82.6 81.8 76.7 80.4
HGCN-Gdoc+TFIDF 82.2 81.0 78.4 80.5
HGCN-Gdoc+MP 82.0 81.1 77.0 80.0

Table 3: The CDECR F1 scores on the ECB+ test set.

It is clear from the table that all the ablated
baselines are significantly worse than the full
model HGCN (with p < 0.001), thereby confirm-
ing the necessity of the proposed GCN models
(the sentence-level GCNs with pruned trees and
document-level GCN) and the GCN interaction
mechanism for HGCN and CDECR. In addition,
the same trends for the model performance are
also observed for entity coreference in this ablation
study (the results are shown in Appendix B), thus
further demonstrating the benefits of the proposed
components in this work. Finally, we show the
distribution of the error types of our HGCN model
in Appendix C for future improvement.

5 Conclusion

We present a model to jointly resolve the cross-
document coreference of entity and event mentions.
Our model introduces a novel hierarchical GCN
that captures both sentence and document context
for the representations of entity and event mentions.
In particular, we design pruned dependency trees
to capture important context words for sentence-
level GCNs while interaction graphs between entity
and event mentions are employed for document-
level GCN. In the future, we plan to explore better
mechanisms to identify important context words
for CDECR.

Acknowledgments

This research has been supported by the Army Re-
search Office (ARO) grant W911NF-21-1-0112.
This research is also based upon work supported by
the Office of the Director of National Intelligence
(ODNI), Intelligence Advanced Research Projects
Activity (IARPA), via IARPA Contract No. 2019-
19051600006 under the Better Extraction from Text
Towards Enhanced Retrieval (BETTER) Program.
The views and conclusions contained herein are
those of the authors and should not be interpreted
as necessarily representing the official policies, ei-
ther expressed or implied, of ARO, ODNI, IARPA,
the Department of Defense, or the U.S. Govern-
ment. The U.S. Government is authorized to re-
produce and distribute reprints for governmental
purposes notwithstanding any copyright annotation
therein. This document does not contain technol-
ogy or technical data controlled under either the
U.S. International Traffic in Arms Regulations or
the U.S. Export Administration Regulations.

39



References
Cosmin Adrian Bejan and Sanda Harabagiu. 2014. Un-

supervised event coreference resolution. In Compu-
tational Linguistics.

David Ahn. 2006. The stages of event extraction. In
Proceedings of the Workshop on Annotating and
Reasoning about Time and Events.

Shany Barhom, Vered Shwartz, Alon Eirew, Michael
Bugert, Nils Reimers, and Ido Dagan. 2019. Re-
visiting joint modeling of cross-document entity and
event coreference resolution. In ACL.

Cosmin Bejan and Sanda Harabagiu. 2010. Unsuper-
vised event coreference resolution with rich linguis-
tic features. In ACL.

Zheng Chen and Heng Ji. 2009. Graph-based event
coreference resolution. In Proceedings of the 2009
Workshop on Graph-based Methods for Natural Lan-
guage Processing (TextGraphs-4).

Zheng Chen, Heng Ji, and Robert Haralick. 2009. A
pairwise event coreference model, feature impact
and evaluation for event coreference resolution. In
Proceedings of the Workshop on Events in Emerging
Text Types.

Prafulla Kumar Choubey and Ruihong Huang. 2017.
Event coreference resolution by iteratively unfold-
ing inter-dependencies among events. In EMNLP.

Agata Cybulska and Piek Vossen. 2014. Using a
sledgehammer to crack a nut? lexical diversity and
event coreference resolution. In LREC.

Agata Cybulska and Piek Vossen. 2015a. Translat-
ing granularity of event slots into features for event
coreference resolution. In Proceedings of the The
3rd Workshop on EVENTS: Definition, Detection,
Coreference, and Representation.

Agata Cybulska and Piek T. J. M. Vossen. 2015b. "bag
of events" approach to event coreference resolution.
supervised classification of event templates. In Int.
J. Comput. Linguistics Appl.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. In To appear.

Kian Kenyon-Dean, Jackie Chi Kit Cheung, and Doina
Precup. 2018. Resolving event coreference with
supervised representation learning and clustering-
oriented regularization. In Proceedings of the Sev-
enth Joint Conference on Lexical and Computa-
tional Semantics.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In ICLR.

Viet Dac Lai, Tuan Ngo Nguyen, and Thien Huu
Nguyen. 2020. Event detection: Gate diversity and
syntactic importance scores for graph convolution
neural networks. In EMNLP.

Heeyoung Lee, Marta Recasens, Angel Chang, Mihai
Surdeanu, and Dan Jurafsky. 2012. Joint entity and
event coreference resolution across documents. In
EMNLP.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
extraction via structured prediction with global fea-
tures. In ACL.

Zhengzhong Liu, Jun Araki, Eduard Hovy, and Teruko
Mitamura. 2014. Supervised within-document event
coreference using information propagation. In
LREC.

Jing Lu, Deepak Venugopal, Vibhav Gogate, and Vin-
cent Ng. 2016. Joint inference for event coreference
resolution. In COLING.

Xiaoqiang Luo. 2005. On coreference resolution per-
formance metrics. In EMNLP.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In ACL System Demonstrations.

Yehudit Meged, Avi Caciularu, Vered Shwartz, and
Ido Dagan. 2020. Paraphrasing vs coreferring: Two
sides of the same coin. In ArXiv abs/2004.14979.

Guoshun Nan, Zhijiang Guo, Ivan Sekulic, and Wei Lu.
2020. Reasoning with latent structure refinement for
document-level relation extraction. In ACL.

Minh Van Nguyen, Viet Dac Lai, and Thien Huu
Nguyen. 2021. Cross-task instance representation
interactions and label dependencies for joint in-
formation extraction with graph convolutional net-
works. In NAACL-HLT.

Thien Huu Nguyen, , Adam Meyers, and Ralph Grish-
man. 2016. New york university 2016 system for
kbp event nugget: A deep learning approach. In
TAC.

Thien Huu Nguyen and Ralph Grishman. 2018. Graph
convolutional networks with argument-aware pool-
ing for event detection. In AAAI.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. In Journal of Machine Learning Research.

40



Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In NAACL-HLT.

Sameer Pradhan, Xiaoqiang Luo, Marta Recasens, Ed-
uard Hovy, Vincent Ng, and Michael Strube. 2014.
Scoring coreference partitions of predicted men-
tions: A reference implementation. In ACL.

Sunil Kumar Sahu, Fenia Christopoulou, Makoto
Miwa, and Sophia Ananiadou. 2019. Inter-sentence
relation extraction with document-level graph convo-
lutional neural network. In ACL.

Lei Sha, Feng Qian, Baobao Chang, and Zhifang Sui.
2018. Jointly extracting event triggers and argu-
ments by dependency-bridge rnn and tensor-based
argument interaction. In AAAI.

M. Surdeanu, Lluís Màrquez i Villodre, X. Carreras,
and P. Comas. 2007. Combination strategies for se-
mantic role labeling. In Journal of Artificial Intelli-
gence Research.

Hieu Minh Tran, Minh Trung Nguyen, and Thien Huu
Nguyen. 2020. The dots have their values: Exploit-
ing the node-edge connections in graph-based neu-
ral models for document-level relation extraction. In
EMNLP Findings.

Minh Tran and Thien Huu Nguyen. 2021. Graph con-
volutional networks for event causality identifica-
tion with rich document-level structures. In NAACL-
HLT.

Shyam Upadhyay, Nitish Gupta, Christos
Christodoulopoulos, and Dan Roth. 2016. Re-
visiting the evaluation for cross document event
coreference. In COLING.

Amir Pouran Ben Veyseh, Franck Dernoncourt,
Quan Hung Tran, Varun Manjunatha, Lidan Wang,
Rajiv Jain, Doo Soon Kim, Walter Chang, and
Thien Huu Nguyen. 2021. Inducing rich interac-
tion structures between words for document-level
event argument extraction. In Proceedings of the
25th Pacific-Asia Conference on Knowledge Discov-
ery and Data Mining (PAKDD).

Amir Pouran Ben Veyseh, Thien Huu Nguyen, and De-
jing Dou. 2019. Graph based neural networks for
event factuality prediction using syntactic and se-
mantic structures. In ACL.

Amir Pouran Ben Veyseh, Tuan Ngo Nguyen, and
Thien Huu Nguyen. 2020a. Graph transformer net-
works with syntactic and semantic structures for
event argument extraction. In EMNLP Findings.

Amir Pouran Ben Veyseh, Nasim Nouri, Franck Der-
noncourt, Dejing Dou, and Thien Huu Nguyen.
2020b. Introducing syntactic structures into target
opinion word extraction with deep learning. In
EMNLP.

Marc Vilain, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman. 1995. A model-
theoretic coreference scoring scheme. In Sixth Mes-
sage Understanding Conference (MUC-6).

Bishan Yang, Claire Cardie, and Peter Frazier. 2015. A
hierarchical distance-dependent Bayesian model for
event coreference resolution. In TACL.

41



Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15), pages 42–53
June 11, 2021. ©2021 Association for Computational Linguistics

GENE: Global Event Network Embedding

Qi Zeng1, Manling Li1, Tuan Lai1, Heng Ji1, Mohit Bansal2, Hanghang Tong1

1University of Illinois Urbana-Champaign 2UNC Chapel Hill
{qizeng2, manling2, tuanml2, hengji, htong}@illinois.edu

mbansal@cs.unc.edu

Abstract

Current methods for event representation ig-
nore related events in a corpus-level global
context. For a deep and comprehensive un-
derstanding of complex events, we introduce
a new task, Event Network Embedding, which
aims to represent events by capturing the con-
nections among events. We propose a novel
framework, Global Event Network Embed-
ding (GENE), that encodes the event network
with a multi-view graph encoder while preserv-
ing the graph topology and node semantics.
The graph encoder is trained by minimizing
both structural and semantic losses. We de-
velop a new series of structured probing tasks,
and show that our approach effectively outper-
forms baseline models on node typing, argu-
ment role classification, and event coreference
resolution. 1

1 Introduction

Understanding events is a fundamental human ac-
tivity. Our minds represent events at various gran-
ularity and abstraction levels, which allows us to
quickly access and reason about related scenarios.
A typical event mention includes an event trigger
(the word or phrase that most clearly expresses
an event occurrence) and its arguments (i.e., par-
ticipants in events). The lexical embedding of a
trigger is usually not sufficient, because the type
of an event often depends on its arguments (Rit-
ter and Rosen, 2000; Xu and Huang, 2013; Weber
et al., 2018). For example, the support verb “get”
may indicate a Transfer.Ownership event (“Ellison
to spend $10.3 billion to get his company.”) or a
Movement.Transport event (“Airlines are getting
flyers to destinations on time more often.”). In Fig-
ure 1, the event type triggered by “execution” is
Life.Die instead of project implementation. How-
ever, such kind of atomic event representation is

1Our code is released at https://github.com/
pkuzengqi/GENE

still overly simplistic since it only captures local
information and ignores related events in the global
context. Real-world events are inter-connected, as
illustrated in the example in Figure 1. To have a
comprehensive representation of the set fire event
on an embassy, we need to incorporate its causes
(e.g., the preceding execution event) and recent rel-
evant events (e.g., the protests that happened before
and after it). To capture these inter-event relations
in a global context, we propose the following two
assumptions.

Assumption 1. Two events can be connected
through the entities involved. On schema or type
level, two event types can be connected through
multiple paths and form a coherent story (Li et al.,
2020). This observation is also valid on instance
level. For the example in Figure 1, one of the rela-
tions between the Set Fire event and the Execution
event is the blue path 〈Set Fire, target, Saudi
Embassy, affiliation, Saudi Arabia, agent, Execu-
tion〉, which partially supports the fact that an-
gry protesters revenge the death of Nimr al-Nimr
against Saudi Arabia by attacking its embassy. This
approximation for event-event relations lessens the
problems of coarse classification granularity and
low inter-annotation agreement (which may be as
low as 20% as reported in (Hong et al., 2016)).
Hence, we propose to construct an Event Network,
where each event node represents a unique instance
labeled with its type, arguments, and attributes.
These nodes are connected through multiple in-
stantiated meta-paths (Sun et al., 2011) consisting
of their entity arguments and the entity-entity re-
lations. These entities can be co-referential (e.g.,
two protests on different dates that both occur in
Tehran, Iran) or involved in the same semantic re-
lations (both protests targeted the Saudi embassy,
which is affiliated with the location entity “Saudi
Arabia”).

Assumption 2. The representation of one
event depends on its neighboring events in the
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Figure 1: An example of Event Network constructed from one VOA news article, where events are connected
through entities involved. Each node is an event or entity and each edge represents an argument role or entity-
entity relation. In this example, Execution event and Set Fire event are connected through two paths, which tell the
story of angry protesters revenge the death of Nimral-Nimr against Saudi Arabia by attacking its embassy.

event network. In Figure 1, a good represen-
tation of the Set Fire event should involve the
Execution event because the latter clarifies the
grievance motivating the former. We further en-
rich event representations by introducing more con-
text from the entire event network. Compared with
other methods to connect events (e.g., with event-
event relations (Pustejovsky et al., 2003; Cassidy
et al., 2014; Hong et al., 2016; Ikuta et al., 2014;
O’Gorman et al., 2016)), our representation of each
event grounded in an event network is semantically
richer.

Based on these two hypotheses, we introduce a
new task of Event Network Embedding, aiming
at representing events with low-dimensional and
informative embeddings by incorporating neighbor-
ing events. We also propose a novel Global Event
Network Embedding Learning (GENE) frame-
work for this task. To capture network topology
and preserve node attributes in the event representa-
tions, GENE trains a graph encoder by minimizing
both structural and semantic losses. To promote
relational message passing with focus on differ-
ent parts of the graph, we propose an innovative
multi-view graph encoding method.

We design Event Network Structural Probes,
an evaluation framework including a series of struc-
tural probing tasks, to check the model’s capability
to implicitly incorporate event network structures.
In this work, the learned node embeddings are in-
trinsically evaluated with node typing and event
argument role classification tasks, and applied to
the downstream task of event coreference resolu-
tion. Experimental results on the augmented Auto-
matic Content Extraction (ACE) dataset show that
leveraging global context can significantly enrich

the event representations. GENE and its variants
significantly outperform the baseline methods on
various tasks.

In summary, our contributions are:

• We formalize the task of event network em-
bedding and accordingly propose a novel un-
supervised learning framework, which trains
the multi-view graph encoder with topology
and semantics learning losses.
• We design a series of incrementally structural

probing tasks, including node typing, argu-
ment role classification, and event coreference
resolution, to comprehensively evaluate the
event network embedding models.
• We demonstrate that our event network em-

bedding is effective and general enough to
enhance downstream applications.

2 Problem Formulation

Event Network. An event network with n nodes
is a heterogeneous attributed network denoted as
G = {V,E}, where V and E are node and edge
sets, respectively. Each node vi = 〈ai, bi, si, li〉 ∈
V represents an event or entity mention, where
ai and bi are the start and end word indices in
sentence si, and li is the node type label. Each edge
eij = 〈i, j, lij〉 ∈ E represents an event-entity or
entity-entity relation, where i and j are indices of
the involved nodes and lij is the edge type label.

In this work, we initialize the semantic repre-
sentation of each node vi with an m-dimensional
attribute vector xi derived from sentence context us-
ing a pretrained BERT model (Devlin et al., 2019).

Semantic Proximity (Gao and Huang, 2018).
Given an event network G = {V,E}, the semantic
proximity of node vi and node vj is determined by
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the similarity of node attribute vectors xi and xj . If
two nodes are semantically similar in the original
space, they should stay similar in the new space.

Local Neighborhood. Given G = {V,E}, the
local (one-hop) neighborhood Ni of node vi is de-
fined as Ni = {vj ∈ V | eij ∈ E}. For example,
the local neighborhood of one event is composed
of its argument entities. Given event-entity node
pairs, the task of argument role classification is to
label the local neighborhood of events.

Global Neighborhood. Given G = {V,E},
node vj belongs to the global (k-hop with k ≥ 2)
neighborhood of node vi, if node vi can walk to
node vj in k hops. For example, two events are 3-
hop neighbors when there is a path from one event
to the other through two entity nodes.

Event Network Embedding. Given an event
network G = {V,E} with n nodes, the task of
event network embedding aims to learn a mapping
function f : {V,E} → Y or f : Rn×m×Rn×n →
Rn×d, where Y = [yi] ∈ Rn×d is the node rep-
resentation, d is the embedding dimension, and
Y should preserve the Semantic Proximity, Local
Neighborhood and Global Neighborhood.

3 Model

3.1 Approach Overview
Compared to other network embedding tasks, there
are three challenges in event network embedding:

• Data Sparsity: We rely on supervised Infor-
mation Extraction (IE) techniques to construct
the event network, because they provide high-
quality knowledge elements. However, due to
the limited number of types in pre-defined on-
tologies, the constructed event network tends
to be sparse.
• Relational Structure: The event network is het-

erogeneous with edges representing relations
of different types. Relation types differ in
semantics and will influence message passing.
• Long-Distance Dependency: Global neighbor-

hood preservation requires node embedding
to capture the distant relations between two
nodes.

We first initiate the event network by event and
entity extraction, event argument role labeling and
entity-entity relation extraction. The nodes in the
event network are events and entities. If entity
coreference resolution results are available, we
merge coreferential entity mentions and label the

mention text with the first occurring mention. For
each node vi, we derive itsm-dimensional attribute
vector xi with its mention text by averaging the
corresponding contextual token embeddings from
a pretrained bert-base model. The edges in the
event network come from the event argument roles
connecting event mentions and entities, and the
entity-entity relations. In addition, to alleviate the
data sparsity problem we enrich the event network
with external Wikipedia entity-entity relations and
event narrative orders as a data preprocessing step
detailed in Section 5.1.

We propose an unsupervised Global Event Net-
work Embedding (GENE) learning framework for
this task (Figure 2). We first encode the graph
with a Relational Graph Convolutional Network
(RGCN) (Schlichtkrull et al., 2018) based multi-
view graph encoder, in which the multi-view com-
ponent puts focus on various perspectives of the
graph. To capture both the semantic and topologi-
cal contexts, i.e. the node attributes and graph struc-
ture, in event node representation, GENE trains the
graph encoder by minimizing semantic reconstruc-
tion loss and relation discrimination loss.

3.2 Multi-View Graph Encoder

Given an event network G = {V,E}, the graph
encoder projects the nodes into a set of embeddings
Y while preserving the graph structure and node
attributes. As shown in Figure 2, we first feed
different views of G to the graph encoder, then
integrate encoded node embeddings into Y .

RGCN. Because of the relational structure of
event network, we apply RGCN (Schlichtkrull
et al., 2018), a relational variant of GCN (Kipf
and Welling, 2017), as the graph encoder. RGCN
induces the node embeddings based on the local
neighborhood with operations on a heterogeneous
graph. It differs from GCN in the type-specific
weights in message propagation.

We stack two RGCN layers in the encoder. The
hidden state of node vi in the first layer is initiated
with node attribute xi. The output of the former
layer serves as the input of the next layer. Formally,
in each RGCN layer the hidden state h of node vi
is updated through message propagation with the
hidden states of neighbors (and itself) from the last
layer and message aggregation with an addition

44



encode

FeatureEmbedding

Node Reconstruction Loss

Relation Discrimination Loss

Event 
Network

Event-Entity
View

Event
Entity

Complete
View

Event-Only
View

Entity-Only
View

RGCN

encode

encode

encode

integrate

Node
Embeddings

Concatenated
Embeddings

Relation
Discriminator

+

-

Figure 2: An overview of the proposed GENE framework. The event network is encoded by a relational graph
convolutional network, which is trained with node reconstruction loss and relation discrimination loss.

operation and an element-wise activation function.
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i = σ(W
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r h
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where h(l)i ∈ Rd(l) is the hidden state of node vi
at the l-th layer of RGCN, d(l) is the dimension
of the hidden state at the l-th layer, R is the edge
relation set, N r

i is the neighborhood of node vi
under relation type r ∈ R, W (l)

r is the trainable
weight matrix of relation type r at the l-th layer,
ci,r = |N r

i | is a normalization constant, and σ is
Leaky ReLU.

Weight Decomposition. In order to reduce
the growing model parameter size and prevent
the accompanying over-fitting problem, we follow
(Schlichtkrull et al., 2018) and perform basis de-
composition on relation weight matrix:

W (l)
r =

B∑

b=1

a
(l)
rb V

(l)
b ,

where the edge weightW (l)
r is a linear combination

of basis transformations V (l)
b ∈ Rd(l+1)×d(l) with

coefficients arb. This basis decomposition method
reduces model parameters by using a much smaller
base set B to compose relation set R and can be
seen as a way of weight sharing between different
relation types.

Multiple Views. The structure of event net-
works can be viewed in multiple different perspec-
tives. For example, when entity-entity relations are
masked out, an event network degenerates to pieces
of isolated events and only local neighborhood will
be observed. The advantage of separate modeling

is that it enables the graph encoder to focus on
different perspectives of the graph and lessens the
over-smoothing problem (the tendency of indistin-
guishable encoded node embeddings). Therefore,
we propose to encode the network G = {V,E}
from the following views:

(1) Complete View: We keep all nodes and all
edges in this view.

(2) Event-Entity View: We keep all nodes and
only event-entity relations in this view. Events are
isolated as single subgraphs, each of which only
includes the corresponding event and its argument
entities.

(3) Entity-Only View: We only keep entity nodes
and entity-entity relations in this view. Information
is flowed only among entity nodes and will not be
influenced by events.

(4) Event-Only View: We only keep event nodes
and event-event relations in this view. Similarly,
events are isolated from entities.

We feed the event network in different views as
separate inputs to the graph encoder, and integrate
the encoded results in three ways:

Concatenation. Node embeddings of d
v dimen-

sions from v views are directly concatenated with
ycat = [y0 · y1 · · · yv−1].

Averaging. Node embeddings of d dimensions
from v views are averaged with yavg = 1

v

∑v
j=1 y

j .
Weighted Averaging. Node embeddings of

d dimensions from v views are averaged with
ywavg = 1

v

∑v
j=1W

j
v yj , where W j

v is a trainable
matrix.

3.3 Topology Learning

To capture neighborhood information, we train the
graph encoder with relation discrimination loss to
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learn the graph topology.

LT =
∑

i

(
∑

r∈R

∑

j∈N ri

E[logDr(yi, yj)]

+
∑

r∈R

∑

j′ /∈N ri

E[log(1−Dr(yi, yj′))])

The relation-specific discriminator Dr determines
the probability score for one node’s being con-
nected with another node in relation r:

Dr(yi, yj) = σ(yTi W
r
Dyj)

where W r
D is a trainable bi-linear scoring matrix

and σ is Sigmoid funtion. We choose binary dis-
criminator over multi-class classifier to capture fea-
tures required for independent classification deci-
sions.

3.4 Semantics Learning
To preserve the node semantics, we perform node
attribute reconstruction with a two-layer feed-
forward neural network:

LS =
∑

i

‖xi − φ(yi)‖2

where xi represents the attributes of node vi, yi
represents the encoded embedding of node vi, and
φ : Rn×d → Rn×m denotes the non-linear trans-
formation function. LS loss evaluates how much
information required to reconstruct node attributes
is preserved in the encoded node embeddings.

3.5 Training
To encourage the graph encoder to learn both the
graph topology and node semantics, we combine
the structural loss and semantics loss as the final
objective function:

L = LT + λLS

where λ is a weight normalization hyper-parameter.

4 Structural Probes for Event Network

As there is no existing work on comprehensive
event representation evaluation, in this work we de-
sign an evaluation framework with a series of prob-
ing tasks to comprehensively evaluate the model’s
capability to capture network structures and pre-
serve node attributes. Structural Probes are models
trained to predict certain properties from inferred
representations, and have been used to understand

linguistic properties (Hewitt and Manning, 2019;
Conneau et al., 2018).

The task of event network embedding requires
the embedded distributional node representations
to preserve semantic proximity, local neighborhood
and global neighborhood. Accordingly, we intrinsi-
cally evaluate the semantics preservation with node
typing and assess the local neighborhood preser-
vation with event argument role classification. We
also apply the node embeddings to a downstream
task, event coreference resolution, to extrinsically
evaluate the global neighborhood preservation.

Node Typing and Event Argument Role Classi-
fication are conducted under the same evaluation
setting: given the learned node embeddings, pre-
dict the labels with a multi-layer perceptron (MLP)
based classifier. If the input of the classifier is of dif-
ferent dimension to the event network embeddings,
it will be first projected into the same dimension.
The classifier is a two-layer feed-forward neural
network with a linear transformation layer, a non-
linear activation operation, a layer normalization, a
dropout operation, and another linear transforma-
tion layer. The classifier is designed to be simple
on purpose so that it will be limited in reasoning
ability and thus the evidence for classification will
be mainly derived from the node embeddings.

4.1 Node Typing
The event or entity type of each node can be in-
ferred from the sentence context of its mentions.
As the node attribute vector xi for node vi comes
from the contextual word embeddings, xi naturally
implies its node type. This characteristic is sup-
posed to be preserved after the node has been fur-
ther embedded and the embedding dimension has
been reduced.

We evaluate the node semantics preservation by
checking whether the node types can be recovered
from the node embeddings. Given one event or en-
tity node, our evaluation model predicts its type out
of 45 labels, which includes 7 coarse-grained entity
types, 5 value types, and 33 event types as defined
in the NIST Automatic Content Extraction (ACE)
task. The performance on this task is compared in
terms of multi-label classification Micro F1 score.

4.2 Event Argument Role Classification
We detect local neighborhood preservation by eval-
uating whether the event-entity relation (event ar-
gument role) can be recovered from the node em-
beddings. Given one event node and one entity
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node, we predict the relation type between each
pair of nodes out of 238 labels. Each label con-
sists of an event type and an argument role type as
defined in ACE. For example, the argument role
label “Justice:Arrest-Jail:Agent" can only be cor-
rectly selected when the event node implies the type
“Justice:Arrest-Jail" and the entity node implies its
role being the “Agent". Compared to the traditional
argument role labeling procedure, this setting skips
the step of mention identification, which has been
done in network construction process. The perfor-
mance is reported with multi-label classification
Micro F1 score.

4.3 Event Coreference Resolution

The goal of event coreference resolution is to de-
termine which event mentions refer to the same
real-world event. The features for similarity com-
putation used in previous work are typically limited
to event triggers, arguments and sentence-level con-
texts (Chen et al., 2009; Chen and Ji, 2009; Sam-
mons et al., 2015; Lu and Ng, 2016; Chen and Ng,
2016; Duncan et al., 2017; Lai et al., 2021). How-
ever, event arguments are often distributed across
the content of an article. Therefore a global event
network can ground event mentions into a wider
context with related events and help cluster coref-
erential mentions more accurately.

In this task we evaluate the impact of apply-
ing event network embedding as additional fea-
tures on enhancing event coreference resolution.
We concatenate the event embeddings learned by
the event network and by a fine-tuned SpanBERT
model (Joshi et al., 2020) as the input for the scor-
ing function. The training procedure is the same as
that in (Joshi et al., 2019).

We report F1 scores in terms of B3 (Bagga and
Baldwin, 1998), MUC (Vilain et al., 1995), CEAFe
(Luo, 2005), BLANC (Recasens and Hovy, 2011)
metrics, and also their averaged results (AVG).

5 Results and Analysis

5.1 Dataset

We construct corpus-level graphs for training, de-
velopment, and test sets from the English subset of
Automatic Content Extraction (ACE) 2005 dataset2.
We follow the pre-processing steps in (Lin et al.,
2020) and show the dataset statistics in Table 1.

2https://www.ldc.upenn.edu/collaborations/
past-projects/ace

We perform automatic entity linking (Pan et al.,
2017) to link entities to Wikipedia. Entity nodes
linked to the same Wikipedia entity are merged into
one node. We further retrieve entity-entity relations
from Wikidata and enrich the event network with
these connections, such as the part-whole relation
between Tehran and Iran in Figure 1. We also add
narrative event-event relations by connecting every
pair of events within one document as edges in the
graph.

5.2 Baseline
Non-Graph Event Representation Methods.
Mention-based method represents events with con-
textual representations inferred by BERT (Devlin
et al., 2019). Tuple-based method uses the aver-
aged contextual representations of event mentions
and its arguments.

Graph Representation Methods. Skip-
gram (Mikolov et al., 2013) learns graph topology
by increasing the predicted similarity of adjacent
node embeddings and decreasing the similarity of
irrelevant node embeddings with random negative
sampling:

LG =
∑

i

(
∑

j∈Ni
log σ(yTj yi)+

∑

j′ /∈Ni
log σ(−yTj′yi))

Deep Graph Infomax (Velickovic et al., 2019)
captures graph topology by maximizing the mu-
tual information between patch representations and
higher-level subgraph summary:

LD =
∑

i

(
∑

j∈Ni
E[logD(yi, s)]

+
∑

j′ /∈Ni
E[log(1−D(yj′ , s))])

where the subgraph summary s is read out as the
average of node embeddings and D is the discrim-
inator deciding the probability score for node’s
being contained in the summary.

For fair comparison, we train the same frame-
work with the following graph representation learn-
ing methods.

Event Coreference Resolution. Besides exist-
ing methods (Bejan and Harabagiu, 2010b; Liu
et al., 2014) we implement the model architec-
ture (Lee et al., 2017) that has achieved the current
state-of-the-art results in entity coreference resolu-
tion (Joshi et al., 2019) and cross-document event
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Article
Node Edge

Event Entity Event-Entity Entity-Entity Event-Event
Original Wiki* Narrative* Coref

ACE
train 521 4,353 3,688 7,888 6,856 7,040 70,992 912
dev 30 494 667 938 723 853 12,572 144
test 40 424 750 897 796 1,543 6,154 121

Table 1: Statistics for the enhanced ACE 2005 dataset. Wiki and Narrative are enriched event-event relations.

coreference resolution (Cattan et al., 2020). We
use SpanBERT (Joshi et al., 2020) for contextual
embeddings. The detailed methods about the base-
line event corefernece resolution framework are
described in (Lai et al., 2021). In this experiment,
we compare the performance with and without our
event network embeddings as additional features.

5.3 Training Details

All models are implemented with Deep Graph Li-
brary and Pytorch framework. We train each mod-
els for 10 epochs and apply an early stopping strat-
egy with a patience of 3 epochs (if the model does
not outperform its best checkpoint for 3 epochs on
validation set we will stop the training process).
The batch size is 64.

The hyper-parameters are selected based on
model performance on development set. The model
is optimized with the Adam optimizer with a learn-
ing rate of 1e − 5 and a dropout rate of 0.1. The
embedding dimension is 256 and the hidden di-
mension is 512. The lambda in loss function is 1.0.
On average it takes approximately four hours to
train a model until converge with one Tesla V100
GPU with 16GB DRAM. To improve training effi-
ciency, neighbor pre-sampling is performed for all
topology learning losses.

5.4 Results and Analysis

We conclude the results shown in Table 2 with the
following observations:

GENE preserves node semantics well with
low-dimensional and informative embeddings.
Though with only one third of embedding dimen-
sion (typically 256, comparing to 768 in other event
representation baselines), our models have higher
performance on Node Typing, which shows the
node semantics has been well preserved.

Topology learning loss is crucial to event
neighborhood proximity preservation. We pro-
pose to use relation discrimination loss to learn the
graph structure and exam it with argument role clas-
sification task. Methods without topology learning
objectives (Event as Mention, Event as Tuple, and

GENE w/ LT ) have a significant drop of perfor-
mance on this task, while our proposed model has
the best performance because of the similarity and
transferability between argument role classification
and argument role discrimination in LT . Another
reason is that only LT is designed for heteroge-
neous graphs while SKG and DGI do not consider
relation types.

In general Multi-view encoder is beneficial.
Compared to the single-view variants, our multi-
view encoder has overall better performance. Keep-
ing complete view has the most closed perfor-
mance, while discarding event-entity relations
yields significant drop on argument role classifi-
cation.

Averaging multi-view embeddings is better
than Weighted Averaging. Intuitively weighted
averaging captures the correlations among different
embedding dimensions, promotes salient dimen-
sions and/or teases out unimportant ones within
the same view by performing a linear transforma-
tion within each view before averaging over views.
However, results show that it is not comparable
with averaging and concatenation multi-view en-
coders. One possible reason is that the distribution
of embedding within each view is greatly restricted
by the input embedding distribution.

GENE improves the performance on event
coreference resolution by connecting events
through related entities. SpanBERT model is a
strong baseline with better performance compared
with the former methods. We show that using
our embeddings as additional features, SpanBERT
can further improve all event coreference resolu-
tion scores. In the following example, SpanBERT
model fails to detect the coreference link between
event sell and event buy while GENE succeeds by
discovering the relation between the entity argu-
ments.
... The Times said Vivendi Universal was negotiating to
sell its flagship theme parks to New York investment firm
Blackstone Group as a the first step toward dismantlingits
entertainment empire . Vivendi Universal officials in the
United States were not immediately available for comment
on Friday . Under the reported plans , Blackstone Group
would buy Vivendi ’ s theme park division , including ...
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Model Node Argument Event Coreference
Typing Classification MUC B3 CEAFe BLANC AVG

Event Mention 80.58 71.57 61.81 87.79 84.24 74.97 77.20
Event Tuple 68.40 72.13 63.10 89.06 85.23 77.6 78.75
Skip-gram(Mikolov et al., 2013) 75.55 93.42 59.81 88.09 83.40 77.30 77.15
Deep Graph Infomax(Velickovic et al., 2019) 74.96 95.32 59.36 87.05 82.19 73.41 75.50
HDP(Bejan and Harabagiu, 2010b) - - - 83.8 76.7 - -
(Liu et al., 2014) - - 50.98 89.38 86.47 70.43 74.32
SpanBERT(Joshi et al., 2020) - - 65.72 89.48 85.35 79.82 80.09
GENE 81.26 95.76 68.99 89.53 85.86 80.38 81.19
· w/o LT 78.78 79.04 70.63 89.03 84.88 81.13 81.42
· w/o LS 78.02 95.32 68.14 89.53 86.17 79.90 80.94
· w/ Event-Entity view 80.82 92.64 60.09 87.97 84.75 70.67 75.87
· w/ Event-only & Entity-only views 74.79 72.02 60.86 88.46 85.15 75.64 77.53
· w/ Complete view 79.42 90.52 63.01 88.11 84.94 75.50 77.89
· w/ Concatenated integration 78.45 93.87 70.08 89.81 85.85 81.08 81.71
· w/ Weighted integration 74.53 94.31 66.36 88.99 85.81 76.97 79.53

Table 2: Results on test set of ACE dataset. Node typing and argument role classification results are reported in
micro F1 scores(%). Event Coreference are performed with our embeddings as additional features.

Remaining Challenges. One of the unsolved
challenges is to capture the long distance relation
in the encoder in addition to the two encoder lay-
ers. Another challenge is the limited ability in
entity coreference resolution. In some failing cases,
GENE model does not link two events because
some of their connecting arguments are expressed
as pronouns. This limitation is inherited from the
upstream event extraction.

6 Related Work

Event Representation. Some previous efforts
enrich event representations by introducing argu-
ments (Levin, 1993; Goldberg, 1995; Ritter and
Rosen, 2000; Huang and Ahrens, 2000; Iwata,
2005; Goldberg, 2006; Xu and Huang, 2013; Bies
et al., 2016; Do et al., 2017; Kalm et al., 2019),
intent and sentiment (Ding et al., 2019), and tem-
poral information (Tong et al., 2008). (Weber et al.,
2018) proposes a tensor-based event composition
approach to combine a trigger and arguments to
represent each event. We extend the definition of
scenario to multiple inter-connected events. (Modi,
2016) captures statistical dependencies between
events but limits to script data sets where the events
are naturally organized in sequential temporal order.
Our approach captures a rich variety of explicit se-
mantic connections among complex events. (Hong
et al., 2018) learns distributed event representa-
tions using supervised multi-task learning, while
our framework is based on unsupervised learning.
Network Embedding. Our work falls into the
scope of unsupervised learning for heterogeneous
attributed network embeddings. Heterogeneous
network embedding methods (Chang et al., 2015;

Dong et al., 2017; Wang et al., 2019) jointly model
nodes and edges. Attributed network embedding
approaches (Gao and Huang, 2018; Yang et al.,
2015) on the other hand put focus on preserving
node attributes when encoding the networks.
Event Coreference Resolution. Most existing
methods (Chen et al., 2009; Chen and Ji, 2009; Be-
jan and Harabagiu, 2010a; Zhang et al., 2015; Peng
et al., 2016; Lai et al., 2021) only exploit local fea-
tures including trigger, argument and sentence con-
text matching. To prevent error propagation, some
models perform joint inference between event ex-
traction and event coreference resolution (Lee et al.,
2012; Araki and Mitamura, 2015; Lu and Ng, 2017)
or incorporate document topic structures (Choubey
and Huang, 2018). To the best of our knowledge
our method is the first to leverage the entire event
networks to compute similarity features.

7 Conclusions and Future Work

We propose a novel continuous event representa-
tion called Event Network Embedding to capture
the connections among events in a global context.
This new representation provides a powerful frame-
work for downstream applications such as event
coreference resolution and event ordering.

In the future we aim to improve the ability to cap-
ture the long-distance relations in the graph encode
by introducing event-event relation in the form of
multiple meta-paths. The relations, or the event
evolution patterns, extracted from large-scale cor-
pora can guide event-related reasoning and act as
shortcut linking event nodes. Another direction is
to explore a unified automatic evaluation bench-
mark for event representation.
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Abstract

Semantic representation that supports the
choice of an appropriate connective between
pairs of clauses inherently addresses discourse
coherence, which is important for tasks such as
narrative understanding, argumentation, and
discourse parsing. We propose a novel clause
embedding method that applies graph learning
to a data structure we refer to as a dependency-
anchor graph. The dependency anchor graph
incorporates two kinds of syntactic informa-
tion, constituency structure and dependency
relations, to highlight the subject and verb
phrase relation. This enhances coherence-
related aspects of representation. We design
a neural model to learn a semantic representa-
tion for clauses from graph convolution over
latent representations of the subject and verb
phrase. We evaluate our method on two new
datasets: a subset of a large corpus where the
source texts are published novels, and a new
dataset collected from students’ essays. The
results demonstrate a significant improvement
over tree-based models, confirming the im-
portance of emphasizing the subject and verb
phrase. The performance gap between the two
datasets illustrates the challenges of analyzing
student’s written text, plus a potential evalua-
tion task for coherence modeling and an appli-
cation for suggesting revisions to students.

1 Introduction

The clause is a fundamental unit in coherent text.
Much work in NLP investigates how clauses com-
bine to form larger units, ultimately spanning a
whole discourse (Wang et al., 2017; Ji and Eisen-
stein, 2014); how to decompose complex sentences
into distinct propositions (Wang et al., 2018; Li
et al., 2018; Narayan et al., 2017); how to iden-
tify explicit or implicit semantic relations between
clauses (Lee and Goldwasser, 2019; Rutherford
and Xue, 2015), or how to select a connective to
link multiple clauses into a complex sentence (Nie
et al., 2019; Malmi et al., 2018). In this paper, we

P1 Bob cooked Tia a burger. P1, Q1 alth
P2 Bob cooked himself a burger. P1, Q2 bec
Q1 Bob was hungry. P1, Q3 none
Q2 Tia was hungry. P1, Q4 alth
Q3 Bob was thirsty. P2, Q1 bec
Q4 Tia was thirsty. P2, Q2 alth
alth(ough): contrast P2, Q3 alth
bec(ause): precondition P2, Q4 none

Figure 1: For the propositions Pm, Qn to be joined by
although or because, Pm and Qn. must have some se-
mantic commonality to allow for contrast or causation.
Four cases allow although. The two cases that allow be-
cause have a strong semantic relation between the pred-
icates (make someone a burger, be hungry) and, there
is no conflict in the to-object of the first clause and the
subject of the second. The remaining two cases have
no commonality, and neither connective can occur.

focus on clause representation to support accurate
connective prediction, a task which is important
for coherence modeling (Pishdad et al., 2020), fine-
grained opinion mining (Wiegand et al., 2015), ar-
gument mining (Kuribayashi et al., 2019; Jo et al.,
2020) and argumentation (Park and Cardie, 2014).
We present a case for a model that learns from a
novel graph we refer to as a dependency-anchor
graph, which retains information from dependency
parses and constituency parses of input sentences
that is critical for identification of the core proposi-
tion of a clause, while omitting structural informa-
tion that is less relevant.

We assume that determining whether two clauses
can be joined by a connective, and what connective
to choose, depends primarily on the main verb in
each clause, and on the arguments that occur in
both clauses, particularly the grammatical subject.
There are a large number of connectives and con-
nective phrases in English; e.g., the Penn Discourse
Tree Bank (Prasad et al., 2008) has 141. Here we
illustrate the nature of the problem with respect to
the two connectives, although and because. Fig-
ure 1 illustrates how the choice of connective to
join two simple clauses Pm and Qn, and whether
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a connective is appropriate at all, depends on the
main verbs and their arguments. Use of although
requires only some dimension of contrast between
the joined clauses, while because requires that Qn

be a precondition for Pm. The table lists two vari-
ants of Pm with cook as the main verb, one with
three distinct entities (Bob, Tia, a burger) and one
with two (Bob, burger). These are considered in
turn with four variants of Qn where the predicate
is either closely related to cook (e.g.be hungry) or
not (e.g., be thirsty), and the two propositions share
an argument or not. In two of the eight cases, nei-
ther connective makes sense because there is no
other cohesive relation (e.g., coreference, associa-
tion) between the clauses. In four cases, there is
some similarity and some contrast, which licenses
although, and in two cases the more restrictive
condition that licenses because is present. These
examples illustrate that both the choice of verb, and
the grammatical relations of the arguments to the
verb, affect whether a connective can be used, and
which one. Adding modifiers on the subject or ob-
ject, or VP or sentence adverbials, would have little
effect on choice of connective in these sentences.

We assume that training clause representations
based on connective prediction will be useful for
developing representations that capture aspects of
coherence, such as those shown in Fig 1. Pish-
dad et al. (2020) examine a series of coherence
evaluation tasks that capture different aspects of
coherence. They argue that connective substitution
is one of four critical tests of coherence modeling.
For example, connectives that express temporal
succession should not be substitutable for connec-
tives that express simultaneity, as doing so would
change the meaning. Studies of students’ writing
skills look at connectives with respect to quality
of students’ argumentative writing (Kuhn et al.,
2016), and whether automated assessments differ
for low-skilled versus high-skilled writers (Perin
and Lauterbach, 2018). Although students can fill
in correct connectives eliminated from source texts,
they typically do not use connectives as precisely
in their own writing (Millis et al., 1993). NLP
applications aimed at supporting student revision
use connectives as an indication of writing qual-
ity (Nguyen et al., 2016; Afrin and Litman, 2018),
but do not help students choose correct connectives.
To better evaluate model performance in connective
selection, and to highlight differences between text
from skillful versus developing writers, we provide

two large datasets of clauses linked by connectives
drawn from published fiction and from students’
written text. We demonstrate the potential for a
model trained on expert data to identify incorrect
uses of connectives in students’ writing, where stu-
dents frequently misuse connectives like and.

Our contributions are: 1) a data structure we
refer to as a Dependency-Anchor graph that incor-
porates information from both dependency and con-
stituency trees; 2) DAnCE (Dependency-Anchor
graph representation for Clause Embedding), a
novel neural architecture that exploits bi-LSTMs
at the lower layers for learning inter-word influ-
ences, and graph learning of relational structure
encoded in the dependency-anchor graph; 3) two
datasets for carefully edited versus student text.
Our approach outperforms the state-of-the-art on
connective prediction.

2 Motivation

The question of whether latent representations of
sentence meaning can benefit from syntax has been
addressed in work that compares recurrence and
recursion, and finds the main benefit of recursive
models to be better treatment of long-distance de-
pendencies (Li et al., 2015). Two recent works
compare tree-based models derived from depen-
dency parses with constituency parses on semantic
relatedness tasks, with no clear advantage of one
grammar formalism over the other (Tai et al., 2015;
Ahmed et al., 2019). As discussed in (Tai et al.,
2015), dependency trees provide a more compact
structure than constituency trees, through shorter
paths from the root to leaf words. Further, all of
a verb’s arguments are its direct dependents. The
recursive structure of constituency trees, on the
other hand, facilitates identification of subtrees that
span more of the leaf words as one moves up the
tree, and that have a compositional contribution to
the meaning of the sentence. Tree-based models
take input from syntactic parses and compose the
latent vectors through a uni-directional traversal,
where the parent node representation is the sum
of the child nodes. For both formalisms, many pa-
rameters are needed to encode the child-to-parent
representations. For this reason, previous work
strictly limits the model dimensionality (Tai et al.,
2015; Ahmed et al., 2019).

To combine advantageous features from both
kinds of grammar formalism, we propose
dependency-anchor graphs as a compact represen-
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tation that highlights the core elements of a propo-
sition. We construct a graph with only selected
components from two kinds of parse trees, thus
limiting the number of parameters to learn. The
subject of a clause and the main verb phrase are
the two outer nodes in the graph, where we refer
to the verb phrase node as the anchor. The sub-
ject arc from a dependency parse points from the
anchor node to the subject. The anchor node is a
subgraph that retains the dependency structure of
words within the verb phrase. Other syntactic rela-
tions (e.g., involving words in the subject phrase or
adverbial phrases), are ignored.

To encode the graph, we propose DAnCE,
which applies graph convolution (GCN) (Kipf and
Welling, 2017) to encode the arc between the sub-
ject and verb phrase. The input to the graph convo-
lution comes from a bidirectional LSTM (Hochre-
iter and Schmidhuber, 1997) that encodes all the
input tokens, including the words outside the sub-
ject and verb phrase. The interaction that DAnCE
captures between subject and verb phrase has been
essential in word representation but missing in tree
based models (Weir et al., 2016; White et al., 2018).

We demonstrate the effectiveness of the
dependency-anchor graph and DAnCE architecture
through its superior performance over baselines, in-
cluding tree-based models. The rest of the paper is
organized as follows: we first present related work
and give a detailed discussion of the Dependency-
Anchor Graph and DAnCE. Then we present the
datasets, experiments and discussion.

3 Related Work

Much research has addressed ways to learn high
quality clause representations. Xu et al. (2015)
propose a shortest dependency path LSTM for sen-
tence representation in the task of relation classifi-
cation. Dai and Huang (2018) propose a BiLSTM
based model that combines paragraph vectors and
word vectors into clause embeddings for a situation
entity classification task. Connective prediction
has often been addressed: Ji and Eisenstein (2015)
and Rutherford et al. (2017) use recursive neu-
ral networks with parse trees as input to predict
connectives and discourse relations, with solid im-
provements on PDTB. Malmi et al. (2018) use a
decomposable attention model to predict connec-
tives on sentences pairs extracted from Wikipedia.
Our work draws on the idea of incorporating syn-
tax into representation for connective prediction,

Figure 2: A dependency-anchor graph for a clause (top right)
is constructed from its phrase-structure parse (top left) and
dependency parse (bottom). Words spanning the VP subtree
of the constituency parse (orange nodes) become a single an-
chor node whose internal structure preserves the dependencies
among words in the VP. The nsubj dependent of the main verb
is promoted to be a dependent of the entire anchor.

specifically for clauses.
Sileo et al. (2019) propose a large dataset with

170M sentence pairs with connectives for unsuper-
vised sentence representation learning, and apply
it on the SentEval task. Nie et al. (2019) develop
universal sentence embeddings from a connective
prediction task, and create a large corpus extracted
from published fiction. They achieve state-of-the-
art performance on predicting connectives, as well
as on sentence embedding benchmarks from Sen-
tEval (Conneau and Kiela, 2018). Our work mod-
ifies the corpus from (Nie et al., 2019) to restrict
the pairs of sentences for connective prediction to
simple sentences. Our goal is to generate clause
embeddings specifically for connective prediction,
rather than universal sentence representation.

4 DAnCE Architecture

The input to DAnCE is a graph for each simple
sentence that includes syntactic information from a
phrase structure parse to identify the VP, and from
a dependency parse to identify the grammatical
subject, and dependencies within the VP.

4.1 Dependency-Anchor graph

The anchor VP and its subject serve as nodes
in a graph, as illustrated in Figure 2. The Stan-
ford CoreNLP dependency grammar has 58 de-
pendency relations, eight of which are a type of
subject (Van Valin, 2001; Schuster and Manning,
2016). The subject in our dependency-anchor
graphs can originate as any of these eight types,
and is represented as a node with a single subject
edge to the anchor. The anchor node has internal
graph structure, that replicates the dependency re-
lations among the words in the VP. We align two
syntax parses by the words then extract the depen-
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dencies between words inside the anchor. Each
dependency-anchor graph constitutes a complete
proposition. The dependency relation from the an-
chor to the subject, and the other dependencies for
words within the VP, differentiate words by their
closeness to the root verb of the dependency parse.
Words outside the subject-anchor are omitted from
the graph to maintain the focus of subject-VP, but
they are encoded by the BiLSTM as part of the
sequence and contribute to the hidden states.

4.2 Neural architecture
To learn a semantic representation from a
dependency-anchor graph, DAnCE has the three
layers illustrated in Figure 3. An initial embedding
lookup layer retrieves word embeddings. A BiL-
STM layer captures the hidden states over the input
words at each time step. Finally, a graph convo-
lution layer takes the subject word representation
from the BiLSTM (the S node in Figure 3), and an
anchor embedding that is generated from an sepa-
rate module (the A node in Figure 3), to produce
the final learned semantic representation.

The input sequence of words xi ∈ X is first fed
into a pre-trained word embedding lookup layer,
using GloVe (Pennington et al., 2014), with a bidi-
rectional LSTM of dimension 2D, where D is the
dimension of hidden states in the BiLSTM:

hi = f(xi, hi−1), hi ∈ R2D (1)

The BiLSTM captures long-term dependencies
within the clause. The resulting latent representa-
tion for the subject is fed directly to the graph con-
volution layer. The anchor embedding hA is com-
puted with two alternative settings: Flat-Anchor
(FA) and Graph-Anchor (GA). The main difference
between the two settings is that FA treats the an-
chor as a sequence of words with their BiLSTM
hidden states hi, and ignores the dependency rela-
tions within the anchor. GA turns the dependencies
into an adjacency matrix and then generates hAGi
as the anchor node representation by encoding the
BiLSTM hidden states within the matrix through
graph attention (GAT) (Velic̆ković et al., 2018).
GAT will attend to whatever nodes are within the
anchor, thus it fits well for learning the anchor rep-
resentation for any length anchor. We first explain
the derivation of hAGi .

Following (Marcheggiani and Titov, 2017), we
treat the dependency arcs within the anchor as di-
rected. Given the latent representations of a pair
of nodes within the anchor hi, hj , and a one-hot

Figure 3: Overall architecture of DAnCE.

vector for each dependency arc arci,j , we compute
an attention coefficient ei,j :

ei,j = a(W hhi,W
d[hj ||arci,j ]) (2)

where || is the concatenation operation, and a, W h,
W d are learned parameters for the head and the
dependent. Then we apply softmax and a Leaky
ReLU activation to normalize the attention weights:

αi.j = LeakyReLU(
exp(ei,j)∑

m∈NA(i) exp(ei,m)
) (3)

where NA(i) represents all nodes in the anchor
that are linked to i, including itself. Leaky Relu
activation on ei,j enables the network to learn the
importance of node j and arc i, j to node i. There-
fore, αi,j is a vector, whose length is the number of
anchor words, that represents differential attention
on word pairs associated with their dependency re-
lations. We apply the attention weights on the node
features from the first BiLSTM layer:

hAGi =
∑

j∈NA(i)
αi.jW

AGhj (4)

Again, there are two alternative settings to generate
the anchor embedding. We use maxpool over all
the nodes in anchor NA:

hA =

{
Maxpool(||i∈NAhi) if FA
Maxpool(||i∈NAhAGi ) if GA

(5)

The third layer applies graph convolution (GCN)
to the subject hidden states from BiLSTM and sub-
ject and anchor nodes, where the subject node is the
hidden state from the BiLSTM and the anchor node
is the anchor embedding hA. Given a node i, we
first compute its GCN node embedding hk+1

Si
from

its neighbor N(i), including a self loop, i ∈ N(i):

hk+1
Si

= ReLu(
∑

j∈N(i)

WSkhSkj + bSk) (6)
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where k represents the k-order neighbor (the max-
imum hop between two nodes). WSk and bSk are
the learned weights and bias. We use k = 1, as
there is only one edge between the subject and an-
chor, thus hk=0

Si
is either the anchor embedding hA

or the BiLSTM output for the subject word. The
node representation is thus more informative by
merging with its relevant neighbor through graph
convolution, and enhances the final aggregation.
Once the GCN node features are obtained, we com-
pute the final embedding hKS as the average over
all node features Nk at the last layer K,

hKS =
1

|NK |
∑

v∈NK
hKv , h

K
S ∈ R2D (7)

5 Data Collection

This section introduces two corpora we use in our
experiments. They differ in genre, size, and distri-
bution of connectives, as well as a contrast between
spontaneous student writing and carefully edited
text. They also differ in the way they were anno-
tated, and in whether they include negative exam-
ples. DeSSE (Decomposed Sentences from Student
Essays) consists of sentences from students’ opin-
ion essays, 78% of which are complex. The anno-
tation of DeSSE rewrites complex sentences into
atomic tensed clauses, omitting any discourse con-
nectives. Sentences are considered complex if there
are at least two clauses with tensed verbs, thus a
sentence consisting of a subject, verb and its clausal
argument are not considered complex. The cor-
pus also includes complex sentences with relative
clauses rather than connectives, which serve as
negative examples for connective prediction. We
assume that a model should be able to discriminate
between cases where two clauses have a cohesive
relation other than one given by a connective. This
is analogous to the motivation for inclusion of ad-
versarial examples in a recent corpus for natural
language arguments (Niven and Kao, 2019). In that
work, it was shown that transformer models that
appeared to perform well without the adversarial
examples were exploiting accidental correlations,
given that performance degraded significantly once
adversarial examples were included. Previous work
has shown similar results that neural models for
summarization learn more about the position of
lead sentences in news articles than about the ac-
tual meanings of sentences, due to the lead bias in
news (Kedzie et al., 2018).

Dataset Size Avg Length Vocab
Book-Simpl 644k 7.61 52,957
DeSSE 70k 10.19 11,186

Table 1: Descriptive statistics comparing Book-Simpl and
DeSSE, including the number of clause pairs (Size), average
clause length, and vocabulary size.

DeSSE consists of 39K source sentences, with
68 connectives of the 141 connective words and
phrases identified in PDTB. Most connectives oc-
cur with very low frequency. More than 50% of
pairs are connected by and, punctuation, or no con-
nective. Fifty-five of the 68 connectives are rare
with frequencies below 1% of the total. A detailed
distribution is shown in appendix A.1

Our second corpus is a modification of the Book
corpus, which consists of connective prediction
data taken from published novels (Nie et al., 2019).
The Book corpus extracts pairs of simple or com-
plex sentences from source texts, where a connec-
tive linked the pair. The original Book corpus con-
tains 15 connectives, and two subsets of 8 and 5
connectives. We created subsets consisting of con-
nectives that joined simple clauses: Book-Simpl 5
with their 5 connectives (285K clause pairs), and
Book-Simpl 8 with their 8 (359K clause pairs).

Table 1 shows that the average clause length for
DeSSE is longer than in Book-Simpl, with one-fifth
the total vocabulary. In comparison to Book-Simpl,
the language in DeSSE is less formal and coherent.

5.1 DeSSE

DeSSE includes identification of complex sen-
tences with tensed clauses, and excludes infinitival
or gerundive clauses, as a first step towards training
corpora for clause identification. It covers a wide
range of intra-sentential syntactic and semantic phe-
nomena. It includes all tensed clauses occurring
in conjoined structures, including subordinating
conjunctions, along with relative clauses, paren-
theticals, and conjoined verb phrases. It excludes
clausal arguments of verbs, because the semantic
relationship of the clausal argument in its sentence
is given by the verb semantics. The annotation pro-
cess is unique in that it involves identifying where
to split the source sentence into distinct clauses,
and how to rephrase the source sentence into a set
of complete, independent clauses that omit any dis-
course connectives. It is designed for developing

1DeSSE is available at https://github.com/
serenayj/DeSSE. DAnCE is available at https://
github.com/serenayj/DAnCE.
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1. (If you have not experienced what they have experi-
enced), then you will never truly understand.

2. (I believe that talking about race more in a civil way
can only improve our society), but I can see why other
people may have a different opinion.

Figure 4: Original sentences from DeSSE with intra-
sentential connectives, where the clause preceding the con-
nective contains a relative clause (example 1), or a clausal
argument of the main verb (example 2).

Figure 5: Example annotation from DeSSE. Annotators first
split a sentence into segments (underlined text), then rewrite
the segments into complete sentences, omitting connectives.

connective prediction, sentence segmentation and
decomposition, and semantic representation.

Figure 4 illustrates intra-sentential connectives
(then, but) that join two clauses. In example 1), the
first clause (in parentheses) contains a free relative
clause as a verb argument (in italics). In example
2), the first clause contains a clausal argument of
the main verb. In both cases, however, the entire
first clause is the first argument of the connective.2

We collected over 17,000 opinion essays written
by U.S. university students in a large undergradu-
ate social science class. Students watched video
clips about race relations, and wrote essays in a
blog environment to share their opinions with the
class. We selected 39K sentences out of 173K for
annotation, corresponding to the first 3,592 essays.

Amazon Mechanical Turk (AMT) is a popular
crowdsourcing platform for NLP annotation. While
it facilitates data collection, using untrained anno-
tators requires care. In a series of pilot tasks on
AMT, we iteratively designed annotation instruc-
tions and an annotation interface, while monitoring
quality. Figure 5 illustrates two steps in the annota-
tion: identification of n split points between tensed
clauses, and rephrasing the source into n+1 simple
clauses, where any connectives are dropped. The
final version of the instructions describes the two
annotation steps, provides a list of connectives, and

2As in (Webber and Joshi, 1998), we take connectives to
be predicates whose arguments are the clauses they join.

illustrates a positive and negative example.3

The ten most frequent connectives in DeSSE are
and, because, when, as, so, or, for, if, also, but. We
postprocess the corpus to identify pairs of clauses
from complex sentences, and any connectives. The
resulting dataset has the following distribution: a
single atomic clause (22%), two clauses (45%) or
more than two clauses (33%). Given sentences
with exactly two atomic clauses in the source, 30%
joined them with a discourse connective.

5.2 Book-Simpl

Nie et al. (2019) presented the Book corpus, which
has 15 frequently used connectives and 4.7M pairs
of sentences. Their goal was to exploit the semantic
relationship given by the connective prediction task
to improve sentence representation, as noted above.
The Book corpus contains two versions, Book-5
with 5 connectives: and, but, if, because, when; and
Book-8, an extended version with 3 more connec-
tives: before, though, so. The sentences linked by
a connective can be simple or complex.

To create a subset of the Book corpus that is
more parallel to DeSSE, we selected Book corpus
examples where the connective linked two simple
clauses. The new Book-Simpl dataset has a distri-
bution of connectives similar to the Book corpus
(see appendix A).

6 Experiments

For our experiments to predict connectives, we
use the same classifier used in (Nie et al., 2019).
An input pair of sentence vectors representing the
clauses to be joined by a connective are concate-
nated with vectors resulting from three pairwise
vector operations: averaging, subtraction and mul-
tiplication. The concatenated vectors are fed into
three fully-connected layers, then projected to a
lower dimension prior to softmax over the classifi-
cation categories.

Experiments on Book-Simpl predict the cor-
rect connective, given positive examples of clause
pairs. Experiments on DeSSE predict the correct
connective, given positive and negative examples.
We compare DAnCE with four baselines on both
datasets, reporting accuracy and F1. Student writ-
ing is much less coherent than much of the text that
applies NLP to tasks related to discourse structure,

3The interface checked for connectives remaining in step
two to warn annotators. Details about the interface and quality
control are included in appendix B.

59



Group Model Book-Simpl 5 Book-Simpl 8 DeSSE 5 DeSSE 8
Acc. (σ) F1 Acc. (σ) F1 Acc. (σ) F1 Acc. (σ) F1

BoW CNN 61.89 (1.64) 49.70 46.31 (1.36) 30.62 53.57 (0.27) 17.70 42.95 (0.22) 9.18
SeqLSTM DisSent 68.58 (1.55) 58.78 62.92 (1.39) 48.11 48.93 (0.31) 25.27 39.86 (0.30) 15.91
Tree Tree 67.95 (1.10) 59.67 59.69 (1.58) 45.71 20.35 (0.74) 9.84 16.63 (0.77) 9.29
LSTM Tr-Attn 69.08 (0.82) 62.30 63.48 (1.40) 49.06 18.51 (0.10) 8.68 17.95 (0.72) 12.01
DAnCE FA 71.83 (0.45) 63.59 65.60 (0.55) 51.26 52.64 (0.38) 22.29 41.75 (0.25) 13.88
Models GA 71.51 (1.45) 59.93 65.38 (1.57) 50.28 53.48 (0.46) 14.73 12.01 (0.48) 9.16

Table 2: Performance of baselines and our models on Book-Simpl 5 (N=16,538), Book-Simpl 8 (N=18,946), DeSSE 5 (N=3,466)
and DeSSE (N=3,894).

such as discourse connective prediction, discourse
parsing, and semantic representation of clauses. We
find all models perform better on Book-Simpl than
DeSSE, and DAnCE-FA yields good performance
on both corpora.

6.1 Baselines and settings

We use three kinds of architecture as baselines:
Bag-of-words feed-forward networks (BoW), Tree-
based LSTM (Tree-LSTM), and sequential LSTM
(Seq-LSTM). For BoW group, we include Glove-
CNN (Kim, 2014), a widely used convolutional
network for text classification that takes word
vectors as input and generates sentence vectors.
The Tree-LSTM group includes two models: De-
pendency Tree-LSTM (Tree) (Tai et al., 2015),
which encodes the dependency parse, and an im-
proved version of Tree-LSTM with attention (Tr-
Attn) (Ahmed et al., 2019). The Seq-LSTM group
consists of DisSent (Nie et al., 2019; Conneau et al.,
2017), a BiLSTM model with max-pooling over
all hidden units of sentences, and self attention.
Hyperparameters are shown in Appendix D.

Our experiments ask two questions: 1) How does
DAnCE, which relies on graph convolution, and
whose input is a Dependency-Anchor graph, com-
pare with tree-based models? 2) How does DAnCE
compare against the two types of models that do
not rely on syntax (sequence-based and BOW). The
two anchor settings for DAnCE enable us also to
test alternative DAnCE settings (DAnCE-FA and
DAnCE-GA). Our question here is whether learn-
ing from dependency relations within verb phrases
through graph attention produces better representa-
tions for connective prediction. 4

6.2 Results

Table 2 reports mean accuracy and the standard
deviation from 16 bootstrapped iterations on 90%

4We attempt to train a fine-tune BERT on our dataset,
however due to the size of the training set we make no success
in finetuning.

of the test data, and F1 for the full test data. Boot-
strapped F1 standard deviation shows the same
magnitude as accuracy therefore is omitted from
the table. Overall, all models report higher accu-
racy and F1 on Book-Simpl than DeSSE, which
suggests that including “no connectives" increases
the difficulty of the learning task. For Book-Simpl,
increasing the number of connectives also increases
the prediction difficulty, reflected in lower accuracy
and F1 scores for all models on Book-Simpl 8 in
comparison to Book-Simpl 5. DAnCE outperforms
all baselines, DisSent falls between the two tree
variants, and the BoW model has the lowest perfor-
mance. On DeSSE 5 and 8, however, it is the BoW
model that shows the highest accuracy. DisSent
achieves the highest F1 on both versions of DeSSE.
DAnCE-FA has higher accuracy but slightly lower
F1 than DisSent, and both greatly outperform the
two tree models and DAnCE-GA.

Recall that DeSSE includes adversarial samples,
hence evaluation on DeSSE may be more revealing
in comparison to Book-Simpl. Figure 6 gives a
breakdown of F1 by connective on DeSSE 5 and
8 for DAnCE-FA, DisSent and Tree-Attn. It is
surprising that for DeSSE 5, Tree-Attn fails com-
pletely on and, so, as, while it outperforms DisSent
and DAnCE-FA on because, no connective. On
DeSSE 8, Tree-Attn fails to predict and, for, if.
DAnCE-FA and DisSent have similar F1 scores

Figure 6: Breakdown of F1 scores on DeSSE 5 (top) and
DeSSE 8 (bottom) from DAnCE-FA, DisSent and Tree-Attn.
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DAnCE-GA Book-Simpl (F1) DeSSE (F1)
Settings 5 8 5 8
-GCN 65.32 37.85 7.75 5.63
-DIR 58.34 47.85 17.44 11.75

Table 3: Ablation studies of DAnCE.

DeSSE 5 DeSSE 8
(Obs, Pred) Pairs (Obs, Pred) Pairs
(and, but) 24.0% (and, but) 18.0%
(and, and) 17.0% (and, and) 12.0%
(because, but) 7.8% (None, but) 7.3%
(None, but) 6.8% (because, but) 5.6%
(so, but) 4.1% (and, when) 4.8%

Table 4: For all pairs of sentences in the DeSSE test sets, we
compare the observed student’s usage (Obs) with the model
prediction (Pred) from DAnCE-FA trained on Book Simpl, and
sorted each pattern of observation and prediction by frequency.
The five most frequent of these patterns are shown here for
DeSSE 5 and DeSSE 8.

on and, when, if, but DAnCE-FA rarely or never
predicts the connectives so, for and as. It may be
that subtle differences in meaning based on sen-
tence elements apart from the subject and verb
phrase are predictive, given the failure of DAnCE-
FA to perform at all well on these connectives. To
summarize, DAnCE-FA performs comparably to
DisSent and shows improvements over tree-based
models. DAnCE-GA is worse than DAnCE-FA,
which might be attributed to the noisy information
introduced by dependency arcs within the anchor.

6.3 Ablation Experiment

We conducted an ablation test on DAnCE-GA to
address the following questions: 1) does the per-
formance drop if subject and verb are not high-
lighted? and 2) do undirected dependency arcs
result in better performance within the anchor. To
address the first question, we remove the GCN
layer (-GCN). To address the second, we remove
the directionality of dependency arcs inside the
anchor to produce a symmetric adjacency matrix
(-DIR). Table 3 presents F1 scores on the for sets
of connectives from Book-Simpl and DeSSE. Com-
pared to the DAnCE variants presented in Table 2,
removing the emphasis on subject and verb sig-
nificantly lowers the performance, especially on
DeSSE. Using a symmetric adjacency matrix for
graph attention results in lower performance on
Book-Simpl, but surprisingly higher F1 on DeSSE.
This shows that our emphasis on the subject and
verb phrase enhances clause representation. How-
ever, incorporating more dependency arcs within
the anchor degrades the performance.

Clause.1 He said he grew up as a Christian.
Clause.2 He then converted to Islam.
Student and DAnCE-FA but
Clause.1 He trusted his faith.
Clause.2 It helped him move on.
Student and DAnCE-FA because

Table 5: Example pairs of clauses from DeSSE 5, showing
the connective used by the student alongside the prediction
from DAnCE-FA trained on Book Simpl 5.

7 Discussion

Here we discuss the potential to suggest an alter-
native connective for students when their choice
of connective differs from a connective predicted
by a model that has been trained on profession-
ally written text. The benefits of this analysis are
two-fold: it explores the feasibility of an education
application to help students revise their choice of
connective, and it allows us to examine DAnCE’s
ability to model aspects of coherence that pertain
to choice of connective. For all pairs of sentences
in DeSSE 5 and 8, we compared the observed
choice made by the student writer with the pre-
diction from DAnCE-FA trained on Book Simpl 5
or Book Simpl 8. Table 4 shows the five most fre-
quent pairs of student choice in DeSSE 5 or DeSSE
8 versus the prediction from the model trained on
Book Simpl 5 (left columns) or trained on Book
Simpl 8 (right columns). As illustrated, in many
of the cases where students used and, the model
trained on text from professional writers predicts
but. Figure 5 shows a few examples where a stu-
dent used the semantically neutral conjunction and,
the model predicted a more specific conjunction,
and the model’s prediction seems more precise. Fu-
ture work will investigate in detail the feasibility of
suggesting alternative connectives.

8 Conclusion

This paper presented the dependency-anchor graph,
a new data structure emphasizing the propositional
structure of clauses, and DAnCE, a neural archi-
tecture with a distinct module for learning verb
phrase representation, and graph convolution for
semantic relation between the verb phrase and its
subject.DAnCE shows good performance on two
datasets for connective prediction, and introduces a
potential application that could help students revise
their writing through improved choice of connec-
tives. Future work will extend DAnCE for coher-
ence modeling within and across sentences, and for
applications to support students’ revisions.
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A Connective distributions in
Book-Simpl and DeSSE

Figure 7: Connective distributions in DeSSE with
threshold 1%

Here we present a detailed statistics of connec-
tive distributions on DeSSE and Book-Simpl. Fig-
ure 7 presents the connectives from DeSSE with
distribution above 1%. Among 68 connectives,
there are thirteen connectives above the threshold
and the rest are low frequency connectives. Ta-
ble 6 shows the Book-Simpl connective distribu-
tion compared to Book corpus. As illustrated, the
Book-Simpl shares the same distribution as Book
corpus on both Book-Simpl 5 and 8.

B Annotation instruction in DeSSE

Here we present the instructions for annotators, as
shown by Figure 8.

Figure 8: Instruction for DeSSE annotation

The instruction illustrate the two phases of anno-
tation. The annotator first chooses whether to add

one or more split points to an input sentence, where
the word after a split point represents the first word
of a new segment. Once an annotator has identified
the split points, which happens on the first page of
the AMT interface, shown as Figure 9, a second
view of the interface appears. Figure 10 shows the
second view when annotators rewrite the segments.
Every span of words defined by split points (or
the original sentence if no split points), appears in
its own text entry box for the annotator to rewrite.
Annotators cannot submit if they remove all the
words from a text entry box. They are instructed to
rewrite each text span as a complete sentence, and
to leave out the discourse connectives.

Figure 9: Interface of splitting the sentence

Figure 10: Interface of rewriting the segments from Fig-
ure 9 into complete sentences

Several auto-checking and warnings are applied
in the interface to reassure the quality. If a rewrite
contains a discourse connective, a warning box
pops up asking if they should drop the discourse
connective before submitting it. A warning box
will show up if annotators use vocabulary outside
the original sentence. To prevent annotators from
failing to rewrite, we monitored the output, check-
ing for cases where they submitted the text spans
with no rewriting. Annotators are prohibited to sub-
mit if the interface detects an empty rewrite box or
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Corpus Size and but because if when before though so
Book 5 3054K 31 32 15 5 16 na na na
Book-Simpl 5 285k 33 28 8 5 27 na na na
Book 8 3435K 28 28 5 13 14 6 3 2
Book-Simpl 8 359K 29 24 4 7 23 8 3 1

Table 6: Number of sentence pairs (Size), and the distribution of connectives (as percentages) for the original Book
corpus and our modified version.

the total lengths of the rewrites are too short com-
pared to the source sentence. We warned annotators
by email that if they failed to produce complete sen-
tences in the rewrite boxes, they would be blocked.
Some annotators were blocked, but most responded
positively to the warnings.

C Quality control in DeSSE

To test the clarity of instruction and interface, the
initial 500 sentences were used for evaluating the
task quality, each labeled by three turkers (73 turk-
ers overall), using three measures of consistency,
all in [0,1]. Average pairwise boundary similar-
ity (Fournier, 2013), a very conservative measure
of whether annotators produce the same number
of segments with boundaries at nearly the same
locations, was 0.55. Percent agreement on number
of output substrings was 0.80. On annotations with
the same number of segments, we measured the
average Jaccard score (ratio of set intersection to
set union) of words in segments from different an-
notators, which was 0.88, and words from rephras-
ings, which was 0.73. With all metrics close to 1,
and boundary similarity above 0.5, we concluded
quality was already high. During the actual data
collection, quality was higher because we mon-
itored quality on daily basis and communicated
with turkers who had questions.

D Experiment Settings

All the methods take GloVe word embeddings as
input. Due to the size difference between Book-
Simpl and DeSSE, we use different dimensionali-
ties for the word embeddings (w) and classifier hid-
den layers (h) with the two corpora on all baseline
systems: for Book-Simpl, Dw = 300, Dh = 512;
for DeSSe Dw = 100, Dh = 256. We train Dis-
Sent using the originalDh = 4096 for Book-Simpl,
and reduce it to 256 for DeSSE. Apart from this one
change to DisSent, we use the published settings
for all baseline systems. We train DAnCE using the
same vector dimensions as for DisSent. Because
DAnCE has twice the number of parameters as Dis-
Sent, we use the smaller classifier dimensionality

of 256 on both corpora.
We use SGD as optimizer for DAnCE, with

the learning rate at 0.01. Learning rates between
[0.1,0.001] did not show obvious performance dif-
ferences, and 0.01 converged faster. We use early-
stopping to prevent overfitting. We did not use
dropout, due to a negative impact on performance
(cf. (Nie et al., 2019)).

All training is done on 4 Nvidia RTX 2080 Ti
GPUs. The longest training time is 35 hours, for
DAnCE on Book-Simpl 8. During testing, we per-
form 16 bootstrap iterations
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Abstract

We present a new dataset of Wikipedia articles
each paired with a knowledge graph, to facili-
tate the research in conditional text generation,
graph generation and graph representation
learning. Existing graph-text paired datasets
typically contain small graphs and short text
(1 or few sentences), thus limiting the capabil-
ities of the models that can be learned on the
data. Our new dataset WikiGraphs is collected
by pairing each Wikipedia article from the
established WikiText-103 benchmark (Merity
et al., 2016) with a subgraph from the Free-
base knowledge graph (Bollacker et al., 2008).
This makes it easy to benchmark against other
state-of-the-art text generative models that are
capable of generating long paragraphs of co-
herent text. Both the graphs and the text data
are of significantly larger scale compared to
prior graph-text paired datasets. We present
baseline graph neural network and transformer
model results on our dataset for 3 tasks: graph
→ text generation, graph→ text retrieval and
text → graph retrieval. We show that better
conditioning on the graph provides gains in
generation and retrieval quality but there is still
large room for improvement. 1

1 Introduction

Parallel datasets that pair data from different
sources and modalities have enabled large amounts
of research on cross modality learning. Paired
image-caption datasets enable models to describe
visual scenes in natural language (Lin et al., 2014;
Vinyals et al., 2016), paired streams of speech and
transcription data makes it possible to train speech
recognition systems (Garofolo et al., 1993; Panay-
otov et al., 2015) or text-to-speech synthesis mod-
els (Oord et al., 2016), and parallel corpus of text in
different languages enable learned machine transla-
tion models (Barrault et al., 2020).

1The data and the code to reproduce our baseline results
are available at https://github.com/deepmind/
deepmind-research/tree/master/wikigraphs

“Where the Streets Have 
No Name” is a song by 
Irish rock band U2. It is the 
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the album’s third single in 
August 1987. The song ’s 
hook is a repeating guitar 
arpeggio using a delay 
effect, played during the 
song’s introduction and 
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Figure 1: Illustration of a pair of Wikipedia article and
the corresponding knowledge graph in our dataset.

We present a new dataset of Wikipedia text arti-
cles each paired with a relevant knowledge graph
(KG), which enables building models that can gen-
erate long text conditioned on a graph structured
overview of relevant topics, and also models that
extract or generate graphs from a text description.

There has been many prior efforts trying to build
datasets for learning graph→ text generation mod-
els (Jin et al., 2020; Gardent et al., 2017; Lebret
et al., 2016). However, existing graph-text paired
datasets are mostly small scale, where the graphs
tend to have 10-20 or even less nodes, and the text
typically only contains one or a few sentences. This
represents a significant contrast with the state-of-
the-art text generation models (Dai et al., 2019;
Brown et al., 2020), which can already generate
very fluent and long text that spans thousands of
tokens over multiple paragraphs.

We attempt to bridge this gap, with the goal of
advancing the state-of-the-art graph→ text genera-
tion models, graph representation learning models
and also text-conditioned graph generative models.
Each text document in our dataset is a full-length
Wikipedia article, and we pair each of them with a
KG that are significantly bigger than prior datasets
of similar nature and includes much richer infor-
mation. Hand labelling text articles with KGs is
expensive and not scalable (Lebret et al., 2016),
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therefore we utilize an existing and established
knowledge base, Freebase (Bollacker et al., 2008),
and designed an automated process to extract a
relevant subgraph from it for each Wikipedia ar-
ticle. To make the text generation results on our
dataset directly comparable to the state-of-the-art,
we chose the set of Wikipedia articles from the es-
tablished language modeling benchmark WikiText-
103 (Merity et al., 2016), which contains a subset
of high-quality Wikipedia articles. This gives us a
dataset of 23,522 graph-text pairs in total, covering
82.3% of Wikitext-103 articles. On average each
graph has 38.7 nodes and 48.3 edges, and each
text article contains 3,533.8 tokens. In addition to
structural information, our graphs also contain rich
text information with an average of 895.1 tokens in
each graph. Furthermore, the automatic process we
used to create this dataset can be extended to pair
any Wikipedia document with Freebase, and can
be scaled up to create over 3M graph-text pairs.

Out of many exciting new tasks that this dataset
enables, we present 3 possibilities: graph→ text
generation, graph → text retrieval, and text →
graph retrieval. We benchmarked a few baseline
models on these tasks. The models we consid-
ered were based on the recent Transformer-XL (Dai
et al., 2019) model, and we adapted it to condition
the text generation on the KG in different ways.
Our results show that better conditioning on the
graph indeed improves the relevance of the gener-
ated text and the retrieval quality. However, there
is still significant room for improvement on these
tasks, which makes this an exciting dataset for re-
search. Our data and code for baseline models will
be made publicly available.

2 Related work

Graph-text paired data There has been a lot of
prior work on creating graph-text paired datasets.
Example applications include generating text sum-
maries conditioned on Abstract Meaning Repre-
sentation graphs (Liu et al., 2018), generating the
abstract of a scientific article given a KG and ti-
tle (Koncel-Kedziorski et al., 2019) and generating
text from RDF triples (Gardent et al., 2017; Jin
et al., 2020). In the following we will mostly re-
view related work on KG - text paired datasets.

Annotating KG or text to create paired datasets
is expensive, as a good quality annotation requires
annotators that understand the content and structure
of the text and the corresponding KG (Jin et al.,

Dataset #examples #triples #tokens #vocab
WebNLG 13,036 2.54 15.26 1,484
GenWiki 1.3M 1.95 21.46 476,341

Ours 23,522 48.3 3,533.8 238,071

Table 1: Our dataset contains significantly larger
graphs (average #triples per graph) and longer text (av-
erage #tokens per text) than previous KG-text datasets.

2020). Therefore previous KG-text paired datasets
that rely on human annotation have limited scale.
Among these, Gardent et al. (2017) crowdsourced
human annotators to verbalize RDF triplets taken
from DBpedia (Auer et al., 2007) to a few sentences
(WebNLG) and this caused errors in annotation
that were fixed with a few updates through years.
Parikh et al. (2020) paired Wikipedia Table with
one sentence text that is created by annotators that
revise Wikipedia text.

Another line of research focuses on eliminating
the need of human annotations by automatically
matching KG-text pairs or generating KGs from
text using existing tools. Lebret et al. (2016) au-
tomatically matched Wikipedia infobox of biogra-
phies with their first sentence. Koncel-Kedziorski
et al. (2019) utilized an earlier information extrac-
tion system that extracts entities, co-reference and
relations from given text to build KG’s. The Gen-
Wiki dataset (Jin et al., 2020) is automatically con-
structed by querying KGs in DBpedia with the title
of articles in Wikipedia followed by filtering and
entity annotation.

We construct our WikiGraphs dataset by extract-
ing a subgraph from Freebase (Bollacker et al.,
2008) for each Wikipedia article following a scal-
able automatic process. Compared to previous
work, our WikiGraphs dataset contains signifi-
cantly larger graphs and longer text (Table 1).

Models for graph-text paired data Recent state
of art language models are based on the Trans-
former architecture (Vaswani et al., 2017) that uses
the self attention mechanism. The Transformer-
XL (Dai et al., 2019) model further introduces a
segment level recurrence with a novel positional
encoding resulting in impressive performance in
long sequences by capturing dependencies beyond
a fixed length window.

Graph neural networks (GNNs) (Battaglia et al.,
2018; Gilmer et al., 2017) learn representations
for graph structured data through a message pass-
ing process. This class of models naturally exploit
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Train Valid Test All
Num. pairs 23,431 48 43 23,522

% of WikiText-103 82.3% 80.0% 71.7% 82.3%
Nodes per graph 38.7 35.4 40.6 38.7
Edges per graph 48.3 42.8 49.5 48.3

Avg. Node degree 2.5 2.4 2.4 2.5
Tokens per graph 895.1 807.7 1,010.1 895.1

Total graph tokens 21.0M 38,771 43,435 21.1M
Graph vocab size - - - 31,090
Tokens per article 3,531.7 3,644.2 4,564.7 3,533.8
Total text tokens 82.8M 174,923 196,280 83.1M
Text vocab size - - - 238,071

Table 2: Basic statistics about our WikiGraphs dataset.

the graph structures, making them a good fit for
graph data. GNNs have been used in many appli-
cations on KG’s (Kipf and Welling, 2016; Wang
et al., 2019; Xu et al., 2019). Fundamentally, trans-
formers can also be understood as a special type of
GNNs with a fully-connected graph structure.

The most recent prior work on graph-to-text gen-
eration follows an encoder-decoder architecture
(Koncel-Kedziorski et al., 2019; Jin et al., 2020),
where the graph part is encoded with a GNN model,
e.g. Graph Attention Network (GAT) (Veličković
et al., 2018). The text part is typically modeled
using an attention based decoder with a copy mech-
anism (e.g. BiLSTMs as in (Jin et al., 2020)) to
process input from both the KG and text.

The models we benchmarked for graph-to-text
generation were based on the Transformer-XL ar-
chitecture and conditioned on the graph through a
GNN, making full use of the graph structure and
capable of generating very long text comparable to
the state-of-the-art.

3 Dataset

In this section we first present some properties of
our dataset, and then describe the process that we
used to create it.

3.1 Properties of the data

3.1.1 Scale of the data
Basic statistics about our WikiGraphs dataset are
listed in Table 2. An illustration of a graph-text pair
is shown in Figure 1. A few actual examples from
our dataset are included in the Appendix (Figure 7,
8). All of the articles come from the WikiText-103
dataset (Merity et al., 2016), which contains high-
quality articles that fit the Good or Featured criteria
specified by the Wikipedia editors when the data
was collected. Merity et al. (2016) have already
cleaned up and tokenized the articles, therefore

they appear as plain text without any markup tags.
As will be described in Section 3.2, we try to

pair each article with a subgraph from Freebase,
centered at the entity node that has a Wikipedia link
to the title of the article. We are not able to match
every article to an entity in Freebase, but through
this process we retained a significant portion of
82.3% of the WikiText-103 articles. We kept the
original train/valid/test split. As we will see in
Section 4.2, training models on this set gives us
results that are very close to training on the full
WikiText-103 dataset when evaluated on our test
set. Therefore the text part of WikiGraphs appears
to be sufficient to reproduce and benchmark against
the state-of-the-art text generative models.

Figure 2 shows the distribution of graph sizes
and article lengths across our dataset. All the dis-
tributions are skewed with a long tail. Notably,
average graph size in our dataset is 38.7 nodes and
48.3 edges, considerably larger than the graphs in
previous datasets (Jin et al., 2020; Gardent et al.,
2017). Also the length of the text articles aver-
ages to 3,533.8 tokens and can go up to 26,994
tokens, which is orders of magnitudes longer than
the text data in previous graph-text paired datasets
that typically only contains a single or few sen-
tences (Jin et al., 2020; Gardent et al., 2017; Lebret
et al., 2016).

3.1.2 Nodes and edges
The graphs in our dataset contains two types of
nodes: entities and string literals. Each entity
is labeled by a unique Freebase entity ID, e.g.
ns/m.0f9q9z, and each string literal contains
some natural language text, that could be for exam-
ple a name, date, or description of an entity. Each
edge in the graphs also has an associated edge la-
bel, e.g. ns/common.topic.description,
indicating which type of edge it is. There are a total
of 522 different edge types in our dataset. Figure 3
shows the frequency of all the different edge types
in our dataset.

Every graph always has one entity node (we
call it “center node”) that has a link to the
paired Wikipedia article, through a special edge
key/wikipedia.en, and the whole graph is a
1-hop neighborhood of entities around the center
node within the bigger Freebase KG, plus the string
literals associated with all the entities included.
Note that it is possible to have edges between the
1-hop neighbors of the center node, therefore the
graphs typically are not star structured. Section 3.2

69



0 50 100 150 200 250
Nodes per graph

0
1000
2000
3000
4000
5000
6000
7000
8000

Co
un

t
Min 3, Mean 38.7, Max 255

0 100 200 300 400 500
Edges per graph

0

2000

4000

6000

8000

10000

Co
un

t

Min 2, Mean 48.3, Max 504

0 2000 4000 6000 8000
Tokens per graph

0

2000

4000

6000

8000

Co
un

t

Min 7, Mean 895.1, Max 9092

0 5000 10000 15000 20000 25000
Tokens per article

0
1000
2000
3000
4000
5000
6000
7000
8000

Co
un

t

Min 69, Mean 3533.8, Max 26994

Figure 2: Distribution of graph and article sizes across our WikiGraphs dataset.
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Figure 4: Distribution of the per-graph number of entity
nodes and string literal nodes in our dataset.

provides more details about how these graphs are
constructed and any additional filtering we did.

One special characteristic about our graph data
is that the natural language text contained in the
string literal nodes can sometimes be quite long
(see e.g. Figure 7,8), and therefore provide much
richer information not included in the graph struc-
ture itself. On average, each graph contains 895.1
tokens across all the string literal nodes in one
graph (Table 2, Figure 2, “Tokens per graph”).

Figure 4 shows the distribution of per-graph
number of entity nodes and string literal nodes
in our dataset. We can see that our graphs tend to
have more string literal nodes than entity nodes,

indicating that the entities are supplemented with
the rich information in the string literals.

The distribution of information is not uniform
across the nodes in a graph. Figure 5 shows that
most entity nodes in our graph has a small degree,
while few nodes have much larger degrees. Also
most string literal nodes contain short text, while
fewer nodes contain longer text.

The skewed distribution of nodes and edges in
our dataset reflect the nature of KG’s like Freebase,
and presents new challenges to graph representa-
tion learning models.

3.2 The dataset construction process
We follow three principles when designing the
dataset construction process:

1. The text part of the data should be directly
comparable in complexity to the capability of
state-of-the-art text generative models.

2. The graph part of the data should be con-
structed in an automatic and scalable way.

3. The graph part of the data should be relevant
for the paired text data.

Note that our process is general, and can be ap-
plied to any set of Wikipedia articles. We have
tried to pair a full dump of English Wikipedia with
Freebase and managed to get over 3 million graph-
text pairs. Here we restrict the process to the set of
articles from the WikiText-103 dataset.

We try to map each Wikipedia article to a rele-
vant subgraph of the existing large scale KG Free-
base (Bollacker et al., 2008). We used the last
public dump of Freebase2, which contains 1.9B
triples and a total of 250GB of data. We filtered
the data by keeping only the entities with at least 4
string attributes (otherwise the entities are less inter-
pretable), and keeping only the top 1024 most fre-
quent relation types and restricting the relations to

2https://developers.google.com/
freebase
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Figure 5: Node degree distribution for entity nodes and token count distribution for string literal nodes.

only those among the retained entities and between
the entities and string attributes. We also simpli-
fied the entity and relation names by stripping off
the irrelevant “http://rdf.freebase.com/” and further
removed duplicates. This gives us a significantly
cleaner and smaller backbone graph for Freebase,
with about 20M nodes.

Finding the relevant subgraph for an article in
such a cleaned up but still large KG remains non-
trivial. Our process for this contains 3 stages: map-
ping, expansion, and filtering.

Mapping In the first stage of the process, we
map each article into an entity in our processed
Freebase KG. This is made possible through triples
from Freebase like the following:

ns/g.11b6jbqpt4 key/wikipedia.en "Madunnella"

where ns/g.11b6jbqpt4 refers to an entity in the KG,
key/wikipedia.en is the type of the edge, which
indicates that this entity is linked to a Wikipedia
article and “Madunnella” is the title of that article.
We normalize the title string (and in general any
string literals) from Freebase by replacing “_” with
white space and handle unicode characters properly.
We extract the titles from the Wikipedia article
through string matching, where titles are enclosed
in a “= [title] =" pattern.

In this step we managed to map 24,345 out of
28,475 (85.5 %) article titles from WikiText-103 to
an entity in our KG.

Expansion We treat each of the mapped entities
as the center node of a subgraph, and expand 1
hop out in the entire filtered Freebase graph to in-
clude all the neighboring entities that are the most
relevant to the center entity. We then expand fur-
ther from this 1-hop graph out to include all the
relations that connect the selected entities to string
attributes as well as between these entities them-
selves. Note that because of these edges between
the 1-hop neighbor entities the graphs are typically

not star structured. This gives us a relevant but
compact graph for each article. We have also in-
vestigated the possibility of a 2-hop neighborhood
from the center node, and found that 2-hop neigh-
borhoods are significantly larger than 1-hop and
through some “hub” nodes like “Male” or “Female”
a 2-hop neighborhood from an entity can easily in-
clude many other irrelevant entities. Based on such
observations we decided to use the 1-hop neighbor-
hood to keep the relevance of the subgraph high.

Filtering The last stage of the process involves
more filtering and cleaning up of the data. We
noticed that in Freebase it is common for one entity
to have multiple relations of the same type pointing
to different string attributes, like the following:

ns/m.07c72 key/wikipedia.en "The SImpsons"

ns/m.07c72 key/wikipedia.en "The Simpson"

ns/m.07c72 key/wikipedia.en "The simsons"

ns/m.07c72 key/wikipedia.en "Thr Simpsons"

ns/m.07c72 key/wikipedia.en "The Simpson’s"

It is clear that there is a lot of redundancy in this
data. We reduced all such edges (from the same
entity with the same edge type to string attributes)
to a single edge by picking the most “canonical”
one. This was done by fitting a unigram model to
the characters in the collection of strings and using
that model to pick the most likely string.

We also filtered the graphs based on size and
created three versions of the data with maximum
graph size capped at 256, 512, and 1024 nodes,
respectively. All the statistics and results in the rest
of the paper are based on graphs with a maximum
size of 256, but all versions of the data are made
available online.

4 Experiments

We perform a set of experiments to showcase how
the text and graph information can be combined in
a language model. Specifically, we consider three
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tasks: text generation conditioned on the graph,
graph retrieval given the text, and text retrieval
given the graph.

4.1 Graph-conditioned Transformer-XL

In order to incorporate graph information into an
advanced language model, we adapt the recent
Transformer-XL model (Dai et al., 2019) to also
attend to the graph features. At a high-level our
model embeds the graph into a set of embedding
vectors, and then exposes these embeddings to the
Transformer-XL model as extra “token” embed-
dings to condition on. The size of this set depends
on the graph model we choose.

Given the features for T text tokens Ht ∈ RT×d
and features for T ′ graph “tokens” Hg ∈ RT ′×d′ ,
we illustrate the graph-conditioned attention proce-
dure with a single head as follows:

Qt,Kt,Vt = HtW
t
q,HtW

t
k,HtW

t
v

Kg,Vg = HgW
g
k,HgW

g
v

At,Ag = QtK
>
t ,QtK

>
g

A,V = [At ◦Ag], [Vt ◦Vg]

O = Masked-Softmax(A)V

where [a ◦ b] stands for concatenation on the se-
quence dimension and thus A ∈ RT×(T+T ′) and
V ∈ R(T+T ′)×dh , where dh is the head dimen-
sion. In other words, comparing to the original
Transformer-XL, our model also computes the at-
tention scores between the text queries Qt and both
the text keys Kt and the graph keys Kg. As a result,
the attention outputs contain information from both
the graph and the text context. Note that this for-
mulation is compatible with an additional memory
(Dai et al., 2019) with minimal changes, as it sim-
ply adds in an extra set of “tokens” for the model to
attend to. We don’t use position encodings for the
graph “tokens” as there is no sequential ordering
for them.

In this work we consider three different ap-
proaches for encoding the graph structure:

• Bag-of-words (BoW): we construct a single
bag-of-words representation of all the tokens
from both the nodes and edges in the graph.
Entity IDs and numeric values in the graph
are replaced with special tokens <entity>
and <number>. The BoW vector is further
projected using a linear layer to a latent space.
In this case T ′ = 1.

• Nodes only (Nodes): we construct sepa-
rate BoW representations for each node and
project each to an embedding and ignore the
edges. In this case T ′ is equal to the number
of nodes in the graph.

• Graph neural network (GNN): we embed
BoW representations for both nodes and edges
and then use a graph neural network (Battaglia
et al., 2018) on top of those embeddings to
compute a new set of node embeddings. T ′ is
equal to the number of nodes.

The T ′ graph embeddings from this process are
shared across all the time steps for text tokens. This
model can be further improved, e.g. by using word
embeddings and text summarization techniques,
but we leave these for future work.

4.1.1 Implementation details
We reimplement the Transformer-XL model in Jax
(Bradbury et al., 2018). In our experiments, we
employ the base model in (Dai et al., 2019), ex-
cept that we increase the tail shrinkage factor used
for the adaptive softmax and input representations
from 1 to 4, which saves 63% of the parameters
without compromising the performance. On the
full Wikitext-103 dataset, our implementation has
a test perplexity of 24.2 (published result for this
base model was 24.0). We train our models using
the standard likelihood objective for language mod-
els with a total batch size of 64 on 8 V100 GPUs.
Adam optimizer is used with an initial learning rate
of 2.5× 10−4, which decays up to 200k steps fol-
lowing a cosine curve. During training, we use text
segments of 150 steps and a memory of equal size.
When evaluating the model, we use a sequence
length of 64 and memory size 640. Unless further
noted, in our experiments we use an embedding
size of 256 for BoW-conditioned models. For other
models, we project each node or edge represented
by BoW to an embedding space of size 128. The
default GNN we use has a single linear message
passing layer of 256 hidden units.

4.2 Graph→ text generation
Our first task is text generation conditioned on the
graph. We evaluate model performance by (1) com-
puting model perplexity on held-out text and (2)
drawing samples from the model and comparing
that to the ground truth text article. We use BLEU
score (Papineni et al., 2002) to measure the simi-
larity of our generated samples to the ground truth.
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Cond.
Test
Ppl.

rBLEU rBLEU(w/title)
Valid Test Valid Test

None 25.85 10.97 9.98 27.98 24.07
BoW 26.65 29.53 24.41 32.41 27.39
Nodes 27.40 30.51 25.31 32.60 27.43
GNN 26.93 31.39 26.22 32.65 28.35

Table 3: The perplexity and the generated text reverse-
BLEU score of different types of graph-conditioned
models. We show the reverse-BLEU score with or with-
out prompting the original title at the start of the text
generation.

Unlike previous use cases for BLEU score where
there are many references for one generated sam-
ple, here we have only one ground truth reference
but we can generate multiple samples. We there-
fore simply swapped the reference with the samples
when computing the score, which we term as the
reverse-BLEU (rBLEU). We have also tried other
ways of computing the BLEU score and find that
they don’t change how models compare against
each other.

Unless explicitly stated, we let the model sample
with a memory size of 640, and condition on the
graphs in the test set to generate text for up to
512 tokens per sample for a total of 20 samples
per graph. The rBLEU score is computed based
on these samples and corresponding ground-truth
texts are truncated to the same length. We sample
the texts from the distribution with a temperature
of 0.8. For each case, we report the average rBLEU
score of 3 sampling runs. We find the variances are
insignificant which do not affect the comparison
results. In Appendix A.3 we also report results for
generating longer samples for up to 4096 tokens.

4.2.1 Main result
In Table 3, we show the perplexity and the rBLEU
score of the unconditional, BoW, nodes-only, and
GNN conditioned models. As a reference, a stan-
dard Transformer-XL model trained on the full
Wikitext-103 training set reaches 25.08 perplexity
on our test set, which contains 71.7% of the origi-
nal test articles. We can see that the unconditional,
i.e. text only, model trained on our dataset gets a
very similar performance as trained on the full set.
This is strong evidence that our dataset can be a
good benchmark for state-of-the-art text generative
models.

We also see that conditioned on the graphs,
model perplexity didn’t improve, but the relevance

# MP layers Test Ppl. Test rBLEU
0 26.65 25.31
1 27.40 26.22
3 27.20 26.16
5 26.85 25.91

Table 4: The test perplexity and the generated text
reverse-BLEU score (without title prompt) of GNN-
based models with different numbers of message pass-
ing layers.
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Figure 6: Performance vs size of graph to condition on.
The model is trained with a smaller version of the data
by subsampling the number of nodes.

of the samples measured by the BLEU scores did
improve significantly. This indicates that the graph
conditioned models can indeed steer the language
model towards more relevant topics, but this so far
cannot yet improve likelihood metrics.

To make the evaluation more fair to the text-only
model, we also tried to prompt the generation with
the title of the article, such that the text-only model
also has some context. In this setting the graph
models are still better, showing the importance of
modeling the structure.

Lastly, among all the 3 graph model variants,
we observe that using a set of embeddings from
the nodes model is better than using a single em-
bedding from the BoW model, and fully utilizing
the graph structure through the GNN model is con-
sistently better than ignoring the edges as in the
nodes model. However the differences among the
methods are relatively small. For visualizations of
a few graphs in our dataset and the corresponding
samples generated based on them please refer to
Appendix A.

4.2.2 Ablation studies
We show a few ablations on the graph model and
sampling parameters, to provide some insights into
the models.
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Cond. Recall@1 Recall@5 mAP
None 0.02 0.12 0.10
BoW 16.28 30.23 25.98
Nodes 16.28 34.88 26.62
GNN 18.60 34.88 27.79

Table 5: Text retrieval given the graph.

Table 4 shows the effect of varying the num-
ber of message passing layers in the GNN. We
can observe that there is a big difference between
using message passing ( ≥ 1 layers) or not (0 lay-
ers) in terms of rBLEU score, but increasing the
number of message passing layers does not change
the results significantly. We believe however, that
these results can be improved by employing bigger
and more powerful graph representation learning
models, and potentially use initial node and edge
representations better than bag-of-words.

In Figure 6 we show the effect of the graph size
on model performance. In this experiment we sub-
sample the nodes in each graph to control for the
amount of context the model has access to. It is
clear from the results that when we heavily sub-
sample and keep only a small portion of the graphs,
the GNN model performs similarly as the simpler
BoW model, but GNNs benefit more as we keep
more of the graph structure.

4.3 Graph→ text retrieval

In this task, we evaluate the possibility of retriev-
ing relevant text for a given query graph. We pair
all articles with all graphs in the test set, resulting
in 43×43=1849 pairs. Then the trained graph-
conditioned language models are used to produce
the per-token likelihood of each pair, and we use
these likelihood scores to rank the text articles for
each graph. We expect the learned models can rank
the correct pairs higher than wrong ones. To mea-
sure the results we use standard ranking metrics
including recall@K, which computes the fraction
of times the correct pair is included in the top K pre-
dictions, as well as mean average precision (mAP).
In Table 5, it is observed that graph-conditioned
models can indeed retrieve more relevant texts from
the graph than the unconditional model, among
which the GNN-based model performs the best,
and the unconditional model performs close to a
random guess.

Cond. Recall@1 Recall@5 mAP
None 0.02 0.07 0.02
BoW 95.35 100.00 97.67
Nodes 93.02 100.00 96.51
GNN 100.00 100.00 100.00

Table 6: Graph Retrieval given the text.

4.4 Text→ graph retrieval

In this last task, we evaluate the performance of
graph retrieval given a text query. We use exactly
the same setting and scores as Section 4.3, but in-
stead rank the graphs for each text article using
the likelihood scores. The results are shown in Ta-
ble 6. Note that this task is quite easy with our
data and setup, potentially because the graphs are
much more distinguishable than the text articles.
All the graph-conditioned models perform almost
perfectly, with the GNN model again outperform-
ing the others.

5 Conclusion

In this paper, we present WikiGraphs, a new graph-
text paired dataset with significantly larger graphs
and longer text compared to previous datasets of
similar nature. We show that the text part of this
data is a good benchmark for state-of-the-art text
generation models, and the paired dataset can help
us benchmark models that are capable of generat-
ing long and coherent text conditioned on a graph
structure.

In the first set of experiments on this dataset we
showcase 3 different tasks using our dataset, and
demonstrate the benefit of better models that make
more use of the graph structure.

There is still significant room for improvement
for these tasks on our dataset, and we hope the re-
lease of the data and baseline code can help spur
more interest in developing models that can gener-
ate long text conditioned on graphs, and generate
graphs given text, which is another exciting direc-
tion our dataset enables but we did not explore, and
eventually bridging the graph and text modalities.
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A Appendix

A.1 Graph visualization
Some example visualizations of the KG structures
are shown in Figure 7 and Figure 8. The corre-
sponding graph truth texts are shown in Table 7.

A.2 Generated examples
The generated texts based on the graph shown in
Figure 7 and Figure 8 are listed in Table 8 and
Table 9, respectively.

A.3 Ablations on sampling configurations
We show additional ablation results on the sample
length (Table 10) and the temperature (Table 11)
for greedy sampling. Note that for each case we
show the rBLEU score based on the validation set
computed with a single sampling run (20 samples
per graph).

Note that the GNN model has overall the best
performance. However as the sample length in-
creases the advantage of the GNN model also de-
creases. This indicates that it is still very challeng-
ing to generate long text that stays on-topic, and
potentially the noise overwhelms the signal when
number of tokens increases to 4096.
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Figure 7: Visualization of the “Where the Streets Have No Name” KG in our dataset.
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Figure 8: Visualization of the “Fort Scott National Historic Site” KG in our dataset.
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Visualization Ground Truth Text
Figure 7 = Where the Streets Have No Name =

" Where the Streets Have No Name " is a song by Irish rock band U2 . It is the opening track from their 1987 album The Joshua Tree and was released
as the album ’s third single in August 1987 . The song ’s hook is a repeating guitar arpeggio using a delay effect , played during the song ’s introduction
and again at the end . Lead vocalist Bono wrote the lyrics in response to the notion that it is possible to identify a person ’s religion and income based
on the street on which they lived , particularly in Belfast . During the band ’s difficulties recording the song , producer Brian Eno considered erasing the
song ’s tapes to have them start from scratch . " Where the Streets Have No Name " was praised by critics and became a commercial success , peaking
at number thirteen in the US , number fourteen in Canada , number ten in the Netherlands , and number four in the United Kingdom . The song has
remained a staple of their live act since the song debuted in 1987 on The Joshua Tree Tour . The song was performed on a Los Angeles rooftop for the
filming of its music video , which won a Grammy Award for Best Performance Music Video .
= = Writing and recording = =
The music for " Where the Streets Have No Name " originated from a demo that guitarist The Edge composed the night before the group resumed The
Joshua Tree sessions . In an upstairs room at Melbeach House — his newly purchased home — The Edge used a four @-@ track tape machine to record
an arrangement of keyboards , bass , guitar , and a drum machine . Realising that the album sessions were approaching the end and that the band were
short on exceptional live songs , The Edge wanted to " conjure up the ultimate U2 live @-@ song " , so he imagined what he would like to hear at a future
U2 show if he were a fan . After finishing the rough mix , he felt he had come up with " the most amazing guitar part and song of [ his ] life " . With
no one in the house to share the demo with , The Edge recalls dancing around and punching the air in celebration . Although the band liked the demo ,
it was difficult for them to record the song . Bassist Adam Clayton said , " At the time it sounded like a foreign language , whereas now we understand
how it works " . The arrangement , with two time signature shifts and frequent chord changes , was rehearsed many times , but the group struggled to
get a performance they liked . According to co @-@ producer Daniel Lanois , " that was the science project song .

Figure 8 = Fort Scott National Historic Site =
Fort Scott National Historic Site is a historical area under the control of the United States National Park Service in Bourbon County , Kansas , United
States . Named after General Winfield Scott , who achieved renown during the Mexican @-@ American War , during the middle of the 19th century the
fort served as a military base for US Army action in what was the edge of settlement in 1850 . For the next quarter century , it was used as a supply base
and to provide security in turbulent areas during the opening of the West to settlement , a period which included Bleeding Kansas and the American Civil
War . The current national historic site protects 20 historic structures , a parade ground , and five acres ( 20 @,@ 000 m 2 ) of restored <unk> prairie ,
inside the city of Fort Scott . It is open to visitors most days of the year .
= = History = =
In 1842 , Fort Scott was named after Winfield Scott , was established on the American frontier on the military road in eastern Kansas between Fort
Leavenworth and Fort Gibson . It was established to provide protection to the rapidly increasing number of settlers , who were migrating from the
Eastern United States . Fort Scott became one of a chain of forts intended to protect the new settlers from the Plains Indians , as well as to protect
the Indians from the settlers ’ encroachment . The United States government intention to reserve permanent Indian lands west of the Missouri River
gave way to the competition of settlers continuing to encroach on the Indian settlements . Fort Scott ’s most active days were between 1842 and 1853 ,
although it was also used during the Civil War .
= = = Army days = = =
The Cherokee of Indian Territory ( now Oklahoma ) were upset to have Fort Wayne in their proximity . After some delay , the US Army decided to
abandon Fort Wayne and move its soldiers to a new fort to be built between Fort Leavenworth and the site . The Army both wanted to placate the
Cherokee ( who were supervised by the Department of Defense ) and provide more defense for white settlers and other Indians against the Osage , who
had been conducting frequent raids in the area . On April 1 , 1842 , some soldiers of Fort Wayne left their fort and on April 22 arrived where Fort Scott
would be built , in the Osage <unk> section of modern @-@ day Kansas . After haggling with the Cherokees to acquire the land , the rest of Fort Wayne
’s garrison left the fort on May 26 and arrived at the Fort Scott site on May 30 . Unlike most forts for military use , the fort did not have defensive walls
or structures

Table 7: Ground truth samples.
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Cond. Generated Text
- = Final Fantasy Adventure =

Final Fantasy Adventure is a platform video game developed by Square ( now Square Enix ) and published by Square ( then Square Enix ) for the Super
Nintendo Entertainment System , and published by Nintendo for the Nintendo 64 and the Nintendo 64 in North America and Europe . It was released
in North America on August 10 , 1995 for the Nintendo 64 and in Europe in March 1995 for the Wii . It was also re @-@ released for the Wii in Japan
on March 25 , 2015 for the Wii U ’s Virtual Console service . Final Fantasy Adventure is set in the fantasy world of the fictional land of Ooo , between
1000 and 1000 years before the events of the story of the kingdom of Ooo . The story follows the protagonists , Cid , a boy who is sent to Ooo by the
legendary Jörmungandr to find the Wizard of Ooo . Throughout the game , players train for a series of random battles , which are played out over a
single screen . In the end , players control a " Scarlet Witch " who is summoned to the realm of Ooo . The game was well @-@ received , with praise
particularly directed at its graphics and its gameplay , despite criticism for its repetitive gameplay . Critics generally praised its graphics , plot , and
simplistic gameplay . The game was commercially successful , selling over 20 @,@ 000 copies , and in 2004 it was re @-@ released in Japan as part of
the Final Fantasy Collections series .
= = Gameplay = =
The game is a third @-@ person shooter , with gameplay elements related to worlds , time travel , and exploration . Characters are made up of two
polygons ; the main character , Aya , is a sprite @-@ based character and inhabits a world of trees and caves , where she is able to perform offensive
actions along the way . The protagonist , Aya , is a heavily armored , humanoid creature with red eyes and black eyes . In contrast to other Final Fantasy
games , her prominent appearances in this game are not as straightforward as in previous Final Fantasy installments . The game ’s world is divided into
two sections : the world of Ooo and the world of the dinosaurs . The player ’s adventure begins with Aya , a girl who initially leads the plot of Twilight
Town , but later returns to Ooo to save her sister . Aya explores the area and is able to save her family . After interacting with the player , Aya is able to
resume the story in the future . The game ’s main family member , Aya , is a woman named Alice . She is a member of the religious order , the Jehovah
’s Witnesses , who is a member of

BoW = Zoo Station ( song ) =
" Zoo Station " is a song by Australian rock band U2 from their second studio album , PopMart , released in 1992 as the album ’s lead single . Rise to
popularity after its release prompted U2 to record two songs with bassist Adam Clayton and guitarist Joe Bono , as they felt that it was their breakthrough
album . The song comprises lyrics set in an acoustic , with lyrics that have always focused on a woman being stuck in an abusive relationship . It was
developed due to the band ’s involvement in the construction of Zoo Station and its accompanying soundtrack , and it was inspired by U2 ’s admiration
of the groups they both represented . The song was inspired by a series of incidents that occurred in El Salvador when a man repeatedly attacked an
apartment building . The song received positive reviews from music critics , and it was labelled a " masterpiece " by several publications . Thirty @-@
five tracks were released as singles , and the song has been covered by numerous artists , including such figures as Sam & Max , The <unk> , and Mickey
Rourke . The band released their version of " Zoo Station " on non @-@ consecutive studio albums , with " Where the Streets Have No Name " and "
Numb " released in 1999 and 2000 respectively . " Zoo Station " is on the band ’s greatest hits album , 10 Mile Wild , and on their greatest hits album
Across the Universe . It was performed live at the Vertigo Tour in 2007 . The song was included on the band ’s fifth studio album , New Order ( 2008 ) ,
and was included on the film The Last Years ( 2012 ) .
= = Background = =
" Zoo Station " was written by U2 frontman Bono and produced by U2 and was the first song on the album . Clayton still had a strong fan base and was
a regular singer . The two met while performing in the amphitheaters of Los Angeles , and in a live performance he was the lead singer on the last leg of
the Vertigo Tour . The Edge and Clayton were both fans of the band , and the pair decided to collaborate on the album . Both performed on their 2004
tour , and made a solo appearance on the 2004 The Zoo TV Tour . Clayton and Clayton had been close friends , and the pair became friends again in
2008 . In late April 2004 , U2 announced that the song had been released as the first single for the album , and would be released on 31 May , five weeks
after the album ’s release . " Zoo Station " was released as the fourth single from PopMart and premiered on 13 June 2005 . The song is a

Nodes = You Can ’t Take This Away ( U2 song ) =
" You Can ’t Take This Away ( U2 song ) " is a song by the Irish rock band U2 . It was written by vocalist Bono and produced by The Smiths for their
third solo album , The Joshua Tree . Inspired by Romania roots rock and roll , " You Can ’t Take This Away " is a song about a man who suffers from
severe nightmares . The song was first released on the album and premiered on radio on 19 August 1996 , where it reached number 40 on the Billboard
Hot 100 . " You Can ’t Take This Away ( U2 song ) " received mixed reviews from critics ; some tracks , such as the opening chorus and bridge , were
praised as highlights by some reviewers . The song was well received by critics , as the record company ’s highest @-@ selling single at that time , where
" The Edge of Forever " peaked at number 64 . It was later re @-@ released on the band ’s 2006 compilation album No Line on the Horizon , but has
since been re @-@ released on live performances in 2006 and 2009 . " You Can ’t Take This Away ( U2 song ) " was performed on the Late Show with
David Letterman on 31 December 2005 . " You Can ’t Take This Away ( U2 song ) " has since been covered by many groups and has achieved enormous
commercial success . A video for the song was filmed by then @-@ frontman Bono , for which it was nominated for a Grammy Award .
= = Background and writing = =
" You Can ’t Take This Away ( Kingdom of Ireland song ) " is a track that features Bono and The Smiths discussing their relationship and how they
changed their lives . His father , Jack Clayton , was assassinated in 1981 at the age of 23 . Bono was born in Philadelphia and worked for a business ,
first working as a secretary in Los Angeles , then as a photographer for a commercial for Primus . He later worked for the Coca @-@ Cola Company
as a drummer in the music industry . The musician picked up the song again after Nikolai <unk> , an engineer who worked with The Smiths , heard it
and decided to play it for him after U2 agreed to record it for a solo album . The band originally intended to release " You Can ’t Take This Away " as a
single ; however , with a critical failure , the song eventually became a single . In 2004 , " You Can ’t Take This Away ( U2 song ) " is one of two songs
on the album that U2 released as a single with approval of the record label . The [ ]

GNN = The Edge of Glory =
" The Edge of Glory " is a song by Irish rock band U2 , released as a single . It was written by guitarist Larry Mullen , Jr . , who plays lead guitar on the
song , and was produced by Alex <unk> , who described the song as " a track with a lot of meaning , but no connection . " The song contains several pop
rock elements and is set in that time period , and is among the most prominent in the album . In addition to its lyrics , the song ’s lyrics detail hypocrisy
, and also deals with the effects of adultery . The song ’s lyrics have been described by music critics as being autobiographical . The lyrics have been
described as " a bold exploration of the figure of a New York City man " , and " an expression of the inability of freedom to live in a world that is also
a place in the world of space . " The song ’s lyrics describe a " Manhattan @-@ like place " , with Bono calling the arrival a " pleasant little optimism
from before it came to life . " " The Edge of Glory " was a success in the United Kingdom , reaching number two in the charts in the United States ,
and topping the charts in Australia and New Zealand . The song has been certified platinum by the Recording Industry Association of America , and has
sold over four million copies worldwide . The song has been covered by several artists , including German band U2 . The music video for " The Edge
of Glory " won Best Video at the 2004 MTV Video Music Awards . The video also served as an inspiration for the film U2 360 ◦ ( 1998 ) .
= = Background = =
The song has been described as a " relaxed representation " of globalization , with Bono proclaiming himself the " lost king of rock ’ n ’ roll " , and Chris
McGuinness as " the only one who has ever achieved the sound of a rock ’ n ’ roll . " Bono ’s lyrics have been described as a parody of Lord Byron ’s "
My Own Time " , and as an " attack on social and political issues " .
= = Recording and production = =
Bono and U2 made the final stages of recording the song at the Abbey Road Studios in Dublin , Dublin . The sessions were divided into two sessions :
Sessions at Damien the flautist and Context at the Cave of Christ . The results of the sessions were mixed by Brian Eno . U2 was very excited to record
the result , with Eno referring to the recording as a " special event " , and they decided to change the track

Table 8: Generated samples based on the “Where the Streets Have No Name” graph.
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Cond. Generated Text
- = Carbuncle =

Bloodlines is a 2011 action role @-@ playing video game developed by <unk> and published by Activision for the Wii . The game is part of a sequel
of the 2013 game Eclipse : The Series . It was published by Activision on November 19 , 2011 , for Microsoft Windows , Apple II , Xbox 360 , iOS ,
and Xbox 360 . The game , set in the fictional Middle Ages , revolves around the player @-@ character centaurs battling for control of their universe .
The protagonist of the game , Percy , the leader of the Knights of the Old Republic , is a member of the Knights of the Old Republic , and is appointed
to lead a military coup to overthrow the Irish Republic and destroy the Home Nations ’ military forces . Though the game mainly took place in a new
version of the New York City , the original plan was to make it more easily accessible to players unfamiliar with the New Republic . It was also a
commercial success , selling more than 900 @,@ 000 copies . The game received mostly positive reviews from most video game publications , with
many praising the visual style and the gameplay , but many said that it was not as good as that of the previous game . Reviewers noted the game ’s title
forward addressing issues such as the difficulty level , a general danger of being too difficult to fight , and the difficulty of playing the game as the player
@-@ character ’s pattern of character .
= = Gameplay = =
Bloodlines is a crossover action role @-@ playing game that takes place in the fictional Middle Ages , which is composed of medieval countries and
locales . Valhalla , a medieval stronghold , is the game ’s main setting . The player @-@ character is a 3 @-@ D miniature character with a sword and
shield , which have multiple colored attacks , and has two of the four abilities , which are progressively reduced from the first one and allow for greater
size and movement . The available weapons are bolt @-@ fired weapons , advanced weapons , and weapons that can be used in battle . The player is
able to summon magical powers to attack targets , and can use magical powers to enhance the character ’s abilities . <unk> are also available via a <unk>
system , which enables players to throw stones at enemies and attack enemy characters who have not encountered them . The player character also has
an ability to revive foes by performing a touch @-@ screen action . The game can be played as a side @-@ scrolling through a View Mode , which can
be used in the single @-@ player mode . The first act features a " <unk> " displayed from a first @-@ person perspective . The player character can
move around

BoW = Civil War Pass =
Civil War Pass , also known as the Battle of the Crater or the Battle of Fort Sumner , was an important battle fought on September 7 , 1864 , at Fort
Coldwater , in the state of Montana . After seeing repeated attacks on the fort , Gen. James A. Douglas , the commander of the Confederate forces in the
South , decided to abandon the fort and flee to the north . After Union forces struck the fort , they decided to flee south to the Ohio River . There they
quickly encountered a group of horses , who were used to build a pontoon bridge . The ditches and wooden planks were removed and replaced with stone
blocks to make them float ( plow ) . The obstacles that were created in the river valley , however , proved treacherous and were not bridged by mountain
passes . The young general and his troops eventually reached the Ohio and the Mississippi rivers , but the new Presidential candidate , Abraham Lincoln
, resigned after the war . After the defeat at Fort Sumner , General Douglas , the commander of the Union forces , planned and executed a number of
attacks on Fort Sumner . When soldiers arrived , they found two now @-@ deserted locations . The attacks had been made more than a year before
. When the line of retreat of the Union forces , which stretched from Fort Sumner to Fort Sumner , reached Fort Sumner on August 19 , 1864 , the
cavalrymen captured it on September 30 . In November 1864 , General Douglas was defeated at the Battle of Lake Logan .
= = Background = =
In 1861 , with the Mexican @-@ American War nearing its conclusion , the American public began to think of an armistice treaty , or peace treaty
between Mexico and the United States . On July 1 , 1861 , General Douglas sent three large armies from the Mexican @-@ American War , a series of
forts west of the Rockies , to attack Fort Vicksburg . The forts were destroyed in a siege in June . These were built during the years it was fought by the
Confederate States of America . The British and Americans were unprepared for the chance of victory , and the Americans were now planning to take
control of the Gulf Coast . Like the Americans , the British were planning an attack into central Canada . The British were aware that the main invasion
of Canada would occur on July 8 . The British were near the Niagara River and the Union were hopefully midway along the river , approaching Fort
Sumner from the west . The British were reluctant to move toward the Carolinas , and so , in the event the Port of Boston was abandoned , the British
would be forced to travel to the lower Mississippi . The

Nodes = Fort Scott =
Fort Scott is an American military post located in Fort Lee , Kansas . It is named in honor of General William Scott , a U.S. Army general and the first
commander of the Army of the Potomac . The site was designated as a National Historic Landmark in 1991 , and has been designated a National Historic
Landmark under the title of Fort Scott Historical Site since 1929 . It is located in the Rocky Mountains in Kansas and is known as the " James Scott
National Historic Site " .
= = History = =
The original having been settled by the Caddo on the Black River , and later moved to Fort Lee in present @-@ day Decatur County , Virginia . On July
10 , 1810 , the Hennepin reported that the Caddo had acquired the territory of Fort Lee , but it is unclear whether he was present there . He may have taken
a position that had previously been occupied by other people . Around 1800 , the first Governor of Kansas , Colonel Andrew H. Sharpe , established Fort
Scott in what is now a part of Fort Lee . The fort was constructed on a site that he had named Fort Scott , and was known as Fort Douglas . The fort was
used for administrative purposes and for administration of the Missouri Territory . In 1808 , William Bolivar Buckner led a large movement to remove
the western boundary of Texas , including Fort Scott . Congress authorized a survey of the territory in 1817 , and a survey of the Old South boundary was
completed in 1818 , making Fort Scott the first governor to apply federal law . Although the West Texas Aftermath quickly became a national concern ,
the new governor was unable to raise sufficient funds to maintain Fort Scott . The fort ’s construction and construction were completed in 1821 , but the
state legislature refused to grant the commissioners the land they were granted . The new land , called Fort Dix , was consequently purchased by the U.S.
Army . The fort ’s name was later changed to Fort Lee . While the two states were in dispute by the 1832 treaty , Fort Dix was located in the Horn of the
Midget Valley , part of the Pan @-@ American Native Reservation . Confederate forces launched a cavalry attack on Fort Dix in early 1835 , but both
sides suffered defeats to the Union . Fort Dix was declared a U.S. Army national monument by President Andrew H. Sharpe in September 1836 . Fort
Dix was named after General John Scott , a U.S. Army general and the first governor of Texas , who was killed in an assassination attempt on June 20 ,
1855 . Military historian John P. Pickett wrote that it was the first military governor in the United States to serve in the Confederate States

GNN = Fort Scott National Historical Park =
Fort Scott National Historical Park is an Illinois state historic park in the U.S. state of Kentucky . It is located at 53◦25′4′′ N 65◦41′16′′ W , at
the edge of the Clay Creek valley , southwest of New Orleans . It is located at the intersection of Washington Boulevard and State Route 63 , and is the
largest National Historic Landmark in the state . The site was purchased by Native Americans in 1803 and the site was added to the National Register of
Historic Places in 1962 . Since 1998 , the site has been subject to an extensive series of historic markers and features that are important in preservation
of American historic sites in Texas . The National Park Service includes the nation ’s oldest extant log cabins , historic buildings , historic facilities ,
and historic structures . The park is home to the Mississippi River National Historical Park , a U.S. National Monument that supplies historic sites and
historic sites . The original fort was built in 1818 to protect U.S. statehood . In 1899 , the state legislature constructed a small blockhouse at the site of
the original fort to defend it from Native Americans . The blockhouse first appeared in 1868 , when land in the city of Lisbon was granted to the state .
The fort has remained in use since then .
= = History = =
= = = Early history = = =
Fort Scott was established as a civil and military fortification in 1803 and named after an American Indian . The land that would become Fort Scott
was originally part of the Louisiana Purchase , which was granted to the United States by the Louisiana Purchase Act of 1825 . The original fort was
established in 1828 by an act of Congress . The American Revolutionary War came to an end in 1830 , but Independence was declared in 1831 and
Independence was declared on June 3 , 1830 . The post @-@ war Treaty of Paris signed at Fort Scott ended military activity in the region . War by the
United States reached an end in 1830 , and most of the land was put aside for use as a military park . Fort Scott was garrisoned by 90 soldiers from the
55th Louisiana Regiment during the War of 1812 . In 1837 , the Illinois General Assembly passed legislation creating Fort Scott as a federal park , and
in the same year the state agreed to purchase the site in honor of the site ’s new state of Louisiana . Originally , only about half of Fort Scott was owned ,
but the size of the park changed in the 1880s from a forest reserve to a dirt road . The park was significantly expanded during the 1910s , but the exact
date is disputed . The

Table 9: Generated samples based on the “Fort Scott National Historic Site” graph.
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Cond.
Valid rBLEU Valid rBLEU (w/ title)
Sample length Sample length

256 512 1024 2048 4096 256 512 1024 2048 4096
None 9.53 10.47 12.22 14.57 14.60 29.03 27.78 27.02 27.24 26.94
BoW 30.63 29.44 29.56 29.92 30.00 35.03 32.48 31.50 31.72 31.46
Nodes 32.33 30.30 29.82 30.43 29.91 35.45 32.88 31.57 31.79 31.03
GNN 33.81 31.32 30.39 30.53 30.05 36.49 32.49 31.70 31.77 30.79

Table 10: Generated samples vs sample length.

Cond.
Valid rBLEU Valid rBLEU (w/ title)
Temperature Temperature

0.6 0.8 1.0 0.6 0.8 1.0
None 12.08 10.47 9.71 27.09 27.78 26.21
BoW 28.21 29.44 27.63 31.25 32.48 31.02
Nodes 29.55 30.30 28.48 31.52 32.88 31.23
GNN 29.59 31.32 29.01 31.55 32.49 31.20

Table 11: Generated samples vs temperature.
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Abstract

Recent work on aspect-level sentiment classifi-
cation has employed Graph Convolutional Net-
works (GCN) over dependency trees to learn
interactions between aspect terms and opinion
words. In some cases, the corresponding opin-
ion words for an aspect term cannot be reached
within two hops on dependency trees, which
requires more GCN layers to model. However,
GCNs often achieve the best performance with
two layers, and deeper GCNs do not bring any
additional gain. Therefore, we design a novel
selective attention based GCN model. On one
hand, the proposed model enables the direct
interaction between aspect terms and context
words via the self-attention operation without
the distance limitation on dependency trees.
On the other hand, a top-k selection procedure
is designed to locate opinion words by select-
ing k context words with the highest attention
scores. We conduct experiments on several
commonly used benchmark datasets and the re-
sults show that our proposed SA-GCN outper-
forms strong baseline models.

1 Introduction

Aspect-level sentiment classification is a fine-
grained sentiment analysis task, which aims to iden-
tify the sentiment polarity (e.g., positive, negative
or neutral) of a specific aspect term (also called
target) appearing in a sentence. For example, “De-
spite a slightly limited menu, everything prepared
is done to perfection, ultra fresh and a work of
food art.”, the sentiment polarity of aspect terms
“menu” and “food” are negative and positive, re-
spectively. The opinion words “limited” and “done
to perfection” provide evidences for sentiment po-
larity predictions. This task has many applications,
such as restaurant recommendation and purchase
recommendation on e-commerce websites.

To solve this problem, recent studies have shown
that the interactions between an aspect term and its
context (which include opinion words) are crucial

in identifying the sentiment polarity towards the
given term. Most approaches consider the seman-
tic information from the context words and utilize
the attention mechanism to learn such interactions.
However, it has been shown that syntactic infor-
mation obtained from dependency parsing is very
effective in capturing long-range syntactic relations
that are obscure from the surface form (Zhang et al.,
2018). A recent popular approach to learn syntax-
aware representations is employing graph convolu-
tional networks (GCN) (Kipf and Welling, 2017)
model over dependency trees (Huang and Carley,
2019; Zhang et al., 2019; Sun et al., 2019; Wang
et al., 2020; Tang et al., 2020), which introduces
syntactic inductive biases into the message passing.

In some cases, the most important context words,
i.e. opinion words, are more than two-hops away
from the aspect term words on the dependency tree.
As indicated by Figure 1, there are four hops be-
tween the target “Mac OS” and the opinion words
“easily picked up” on the dependency tree. This
type of cases requires more than two layers of GCN
to learn interactions between them. However, previ-
ous works show that GCN models with two layers
often achieve the best performance (Zhang et al.,
2018; Xu et al., 2018), deeper GCNs do not bring
additional gain due to the over-smoothing prob-
lem (Li et al., 2018b), which makes different nodes
have similar representations and lose the distinction
among nodes.

In order to solve the above problem, we propose
a novel selective attention based GCN (SA-GCN)
model, which combines the GCN model over de-
pendency trees with a self-attention based sequence
model over the sentence. On one hand, the self-
attention sequence model enables the direct interac-
tion between an aspect term and its context so that
it can take care of the situation where the term is far
away from the opinion words on the dependency
tree. On the other hand, a top-k attention selection
module is applied after the self-attention opera-
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I thought learning the Mac OS would be hard, but it is easily 
picked up if you are familiar with a PC.

Figure 1: Example of dependency tree with multi-hop
between aspect term and determined context words.

tion, which is designed to locate opinion words
contained in the context for the aspect term. As
shown in Figure 1, if the opinion words “easily
picked up” are detected correctly through the top-k
selection module, it definitely could help the model
to classify the sentiment as positive. To provide
supervision information for the top-k selection pro-
cedure, we introduce the opinion words extraction
task and jointly train the task with the sentiment
classification task.

Specifically, the base model is the GCN model
over dependency trees. The model uses the pre-
trained BERT to obtain representations of the as-
pect term and its context words as the initial node
features on the dependency tree.

Next, the GCN outputs are fed into a multi-head
top-k attention selection module. For each head,
the self-attention operation is applied over the sen-
tence to get a dense attention score matrix, where i-
th row corresponds the attention scores of all words
to the i-th word in the sentence. Then for each
word, context words with top-k attention scores
are selected and others are ignored, which sparsi-
fies the attention score matrix and forms a sparse
graph. We design two strategies to get the sparse
graph: i) applying top-k selection over the atten-
tion matrix obtained by summing attention score
matrices of all heads, and thus different heads share
the same sparse graph; ii) applying top-k selection
on individual attention score matrix of each head,
and thus different heads have its own sparse graph.
Finally, we apply a GCN layer again to integrate in-
formation from such sparse graph(s) for each head,
and concatenate the GCN outputs w.r.t. different
heads as the final word representation for sentiment
analysis.

The main contributions of this work are summa-
rized as the following:

• We propose a selective attention based GCN (SA-

GCN) module, which takes the benefit of GCN
over the dependency trees and enables the as-
pect term directly obtaining information from the
opinion words according to most relevant context
words. This helps the model handle cases when
the aspect term and opinion words are located far
away from each other on the dependency tree.

• We propose to jointly train the sentiment classi-
fication and opinion extraction tasks. The joint
training further improves the performance of the
classification task and provides explanation for
sentiment prediction.

2 Related Work

Capturing the interaction between the aspect term
and opinion words is essential for predicting the
sentiment polarity towards the aspect term. In re-
cent work, various attention mechanisms, such as
co-attention, self-attention and hierarchical atten-
tion, were utilized to learn this interaction (Tang
et al., 2016; Liu and Zhang, 2017; Li et al., 2018c;
Wang et al., 2018; Fan et al., 2018; Chen et al.,
2017; Zheng and Xia, 2018; Wang and Lu, 2018;
Li et al., 2018a,c). Specifically, they first encoded
the context and the aspect term by recurrent neural
networks (RNNs), and then stacked several atten-
tion layers to learn the aspect term representations
from important context words.

After the success of the pre-trained BERT
model (Devlin et al., 2018), Song et al. (2019) uti-
lized the pre-trained BERT as the encoder. In the
study by (Xu et al., 2019), the task was considered
as a review reading comprehension (RRC) problem.
RRC datasets were post trained on BERT and then
fine-tuned to the aspect-level sentiment classifica-
tion. Rietzler et al. (2019) utilized millions of extra
data based on BERT to help sentiment analysis.

The above approaches mainly considered the
semantic information. Recent approaches at-
tempted to incorporate the syntactic knowledge to
learn the syntax-aware representation of the aspect
term. Dong et al. (2014) proposed AdaRNN, which
adaptively propagated the sentiments of words to
target along the dependency tree in a bottom-up
manner. Nguyen and Shirai (2015) extended RNN
to obtain the representation of the target aspect by
aggregating the syntactic information from the de-
pendency and constituent tree of the sentence. He
et al. (2018) proposed to use the distance between
the context word and the aspect term along the
dependency tree as the attention weight. Some re-
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searchers (Huang and Carley, 2019; Zhang et al.,
2019; Sun et al., 2019) employed GNNs over de-
pendency trees to aggregate information from syn-
tactic neighbors. Most recent work in Wang et al.
(2020) proposed to reconstruct the dependency tree
to an aspect-oriented tree. The reshaped tree only
kept the dependency structure around the aspect
term and got rid of all other dependency connec-
tions, which made the learned node representations
not fully syntax-aware. Tang et al. (2020) designed
a mutual biaffine module between Transformer en-
coder and the GCN encoder to enhance the repre-
sentation learning.

The downside of applying GCN over depen-
dency trees is that it cannot elegantly handle the
long distance between aspect terms and opinion
words. Our proposed SA-GCN model effectively
integrates the benefit of a GCN model over depen-
dency trees and a self-attention sequence model to
directly aggregate information from opinion words.
The top-k self-attention sequence model selects
the most important context words, which effec-
tively sparsifies the fully-connected graph from
self-attention. Then we apply another GCN layer
on top of this new sparsified graph, such that each
of those important context words is directly reach-
able by the aspect term and the interaction between
them could be learned.

3 Proposed Model

3.1 Overview of the Model

The goal of our proposed SA-GCN model is to
predict the sentiment polarity of an aspect term in
a given sentence. To improve the sentiment clas-
sification performance and provide explanations
about the polarity prediction, we also introduce the
opinion extraction task for joint training. The opin-
ion extraction task aims to predict a tag sequence
yo = [y1, y2, · · · , yn] (yi ∈ {B, I,O}) denotes
the beginning of, inside of, and outside of opinion
words. Figure 2 illustrates the overall architecture
of the SA-GCN model. For each instance compos-
ing of a sentence-term pair, all the words in the
sentence except for the aspect term are defined as
context words.

3.2 Encoder for Aspect Term and Context

BERT Encoder. We use the pre-trained BERT
base model as the encoder to obtain embeddings of
sentence words. Suppose a sentence consists of
n words {w1, w2, ..., wτ , wτ+1..., wτ+m, ..., wn}

where {wτ , wτ+1..., wτ+m−1} stand for the aspect
term containing m words. First, we construct the
input as “[CLS] + sentence + [SEP] + term + [SEP]”
and feed it into BERT. This input format enables
explicit interactions between the whole sentence
and the term such that the obtained word represen-
tations are term-attended. Then, we use average
pooling to summarize the information carried by
sub-words from BERT and obtain final embeddings
of words X ∈ Rn×dB , dB refers to the dimension-
ality of BERT output.

3.3 GCN over Dependency Trees
With words representations X as node features and
dependency tree as the graph, we employ a GCN to
capture syntactic relations between the term node
and its neighboring nodes.

GCNs have shown to be effective for many NLP
applications, such as relation extraction (Guo et al.,
2019; Zhang et al., 2018), reading comprehen-
sion (Kundu et al., 2019; Tu et al., 2019), and
aspect-level sentiment analysis (Huang and Car-
ley, 2019; Zhang et al., 2019; Sun et al., 2019). In
each GCN layer, a node aggregates the information
from its one-hop neighbors and update its represen-
tation. In our case, the graph is represented by the
dependency tree, where each word is treated as a
single node and its representation is denoted as the
node feature. The message passing on the graph
can be formulated as follows:

H(l) = σ(AH(l−1)W (l−1)) (1)

where H(l) ∈ Rn×dh is the output l-th GCN layer,
H(0) ∈ Rn×dB is the input of the first GCN layer,
and H(0) = X ∈ Rn×dB . A ∈ Rn×n denotes the
adjacency matrix obtained from the dependency
tree, note that we add a self-loop on each node.W
represents the learnable weights, where W (0) ∈
RdB×dh and W (l−1) ∈ Rdh×dh . σ refers to ReLU
activation function.

The node features are passed through the GCN
layer, the representation of each node is now fur-
ther enriched by syntax information from the de-
pendency tree.

3.4 SA-GCN: Selective Attention based GCN
Although performing GCNs over dependency trees
brings syntax information to the representation of
each word, it could still limit interactions between
aspect terms and long-distance opinion words that
are essential for determining the sentiment polar-
ity. In order to alleviate the problem, we apply a
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Figure 2: The SA-GCN model architecture: the left part is the overview of the framework, the right part shows
details of a SA-GCN block.

Selective Attention based GCN (SA-GCN) block
to identify the most important context words and
integrate their information into the representation
of the aspect term. Multiple SA-GCN blocks can
be stacked to form a deep model. Each SA-GCN
block is composed of three parts: a multi-head self-
attention layer, top-k selection and a GCN layer.
Self-Attention. We apply the multi-head self-
attention first to get the attention score matrices
Ai
score ∈ Rn×n(1 ≤ i ≤ L), L is the number of

heads. It can be formulated as:

Ai
score =

(Hk,iWk)(Hq,iWq)
T

√
dhead

(2)

dhead =
dh
L

(3)

where H∗,i = H∗[:, :, i], ∗ ∈ {k: key, q: query},
Hk ∈ Rn×dhead×L and Hq ∈ Rn×dhead×L are the
node representations from the previous GCN layer,
Wk ∈ Rdhead×dhead and Wq ∈ Rdhead×dhead are
learnable weight matrices, dh is the dimension of
the input node feature, and dhead is the dimension
of each head.

The obtained attention score matrices can be
considered as L fully-connected (complete) graphs,
where each word is connected to all the other con-
text words with different attention weights. This
kind of attention score matrix has been used in
attention-guided GCNs for relation extraction (Guo
et al., 2019). Although the attention weight is help-

ful to differentiate different words, the fully con-
nected graph still results in the aspect node fusing
all the other words information directly, and the
noise is often introduced during feature aggrega-
tion in GCNs, which further hurts the sentiment
prediction. Therefore, we propose a top-k attention
selection mechanism to sparsify the fully connected
graph, and obtain a new sparse graph for feature ag-
gregation for GCN. This is different from attention-
guided GCNs (Guo et al., 2019) which performed
feature aggregation over the fully-connected graph.
Moreover, our experimental study (see Table 5 in
Section 4) also confirms that the top-k selection
is quite important and definitely beneficial to the
aspect-term classification task.

Top-k Selection. For each attention score matrix
Ai
score, we find the top-k important context words

for each word, which effectively remove some
edges in Ai

score. The reason why we choose the
top-k context words is that only a few words are
sufficient to determine the sentiment polarity to-
wards an aspect term. Therefore, we discard other
words with low attention scores to get rid of irrele-
vant noisy words.

We design two strategies for top-k selection,
head-independent and head-dependent. Head-
independent selection determines k context words
by aggregating the decisions made by all heads and
reaches to an agreement among heads, while head-
dependent policy enables each head to keep its own
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selected k words.
Head-independent selection is defined as follow-

ing: we first sum the attention score matrix of each
head element-wise, and then find top-k context
words using the mask generated by the function
topk. For example, topk([0.3, 0.2, 0.5]) returns
[1, 0, 1] if k is set to 2. Finally, we apply a softmax
operation on the updated attention score matrix.
The process could be formulated as follows:

Asum =
L∑

i=1

Ai
score (4)

Amind = topk(Asum) (5)

Ai
hind

= softmax(Amind ◦Ai
score) (6)

where Ai
score is the attention score matrix of i-th

head, ◦ denotes the element-wise multiplication.
Head-dependent selection finds top-k context

words according to the attention score matrix of
each head individually. We apply the softmax oper-
ation on each top-k attention matrix. This step can
be formulated as:

Ai
mdep

= topk(Ai
score) (7)

Ai
hdep

= softmax(Ai
mdep

◦Ai
score) (8)

Compared to head-independent selection with ex-
actly k words selected, head-dependent usually se-
lects a larger number (than k) of important context
words. Because each head might choose different k
words thus more than k words are selected in total.

From top-k selection we obtain L graphs based
on the new attention scores and pass them to the
next GCN layer. For simplicity, we will omit the
head-ind and head-dep subscript in the later sec-
tion. The obtained top-k score matrix A could be
treated as an adjacency matrix, where A(p, q) de-
notes as the weight of the edge connecting word p
and word q. Note that A does not contain self-loop,
and we add a self-loop for each node.
GCN Layer. After top-k selection on each atten-
tion score matrix Ai

score (Ai
score is not fully con-

nected anymore), we apply a one-layer GCN and
get updated node features as follows:

Ĥ(l,i) = σ(AiĤ(l−1)W i) + Ĥ(l−1)W i (9)

Ĥ(l) = ‖Li=1Ĥ
(l,i) (10)

where Ĥ(l) ∈ Rn×dh is the output of the l-th SA-
GCN block and composed by the concatenation of
Ĥ(l,i) ∈ Rn×dhead of i-th head, Ĥ(0) ∈ Rn×dh is

the input of the first SA-GCN block and comes from
the GCN layer operating on the dependency tree,
Ai is the top-k score matrix of i-th head, W i ∈
Rdh×dhead denotes as the learnable weight matrix,
and σ refers to ReLU activation function. The SA-
GCN block can be applied multi times if needed.

3.5 Classifier
Based on the output Ĥo of the last SA-GCN block,
we extract the aspect term node features from Ĥo,
and conduct average pooling to obtain the aspect
term 1 representation ĥt ∈ R1×dh . Then we feed it
into a two-layer MLP to calculate the final classifi-
cation scores ŷs:

ŷs = softmax(W2σ(W1ĥ
T
t )) (11)

where W2 ∈ RC×dout and W1 ∈ Rdout×dh denote
the learnable weight matrix, C is the sentiment
class number, and σ refers to ReLU activation
function. We use cross entropy as the sentiment
classification loss function:

Ls = −
C∑

c=1

ys,c log ŷs,c + λ‖θ‖2 (12)

where λ is the coefficient for L2-regularization, θ
denotes the parameters that need to be regularized,
ys is the true sentiment label.

3.6 Opinion Extractor
The opinion extraction shares the same input en-
coder, i.e. the SA-GCN as sentiment classification.
Therefore we feed the output of SA-GCN to a linear-
chain Conditional Random Field (CRF) (Lafferty
et al., 2001), which is the opinion extractor. Specif-
ically, based on the SA-GCN output Ĥo, the output
sequence yo = [y1, y2, · · · , yn] (yi ∈ {B, I,O})
is predicted as:

p(yo|Ĥo) =
exp(s(Ĥo,yo))∑

y′o∈Y exp(s(Ĥo,y′o))
(13)

s(Ĥo,yo) =

n∑

i

(Tyi−1,yi + Pi,yi) (14)

Pi = WoĤo[i] + bo (15)

where Y denotes the set of all possible tag se-
quences, Tyi−1,yi is the transition score matrix, Wo

and bo are learnable parameters. We apply Viterbi
1The aspect term might be composed of multiple term

nodes in the graph.
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Dataset
Positive Neutral Negative

Train Test Train Test Train Test
14Lap 991 341 462 169 867 128
14Rest 2164 728 633 196 805 196
15Rest 963 353 36 37 280 207
16Rest 1324 483 71 32 489 135

Table 1: Statistics of Datasets.

algorithm in the decoding phase. And the loss for
opinion extraction task is defined as:

Lo = −log(p(yo|Ĥo)) (16)

Finally, the total training loss is:

L = Ls + αLo (17)

where α ≥ 0 represents the weight of opinion
extraction task.

4 Experiments

Data Sets. We evaluate our SA-GCN model on four
datasets: Laptop reviews from SemEval 2014 Task
4 (14Lap), Restaurant reviews from SemEval 2014
Task 4 (Pontiki et al., 2014), SemEval 2015 Task
12 (Pontiki et al., 2015) and SemEval 2016 Task
5 (Pontiki et al., 2016) (14Rest, 15Rest and 16Rest).
We remove several examples with “conflict” labels.
The statistics of these datasets are listed in Table 1.
The opinion words labeling for these four datasets
come from (Fan et al., 2019).
Baselines. Since BERT(Devlin et al., 2018) model
shows significant improvements over many NLP
tasks, we directly implement SA-GCN based on
BERT and compare with following BERT-based
baseline models:

1. BERT-SPC (Song et al., 2019) feeds the sen-
tence and term pair into the BERT model and the
BERT outputs are used for prediction.

2. AEN-BERT (Song et al., 2019) uses BERT as
the encoder and employs several attention layers.

3. TD-GAT-BERT (Huang and Carley, 2019) uti-
lizes GAT on the dependency tree to propagate
features from the syntactic context.

4. DGEDT-BERT (Tang et al., 2020) proposes a
mutual biaffine module to jointly consider the
flat representations learnt from Transformer and
graph-based representations learnt from the cor-
responding dependency graph in an iterative
manner.

5. R-GAT+BERT (Wang et al., 2020) reshapes and
prunes the dependency parsing tree to an aspect-
oriented tree rooted at the aspect term, and then
employs relational GAT to encode the new tree
for sentiment predictions.

In our experiments, we present results of the
average and standard deviation numbers from seven
runs of different random initialization. We use
BERT-base model to compare with other published
numbers. We implement our own BERT-baseline
by directly applying a classifier on top of BERT-
base encoder, BERT+2-layer GCN and BERT+4-
layer GCN are models with 2-layer and 4-layer
GCN respectively on dependency trees with the
BERT encoder. BERT+SA-GCN is our proposed
SA-GCN model with BERT encoder. Joint SA-GCN
refers to joint training of sentiment classification
and opinion extraction tasks.
Evaluation metrics. We train the model on train-
ing set, and evaluate the performance on test set in
terms of accuracy and macro-F1 scores which are
commonly-used in sentiment analysis (Sun et al.,
2019; Tang et al., 2016; Wang et al., 2020).
Parameter Setting. During training, we set the
learning rate to 10−5. The batch size is 4. We
train the model up to 5 epochs with Adam op-
timizer. We obtain dependency trees using the
Stanford Stanza (Qi et al., 2020). The dimension
of BERT output dB is 768. The hidden dimen-
sions are selected from {128, 256, 512}. We apply
dropout (Srivastava et al., 2014) and the dropout
rate range is [0.1, 0.4]. The L2 regularization is set
to 10−6. We use 1 or 2 SA-GCN blocks in our ex-
periments. We choose k in top-k selection module
from {2, 3} to achieve the best performance. For
joint training, the weight range of opinion extrac-
tion loss is [0.05, 0.15].2

4.1 Experimental Results

We present results of the SA-GCN model in two
aspects: classification performance and qualitative
case study.
Classification. Table 2 shows comparisons of SA-
GCN with other baselines in terms of classifica-
tion accuracy and Macro-F1. From this table, we
observe that: SA-GCN achieves the best average
results on 14Lap, 15Rest and 16Rest datasets, and
obtains competitive results on 14Rest dataset. The
joint training of sentiment classification and opin-

2Our code will be released at the time of publication.
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Category Model
14Rest 14Lap 15Rest 16Rest

Acc Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc Macro-F1

BERT
BERT-SPC 84.46 76.98 78.99 75.03 - - - -
AEN-BERT 83.12 73.76 79.93 76.31 - - - -

BERT+DT?
TD-GAT-BERT 83.0 - 80.1 - - - - -
DGEDT-BERT 86.3 80.0 79.8 75.6 84.0 71.0 91.9 79.0

BERT+RDT� R-GAT+BERT 86.60 81.35 78.21 74.07 - - - -

Ours

BERT-baseline 85.56 ± 0.30 79.21 ± 0.45 79.57 ± 0.15 76.18 ± 0.31 83.45 ± 1.13 69.29 ± 1.78 91.06 ± 0.44 78.58 ± 1.62
BERT+2-layer GCN 85.78 ± 0.59 80.55 ± 0.90 79.72 ± 0.31 76.31 ± 0.35 83.71 ± 0.42 69.26 ± 1.63 91.23 ± 0.25 79.29 ± 0.51
BERT+4-layer GCN 85.03 ± 0.64 78.90 ± 0.75 79.57 ± 0.15 76.23 ± 0.49 83.48 ± 0.33 68.72 ± 1.08 91.02 ± 0.26 78.68 ± 0.50

BERT+SA-GCN† 86.16 ± 0.23 80.54 ± 0.38 80.31 ± 0.47 76.99 ± 0.59 84.18 ± 0.29 69.42 ± 0.81 91.41 ± 0.39 80.39 ± 0.93
Joint SA-GCN 86.57 ± 0.81 81.14 ± 0.69 80.61 ± 0.32 77.12 ± 0.51 84.63 ± 0.33 69.1 ± 0.78 91.54 ± 0.26 80.68 ± 0.92

Joint SA-GCN (Best�) 87.68 82.45 81.03 77.71 85.26 69.71 92.0 81.86

? DT: Dependency Tree; � RDT: Reshaped Dependency Tree.
†: Head-independent based top-k Selection.
� The “best” denotes as the best performances of our SA-GCN model from the seven runs. Row “Joint-SA-GCN” reports the average and std of these seven runs.

Table 2: Comparison of SA-GCN with various baselines.

Sentence Label GCN SA-GCN
Satay is one of those favorite haunts on Washington where the service and food is always on the money. positive neutral positive
And the fact that it comes with an i5 processor definitely speeds things up positive neutral positive
I know real Indian food and this was n’t it. negative neutral negative

Table 3: Top-k visualization: the darker the shade, the larger attention weight.

ion extraction tasks further boosts the performances
on all datasets.

Specifically, BERT+2-layer GCN outperforms
BERT-baseline, which proves the benefit of using
syntax information. BERT+4-layer GCN is actu-
ally worse than BERT+2-layer GCN, which shows
that more GCN layers do not bring additional gain.

Our BERT+SA-GCN model further outperforms
the BERT+2-layer GCN model. Because the SA-
GCN block allows aspect terms to directly absorb
the information from the most important context
words that are not reachable within two hops in the
dependency tree.

Besides, introducing the opinion extraction task
provides more supervision signals for the top-k se-
lection module, which benefits the sentiment clas-
sification task.
Qualitative Case Study. To show the efficacy of
the SA-GCN model on dealing long-hops between
aspect term and its opinion words, we demonstrate
three examples as shown in Table 3. These sen-
tences are selected from test sets of 14Lap and
14Rest datasets and predicted correctly by the SA-
GCN model but wrongly by BERT+2-layer GCN.
The important thing to note here, our SA-GCN
model could provide explanation about the pre-
diction according to the learned attention weights,
while the GCN based model (BERT+2-layer GCN
denoted as “GCN” in Table 3) cannot. Aspect terms
are colored red. Top-3 words with the largest at-
tention weights towards the aspect term are shaded.
The darker the shade, the larger attention weight.

In all three examples the aspect terms are more
than three hops away from essential opinion words

Model
14Rest 14Lap 15Rest 16Rest

F1 F1 F1 F1
IOG 80.24 71.39 73.51 81.84
ASTE 83.15 76.03 78.02 83.73
Joint SA-GCN 83.72 ± 0.51 76.79 ± 0.33 80.99 ± 0.43 83.83 ± 0.50

Table 4: Opinion extraction results.

(Please refer to Fig. 3), thus BERT+2-layer GCN
model cannot learn the interactions between them
within two layers, while SA-GCN model overcomes
the distance limitation and locates right opinion
words.
Opinion Extraction. Table 4 shows the results of
the opinion extraction task under the joint training
setting. The reported numbers are obtained by av-
eraging F1 of seven runs. In each run, the selected
opinion F1 is generated from the best sentiment
classification checkpoint. We compare our model
with two baselines: IOG (Fan et al., 2019) encodes
the aspect term information into context by an
Inward-Outward LSTM to find the corresponding
opinion words. ASTE (Peng et al., 2020) utilizes a
GCN module to learn the mutual dependency rela-
tions between different words and to guide opinion
term extraction. As shown in this table, the joint SA-
GCN model outperforms two baseline models on
all datasets, which demonstrates that the sentiment
classification task is helpful for opinion extraction
task as well.

4.2 Model Analysis

We further analyze our SA-GCN model from two
perspectives: ablation study and sentence length
analysis.
Ablation Study. To demonstrate effectiveness of
different modules in SA-GCN, we conduct ablation
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(a) case 1

(b) case 2

(c) case 3

Figure 3: Dependency trees of case study. Case 1: the aspect term “food” is four hops away from the opinion
words “favorite” and “on the money”. In cases 2 and 3, there are also three-hops distance between aspect terms
and opinion words.

Model
14Rest 14Lap 15Rest 16Rest

Acc Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc Macro-F1
SA-GCN (head-ind) 86.16 ± 0.23 80.54 ± 0.38 80.31 ± 0.47 76.99 ± 0.59 84.18 ± 0.29 69.42 ± 0.81 91.41± 0.39 80.39 ± 0.93
SA-GCN w/o top-k 85.06 ± 0.68 78.88 ± 0.83 79.96 ± 0.14 76.64 ± 0.58 83.15 ± 0.41 68.74 ± 1.48 90.92 ± 0.45 78.18 ± 0.71
SA-GCN (head-dep)� 85.41 ± 0.21 79.19 ± 0.68 80.17 ± 0.55 76.83 ± 0.59 83.68 ± 0.54 68.81 ± 1.39 91.01 ± 0.40 78.88 ± 1.04
� head-dep: head-dependent based top-k selection.

Table 5: Ablation study of SA-GCN.

studies in Table 5. From this table, we observe that:

1. Effect of Top-k Selection. To examine the im-
pact the top-k selection, we present the result
of SA-GCN w/o top-k in Table 5. We can see
that without top-k selection, both accuracy and
macro-F1 decrease on all datasets. This obser-
vation proves that the top-k selection helps to
reduce the noisy context and locate top impor-
tant opinion words. We also conduct the effect
of the hyper-parameter k and the block num-
ber N on SA-GCN under head-independent and
head-dependent selection respectively (see the
supplemental material).

2. Effect of Head-independent and Head-
dependent Selection. As shown in the last
row in Table 5, head-independent selection
achieves better results than head-dependent
selection. This is because the mechanism of
head-independent selection is similar to voting.
By summing up the weight scores from each
head, context words with higher scores in most
heads get emphasized, and words that only show
importance in few heads are filtered out. Thus
all heads reach to an agreement and the top-k
context words are decided. However for head-

dependent selection, each head selects different
top-k context words, which is more likely to
choose certain unimportant context words and
introduce noise to the model prediction.

Sentence Length Analysis. To quantify the ability
of our SA-GCN model dealing with long-distance
problem, we conduct sentence length analysis on
14Lap and 14Rest datasets. The assumption is that
the longer the sentence, the more likely the long-
distance problem occurs. The results are showed in
Figure 4. We measure the sentiment classification
accuracy of BERT+2-layer GCN (denotes as GCN
in Figure 4) and BERT+SA-GCN models under
different sentence lengths. We observe that SA-
GCN achieves better accuracy than GCN across
all length ranges and is more advantageous when
sentences are longer. To some extent, the results
prove effectiveness of SA-GCN in dealing with
long-distance problem.
Hyper-parameter Analysis. We examine the ef-
fect of the hype-parameter k and the block number
N on our proposed model under head-independent
and head-dependent selection respectively. Figure
5 shows the results on 14Rest dataset.

1. Effect of Hyper-parameter k. From Figure
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(a) Length analysis on 14Lap.
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(b) Length analysis on 14Rest.

Figure 4: Sentence length analysis on 14Lap and
14Rest.

5a, we observe that: 1) the highest accuracy
appears when k is equal to 3. As k becomes
bigger, the accuracy goes down. The reason is
that integrating information from too many con-
text words could introduce distractions and con-
fuse the representation of the current word. 2)
Head-independent selection performs better than
head-dependent selection as k increases. As men-
tioned before, compared with head-independent,
head-dependent selection might have more than
k context words contribute to the aggregation
and introduce some noise.

2. Effect of Block Number. Figure 5b shows the
effect of different number of SA-GCN blocks.
As the block number increases, the accuracy
decreases for both head-independent and head-
dependent selection. A single SA-GCN block
is sufficient for selecting top-k important con-
text words. Stacking multiple blocks introduces
more parameters and thus would lead to over-
fitting with such a small amount of training data.
This might be the reason why stacking multiple
blocks is not helpful. For our future work we
plan to look into suitable deeper GNN models
that are good for this task.
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Figure 5: Impact of k and block numbers on SA-GCN
over Restaurant dataset.

5 Conclusions

We propose a selective attention based GCN model
for the aspect-level sentiment classification task.
We first encode the aspect term and context words
by pre-trained BERT to capture the interaction be-
tween them, then build a GCN on the dependency
tree to incorporate syntax information. In order to
handle the long distance between aspect terms and
opinion words, we use the selective attention based
GCN block, to select the top-k important context
words and employ the GCN to integrate their infor-
mation for the aspect term representation learning.
Further, we adopt opinion extraction problem as an
auxiliary task to jointly train with sentiment classi-
fication task. We conduct experiments on several
SemEval datasets. The results show that SA-GCN
achieve better performances than previous strong
baselines.

References
Peng Chen, Zhongqian Sun, Lidong Bing, and Wei

Yang. 2017. Recurrent attention network on mem-
ory for aspect sentiment analysis. In Proceedings of

91



the 2017 conference on empirical methods in natural
language processing, pages 452–461.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. Proceedings of NAACL-HLT 2019, page pages
4171–4186.

Li Dong, Furu Wei, Chuanqi Tan, Duyu Tang, Ming
Zhou, and Ke Xu. 2014. Adaptive recursive neural
network for target-dependent twitter sentiment clas-
sification. In Proceedings of the 52nd annual meet-
ing of the association for computational linguistics
(volume 2: Short papers), pages 49–54.

Feifan Fan, Yansong Feng, and Dongyan Zhao. 2018.
Multi-grained attention network for aspect-level sen-
timent classification. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3433–3442.

Zhifang Fan, Zhen Wu, Xinyu Dai, Shujian Huang, and
Jiajun Chen. 2019. Target-oriented opinion words
extraction with target-fused neural sequence label-
ing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2509–2518.

Zhijiang Guo, Yan Zhang, and Wei Lu. 2019. Attention
guided graph convolutional networks for relation ex-
traction. 57th Annual Meeting of the Association for
Computational Linguistics, page 241–251.

Ruidan He, Wee Sun Lee, Hwee Tou Ng, and Daniel
Dahlmeier. 2018. Effective attention modeling for
aspect-level sentiment classification. In Proceed-
ings of the 27th International Conference on Com-
putational Linguistics, pages 1121–1131.

Binxuan Huang and Kathleen M Carley. 2019. Syntax-
aware aspect level sentiment classification with
graph attention networks. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5472–5480.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In International Conference on Learning
Representations (ICLR).

Souvik Kundu, Tushar Khot, Ashish Sabharwal, and
Peter Clark. 2019. Exploiting explicit paths for
multi-hop reading comprehension. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 2737–2747. Asso-
ciation for Computational Linguistics.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data.

Lishuang Li, Yang Liu, and AnQiao Zhou. 2018a. Hier-
archical attention based position-aware network for
aspect-level sentiment analysis. In Proceedings of
the 22nd Conference on Computational Natural Lan-
guage Learning, pages 181–189.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018b.
Deeper insights into graph convolutional networks
for semi-supervised learning. In Thirty-Second
AAAI Conference on Artificial Intelligence.

Xin Li, Lidong Bing, Wai Lam, and Bei Shi. 2018c.
Transformation networks for target-oriented senti-
ment classification. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 946–
956, Melbourne, Australia. Association for Compu-
tational Linguistics.

Jiangming Liu and Yue Zhang. 2017. Attention mod-
eling for targeted sentiment. In Proceedings of the
15th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Volume 2,
Short Papers, pages 572–577.

Thien Hai Nguyen and Kiyoaki Shirai. 2015.
Phrasernn: Phrase recursive neural network for
aspect-based sentiment analysis. In Proceedings
of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 2509–2514.

Haiyun Peng, Lu Xu, Lidong Bing, Fei Huang, Wei Lu,
and Luo Si. 2020. Knowing what, how and why:
A near complete solution for aspect-based sentiment
analysis. In AAAI, pages 8600–8607.

Maria Pontiki, Dimitris Galanis, Haris Papageorgiou,
Ion Androutsopoulos, Suresh Manandhar, Moham-
mad AL-Smadi, Mahmoud Al-Ayyoub, Yanyan
Zhao, Bing Qin, Orphée De Clercq, Véronique
Hoste, Marianna Apidianaki, Xavier Tannier, Na-
talia Loukachevitch, Evgeniy Kotelnikov, Nuria Bel,
Salud María Jiménez-Zafra, and Gülşen Eryiğit.
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Abstract

This work revisits the information given by
the graph-of-words and its typical utilization
through graph-based ranking approaches in
the context of keyword extraction. Recent,
well-known graph-based approaches typically
employ the knowledge from word vector repre-
sentations during the ranking process via popu-
lar centrality measures (e.g., PageRank) with-
out giving the primary role to vectors’ distri-
bution. We consider the adjacency matrix that
corresponds to the graph-of-words of a target
text document as the vector representation of
its vocabulary. We propose the distribution-
based modeling of this adjacency matrix us-
ing unsupervised (learning) algorithms. The
efficacy of the distribution-based modeling ap-
proaches compared to state-of-the-art graph-
based methods is confirmed by an extensive
experimental study according to the F1 score.
Our code is available on GitHub1.

1 Introduction

Automatic Keyword Extraction (AKE) intends to
discover a limited but concise set of words that
reflect the main topics discussed within a text docu-
ment, avoiding the expensive and time-consuming
process of manual annotation by experts (Vega-
Oliveros et al., 2019). Besides, many keyphrase
extraction methods form and rank the candidate
phrases using the previously scored candidate uni-
grams by a keyword extractor, as keyphrases con-
sist of n-grams with n ≥ 1 (Wan and Xiao, 2008a;
Hasan and Ng, 2014; Florescu and Caragea, 2017).

Both supervised and unsupervised approaches
are quite famous for the AKE task (Papa-
giannopoulou and Tsoumakas, 2020). During the
last two years, the research community pays signif-
icant attention on (supervised) deep learning meth-
ods (Chan et al., 2019; Wang et al., 2019; Zhao

1https://github.com/epapagia/KE_
adjacency_matrix_modelling

and Zhang, 2019; Chen et al., 2020) as the per-
formance of the unsupervised ones shows a rela-
tive stagnation (or minimal improvements) com-
pared to the supervised techniques. The use of stan-
dard external tools for grammatical/syntactic anal-
ysis and information sources such as (pre-trained)
static word embeddings (Bennani-Smires et al.,
2018; Mahata et al., 2018) that have a bias over
the corpora domains used for training may also
exacerbate the problem. Moreover, most meth-
ods suggest a fixed or relative with the document
length number of keywords dissociating the num-
ber of returned keywords from the number of topics
discussed in the document (Rousseau and Vazir-
giannis, 2015). However, unsupervised methods
are of timeless interest. They often are domain
or language-independent and do not need any la-
belled data to train models compared to the super-
vised ones. The graph-based approaches (i.e., the
most popular category of the unsupervised AKE)
consider the “central” nodes of a graph-of-words
as the most representative ones usually according
to (variations of) the PageRank (Brin and Page,
1998) centrality, i.e., the most effective graph-based
ranking method employed by the majority of the
state-of-the-art (Mihalcea and Tarau, 2004; Wan
and Xiao, 2008b; Florescu and Caragea, 2017;
Vega-Oliveros et al., 2019). Additionally, tradi-
tional (semi-)supervised, or even deep learning ap-
proaches (Wang and Li, 2017; Gollapalli et al.,
2017; Ye and Wang, 2018) utilize the unsupervised
methods mentioned earlier to improve their perfor-
mance.

This work takes a novel unsupervised path to
keyword extraction revisiting the information pro-
vided by the graph-of-words and its conventional
utilization via PageRank. Inspired by the recent
approach of Papagiannopoulou et al. (2020), we
investigate the effectiveness of the distribution-
based modeling of the adjacency matrix, that cor-
responds to various versions of the (unweighted,
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weighted or/and enhanced with positional infor-
mation) graph-of-words for the target document.
We also propose the use of more advanced unsu-
pervised algorithms to model the main distribu-
tion of the adjacency matrix, determine the num-
ber of the retrieved keywords at document level,
and score/rank the corresponding candidate key-
words. To the best of our knowledge, this is the
first work that proposes such modeling of the adja-
cency matrix using unsupervised machine learning
approaches in the context of keyword extraction.
Our empirical study confirms the efficacy of the
distribution-based modeling approaches (regarding
the F1 score) on six datasets (full-texts of scien-
tific publications, paper abstracts and news articles)
compared to state-of-the-art graph-based methods.

The main contributions of this work are as
follows: (a) We propose multiple ways for the
distribution-based modeling of the adjacency ma-
trix that corresponds to various versions of the
graph-of-words for a target document. Specifically,
we investigate the use of unsupervised (learning)
algorithms to model the distribution of the adja-
cency matrix, score the candidate words, and (b)
discover the appropriate number of keywords (Sec-
tion 3). (c) Our empirical study provides strong
evidence about the relationship between the graph-
based techniques and the proposed ones emphasiz-
ing the cases that the distribution-based modeling
is more promising (Section 4). Finally, Section 2
and 5 present related work on unsupervised AKE
(issues/trends) as well as conclusions and future
directions of our work, respectively.

2 Related Work

Issues. The comprehensive representation of
the information via graphs and the efficiency of
the graph-based ranking methods (e.g., PageRank
(Brin and Page, 1998), HITS (Kleinberg, 1999),
etc.) in many applications (including keyword ex-
traction) led the research community to show a
preference to graph-based AKE using unsupervised
approaches (Papagiannopoulou and Tsoumakas,
2020). The popular TextRank (Mihalcea and Tarau,
2004) first builds an undirected, unweighted graph-
of-words representation and runs the PageRank
algorithm until convergence. In this vein, SingleR-
ank (Wan and Xiao, 2008b), RAKE (Rose et al.,
2010), ExpandRank (Wan and Xiao, 2008b), and
CollabRank (Wan and Xiao, 2008a) are extensions
of TextRank. The first two methods add weights

to edges, equal to the number of co-occurrences of
the two corresponding words within the predefined
window, whereas, the last ones incorporate infor-
mation from relevant documents. Much later, Po-
sitionRank (Florescu and Caragea, 2017) achieved
significantly higher performance proposing a bi-
ased PageRank that considers both the word-word
co-occurrences and the word’s positions. Then,
Biswas et al. (2018) and Vega-Oliveros et al. (2019)
proposed graph-based keyword extraction methods
that combine multiple centrality measures.

Another important issue is choosing the right
number of keywords for a document. Rousseau
and Vazirgiannis (2015) apply the concept of K-
Core on the graph-of-words of a document retain-
ing only the nodes from the main core as keywords.
Their method is parameter-free as the K-Core prin-
ciple adjusts the number of keywords concerning
each graph’s structure. Later, Tixier et al. (2016)
show that retaining only the main core (or truss
(Cohen, 2008)) is suboptimal as the complete set of
a document’s gold keywords cannot appear within
a single subgraph and propose alternative heuristics
(stopping criteria) to remove undesired words.

Trends. Information coming from word embed-
dings (Mikolov et al., 2013) proved useful for the
AKE task. Numerous AKE methods use word em-
beddings (Mnih and Hinton, 2007; Bojanowski
et al., 2017; Joulin et al., 2017) as an (external)
semantic knowledge source. Representative graph-
based approaches are the one of Wang et al. (2015)
and Key2Vec (Mahata et al., 2018) that incorporate
semantic information from pre-trained distributed
word representations and word embeddings trained
on a domain-specific corpus, respectively. Both
methods utilize the information from word em-
beddings through the usual way of graph-based
ranking without giving to the vector representation
of terms the primary role. On the contrary, Papa-
giannopoulou and Tsoumakas (2018) present the
Reference Vector Algorithm (RVA) that uses lo-
cal GloVe (Pennington et al., 2014) word vectors
(i.e., trained only on the target document). Em-
bedRank (Bennani-Smires et al., 2018) uses pre-
trained sentence embeddings, Sent2Vec (Pagliar-
dini et al., 2018), to embed both candidate terms
and documents in the same high-dimensional vec-
tor space. Finally, Papagiannopoulou et al. (2020)
proposed an unsupervised AKE method that uses
the weighted adjacency matrix’s rows as word vec-
tors to model their distribution. The authors show
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that the centre of the distribution is closer to the
non-keywords, as the main bulk of words are neu-
tral or slightly relevant to the documents’ topics.

3 Our Approach

3.1 Document Pre-processing

First, we eliminate from the target document punc-
tuation marks and words that (a) are stopwords , (b)
consist only of numbers, (c) have length less than
two characters to avoid trivial or insignificant terms.
Before we get the final set of candidate words as
keywords, we use stemming.

3.2 Creation of the Adjacency Matrix

The majority of the graph-based approaches mea-
sure the importance of the graph-of-words’ nodes
using PageRank (see Section 2) that adds more
value to a node connected with high-scoring nodes
rather than low-scoring ones through an iterative
process. However, our approach follows a differ-
ent direction by identifying the most central (i.e.,
significant) words of the graph-of-words via the
distribution-based modeling of the corresponding
adjacency matrix.

We investigate our approach’s effectiveness on
three distinct versions of the adjacency matrix that
correspond to three variants of the graph-of-words
(i.e., unweighted, weighted with/without enhanced
with positional information) for a target document.
Specifically, given a set of unique, valid words of
the text, d ∈ D, we could have one of the following
types of word vectors (each row of the adjacency
matrix constitutes a vector representation of a spe-
cific word):

a. Unweighted adjacency matrix, AN×N where
N = |D|. The AN×N matrix represents
the undirected2 unweighted graph-of-words
G = (U,E), U is the set of vertices (that
correspond to the set of words d ∈ D) and
E is the set of edges; Each element Ai,j is
1 when there is an edge from vertex ui to
vertex uj (ui 6= uj) of G, i.e., the correspond-
ing words di and dj co-occur within a win-
dow of T words, and 0 when there is no edge,
i, j ∈ [1..N ].

b. Weighted adjacency matrix, A′N×N with
N = |D|. The A′N×N matrix represents the
undirected weighted graph-of-words G′ =

2i.e., the adjacency matrix is symmetric.

(U,E′), U is the set of vertices and E′ is the
set of edges; Each element A′i,j contains the
weight of the edge from vertex ui to vertex uj
(ui 6= uj), i.e., the number of co-occurrences
of the corresponding words di and dj within
a window of T words, i, j ∈ [1..N ]. In case
that there is no edge connecting the two nodes,
A′i,j = 0.

c. Weighted adjacency matrix with positional
information, QN×N where N = |D|.
The QN×N matrix represents the undirected
weighted graph-of-words A′ = (U,E′) but
also incorporates positional information, i.e.,

Q = A′ � P

where � is the element-wise multiplication
symbol, A′ is the weighted adjacency matrix,
A′N×N , detailed in (b) and PN×N is a posi-
tional matrix such that each element is defined
as:

Pi,j =
1

s(di) + s(dj)

where s(d) gives the first sentence where the
word d occurs in the document.

3.3 Distribution-based Modeling and
Candidates Scoring

The next step of our approach is the distribution-
based modeling of the adjacency matrix that corre-
sponds to one of the various versions of the target
document’s graph-of-words described above (Sec-
tion 3.2) and the candidate words’ scoring. In this
section, we detail three distribution-based model-
ing alternatives describing the intuition behind each
one approach and the scoring functions used to give
the final ranking of the words as keywords.

3.3.1 The Mean Vector Approach
Papagiannopoulou et al. (2020) proposed Local
Vectors (LV), an unsupervised AKE method that
uses the weighted adjacency matrix of the graph-
of-words as word vectors to model the distribution
of the target document’s words by averaging the
corresponding vectors (i.e., rows of the matrix).
The authors show that the centre of the distribu-
tion is closer to the non-keywords, as the main
bulk of words are neutral or slightly relevant to the
documents’ topics. Moreover, in the same work,
they show through an empirical study that the local
word vectors coming from the weighted adjacency
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matrix mentioned above encode statistical infor-
mation equivalent to the one encoded by the local
run of GloVe on a single document proposed in
Papagiannopoulou and Tsoumakas (2018).

Particularly, in this work, we consider the sam-
ple’s estimated mean µ of the corresponding vector
matrix, i.e., the AN×N or A′N×N or QN×N , as the
distribution’s center (each word participates once
in the computation). Then, we score each word
with a value S, according to the following formula:
S(x) = d(µ,x), where d(µ,x) is the Euclidean
distance between the mean vector µ and the vector
representation x of the word, as distance metrics
that incorporate the vectors’ magnitude capture the
similar behaviour of the non-keywords’ vectors
over the keywords’ ones (Papagiannopoulou et al.,

2020), i.e., d(µ,x) =
√∑N

i=1(xi − µi)2, where
N is the number of dimensions. The higher the
score S, the more important the word for the doc-
ument, i.e., we are interested in words with high
distance values, as most of the words, which deter-
mine the distribution’s center, are non-keywords.
The main difference with the approach proposed by
Papagiannopoulou et al. (2020) is that we score the
words based only on their distance from the mean
vector without involving any external heuristics
such as the word’s position. This way, we consider
in advance any positional information via the Q
adjacency matrix (i.e., incorporated in the vector
representation).

3.3.2 Unsupervised Learning Approaches

One-Class SVM. Instead of calculating the distri-
bution’s center of the adjacency matrix by aver-
aging its rows, we could use geometric concepts
such as hyperspheres or hyperplanes to delimit
the area of space that includes most of the word
vectors (i.e., the main bulk of unimportant words)
and, then, score the candidates using functions that
express the vectors’ deviation from the main dis-
tribution. According to this approach, the most
important words are the most outlying ones (i.e.,
outliers) as most words are neutral or slightly rele-
vant to the documents’ topics (i.e., inliers). Tax and
Duin (1999a,b) proposed a method based on SVM
(Cortes and Vapnik, 1995), called One-Class SVM,
that seeks the smallest hypersphere consisting of all
the dataset points. Thus, training this model may
reject a fraction of the positively-labelled training
objects when this adequately minimizes the hyper-
sphere volume.

There are also other approaches, such as the one
of Schölkopf et al. (1999), which is similar, but
instead of using a small hypersphere, it uses a hy-
perplane which is far from the origin (this is the
version implemented by scikit-learn3 and used in
our study). This algorithm employs a function f
that takes the value +1 in a “small” region, cov-
ering most of the data points, and -1 elsewhere.
Formally, suppose the dataset consists of the word
vectors (samples) x coming from the correspond-
ing adjacency matrix XN×N (i.e., XN×N can be
one of the AN×N , A′N×N , QN×N ). Let Φ be a
feature map X → F 4, i.e., a specific dot product
space. Then, we can separate the dataset’s word
vectors from the origin by solving the following
quadratic optimization problem:

min
w,ξ,ρ

1

2
||w||2 +

1

νl

∑

i

ξi − ρ

subject to (w · Φ(xi)) ≥ ρ− ξi, ξi ≥ 0

where i represents the ith sample, l = N , ν is
the percentage of samples considered as outliers
(the expected keywords’ ratio), ξi are the slack
variables that relax the constraints, ρ refers to the
distance of the hyperplane from the origin5 and w
represent the parameters of the SVM that define
the hyperplane (we need to learn them using the
dataset’s samples)6. Then, the decision function
f(x) = sgn((w · Φ(x))− ρ) will be positive for
the most samples xi in the dataset. In our case, an
ideal scoring function that ranks the correspond-
ing document’s words is the signed distance to the
separating hyperplane that will be positive for the
main bulk of words and negative for the different
ones. We consider only the words with a negative
score as candidate keywords (the lower the value,
the higher the word’s importance).

We have experimented with various kernel func-
tions, e.g., polynomial, sigmoid, etc. but the most
suitable in our case is the Radial Base Function
(RBF). Formally, The RBF kernel on two samples
x and x′ is defined as:

K(x,x′) = exp

(
− ||x− x

′||2
2σ2

)

3https://scikit-learn.org/stable/index.
html

4F is a dot product space such that the dot product in the
image of Φ can be computed by evaluating some kernel.

5This distance is equal to ρ
||w|| .

6i.e., ρ and w solve the problem.
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Figure 1: An isolation tree built based on the adjacency
matrix’s word vector representations for the article en-
titled “On the Tradeoff between Privacy and Utility in
Data Publishing” with golden keywords: anonymity,
data, publishing, privacy. The isolation tree recursively
divides the 20 samples (i.e., words used to train the tree)
by randomly selecting an attribute (matrix dimension)
b and a split value m until either the node has only one
instance or all node’s data have the same values. Key-
words tend to have shorter path lengths than the non-
keywords that constitute the main bulk of (unimportant)
words.

where σ ∈ R is a kernel parameter and ||x− x′||2
can be considered as the squared Euclidean dis-
tance between the two word vectors. These dis-
tances between the pairs of the word feature vec-
tors incorporated by the RBF kernel make it the
best choice. Moreover, distance metrics that con-
sider the vectors’ magnitude (e.g., the Euclidean
distance) can capture the non-keywords’ vectors’
similar behavior over the keywords’ ones as men-
tioned earlier in Section 3.3.1.

Isolation Forest. Instead of modeling the vectors’
distribution and then estimating the distance from a
reference point (e.g., the mean vector or the hyper-
plane), we propose to detect and rank the few differ-
ent (important) word vectors via the mechanism of
isolation Liu et al. (2008, 2012) utilizing the binary
tree structure, called isolation tree. Because of the
susceptibility to isolation, the few outlying word
vectors (i.e., expected to be the important ones) are
more prone to be isolated closer to the root of an
isolation tree than the common ones. An isolation
forest builds an ensemble of isolation trees for the
given set of word vectors. The forest of random
trees collectively produces shorter path lengths7 for
the outlier samples, i.e., the ones we search.

In other words, isolation forest is a tree-based
algorithm built around the theory of decision trees
and random forests. It also creates many isolation

7The path length of a point x is measured by the number
of edges x traverses an isolation tree from the root node until
the traversal is terminated at an external node.

(decision) trees, but it calculates the path length
necessary to isolate an observation in the tree. The
idea is that keywords as a minority in a document
can be treated as anomalies and thus are easier
to be isolated because there are fewer conditions
required to separate them from the “normal” non-
keywords. Therefore, outliers (i.e., keywords) will
have shorter paths than the “normal” non-keywords
and reside closer to the tree’s root. When many
isolation trees are created, the forest is necessary
to average the corresponding scores (path length
calculations), providing a sense about the words
that are indeed outliers.

Figure 1 shows an isolation tree built based on
the Q adjacency matrix’s word vector representa-
tions for a computer science abstract from the KDD
collection (Caragea et al., 2014). The article enti-
tled “On the Tradeoff between Privacy and Utility
in Data Publishing” is accompanied by the follow-
ing golden keywords: anonymity, data, publishing,
privacy. The number of samples to draw from X
to train each base estimator is equal to 20. We
also applied PCA on X and use the two first prin-
cipal components to facilitate visualization. The
isolation tree recursively divides the 20 samples by
randomly selecting an attribute b and a split value
m, until either the node has only one instance or
all data at the node have the same values. We no-
tice that keywords tend to have shorter path lengths
than the non-keywords. Similar isolation trees, sup-
portive of our crucial intuition, are obtained from
other documents, too.

A more in-depth view of the Isolation Forest
scoring function reveals that itself defines a “natu-
ral” threshold that determines whether a sample be-
longs to inliers or not by borrowing the analysis of
Binary Search Trees (BSTs) as isolation trees have
an equivalent structure (Preiss, 2000). This prop-
erty is remarkable as the number of topics a docu-
ment discusses should determine the corresponding
number of keywords instead of suggesting a fixed
or proportional to the text size number of keywords
as most methods do. According to the theory, the
average path length c(ψ) of unsuccessful searches
in a BST (i.e., the equivalent of external node ter-
minations in an isolation tree) given a sample set
of ψ instances is:

c(ψ) =





2H(ψ − 1)− 2ψ−1n , ψ > 2,

1, ψ = 2,

0, otherwise.
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where H(i) is the harmonic number (estimated by
ln(i)+ the Euler’s constant). Hence, the Isolation
Forest scoring function is:

s(x, ψ) = 2
−E(h(x))

c(ψ)

where x is the sample, h(x) is the path length of x
and E(h(x)) is the average of h(x) for a collection
of isolation trees. The above function ensures that
samples with scores close to 1 imply diversity from
the majority (i.e., E(h(x)) → 0), whereas scores
much lower than 0.5 indicate normal samples (i.e.,
E(h(x)) → ψ − 1). Also, suppose all instances
have a score of approximately equal to 0.5. In
that case, we can consider the whole sample as a
set of normal instances (i.e., E(h(x)) → c(ψ)).
The above findings transform the value 0.5 into an
especially important threshold for determining a
case as different from the whole sample or not.

4 Experimental Study

4.1 Setup

We choose six popular datasets: three collections
with full-text publications, i.e., NUS (Nguyen and
Kan, 2007), Semeval (SE) (Kim et al., 2010), and
ACM (Krapivin et al., 2008) with 211, 244, and
2304 documents, respectively, two with scientific
abstracts, i.e., KDD (Caragea et al., 2014) and
WWW (Gollapalli and Caragea, 2014) with 755,
and 1330 documents, respectively, and one with
news texts, i.e., DUC-2001 (DUC) (Wan and Xiao,
2008b) with 308 documents. This way, we include
to our study both long and short texts, either scien-
tific or news articles. SE is already separated into
training (144) and test (100) sets, and for the ACM
separation, most works choose the first 400 papers
from the ACM following Meng et al. (2017) as test
set. However, there are no guidelines for separating
the NUS, KDD, WWW, and DUC datasets. Thus,
we pick the first 330 from WWW, the last 100 pa-
pers from NUS (Papagiannopoulou et al., 2020),
and the last 100 from DUC, alphabetically ordered
as the test data. We use the whole KDD dataset as
test set as we do not use it for parameters’ tuning.

In addition to the proposed approaches for AKE,
i.e., the new version of LV, the Isolation Forest (IF)
and the One-Class SVM (OC), four state-of-the-art
unsupervised graph-based AKE methods partici-
pate in this empirical study: K-Core (K) (Seidman,
1983; Batagelj and Zaversnik, 2011), PageRank (P)
(Mihalcea and Tarau, 2004; Wan and Xiao, 2008b),

Betweenness (B), and Node degree (N) (the last
one proposed first by Rose et al. (2010). We present
the experimental results organized in three groups
based on the type of information used to run (Ta-
bles 2, 3). The first two groups include the methods’
runs on the unweighted and weighted graphs-of-
words/adjacency matrices, i.e., with an A and A′

subscript on the right of each method according
to the notation introduced in Section 3.2, respec-
tively (e.g., KA means that K method runs on an
unweighted graph-of-words, whereas KA′ runs on
the weighted one, i.e., weighted K-Core of Batagelj
and Zaversnik (2011)). The third group includes
the proposed methods’ runs on theQ adjacency ma-
trix (weighted with words’ co-occurrences and po-
sitional information) and a Personalized weighted
variant of PageRank that considers both node as
well as the typical edge weights (PA′′). The node
weight is equal to 1

s , where s is the first sentence’s
index that the corresponding word occurs in the
document. In all cases, the methods build the
graph-of-words following the pre-processing steps
described in Section 3.1.

After splitting the golden keyphrases into uni-
grams, we use exact string matching to determine
the number of correctly matched words with the
golden ones for a document following the paradigm
of Tixier et al. (2016). We also apply stemming to
the output of the methods and the article’s golden
unigrams as a pre-processing step before the evalu-
ation process. We employ the authors’ keywords
as a gold evaluation standard for all academic doc-
uments (long/short) except for the news dataset
where only the readers’ keywords are available. We
used the IsolationForest and OneClassSVM classes
from the scikit-learn8 library for the IF and OC,
respectively. For the implementation of the com-
petitive approaches, we employ the PKE toolkit
(Boudin, 2016), the NetworkX9 and the gowpy10

python libraries.
We use one dataset per text category (full-

texts, abstracts, news), i.e., the training sets of
NUS, WWW, DUC, to determine IF and OC
models’ tuning parameters to optimize the F1

score. The parameters chosen for the experi-
ments on test sets are for the IF nestimators=200,
maxsamples=auto, maxfeatures=0.75 and the OC
kernel=rbf, gamma=scale. The best percentages

8https://scikit-learn.org/stable/index.
html

9https://networkx.org/
10https://github.com/GuillaumeDD/gowpy
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for the IF’s contamination and OC’s nu parame-
ters (related to outliers’ ratio) are 0.05, 0.1, 0.2 for
the full-text publications, news texts and abstracts,
respectively (used in the context of F1@20 scores
calculation, see Table 2). Furthermore, we compute
the F1 scores in Table 3 based on the number of
keywords returned by the KA, KA′ , IFA, IFA′ and
IFQ (the value of the IF’s contamination parame-
ter is equal to auto11) approaches, i.e., F1@|KA|,
F1@|KA′ |, F1@|IFA|, F1@|IFA′ |, F1@|IFQ|, respec-
tively. The LV approach is parameter-free.

We follow the paradigm of existing experimental
studies from the related task of keyphrase extrac-
tion (Wan and Xiao, 2008a; Bougouin et al., 2013),
and set a window size T equal to 10 to construct
the graphs-of-words used by the graph-based ap-
proaches. Earlier, Wan and Xiao (2008b) show
that in the case of weighted graphs-of-words, the
greater the window size, the higher the extractor’s
accuracy (window sizes greater than 10 achieve
more or less the same accuracy level).

F1
NUS WWW DUC

T5 T10 T5 T10 T5 T10

LVA 0.319 0.324 0.279 0.282 0.389 0.410
IFA 0.313 0.319 0.294 0.284 0.372 0.377

OCA 0.093 0.126 0.237 0.243 0.265 0.284
LVA′ 0.311 0.315 0.283 0.285 0.401 0.405
IFA′ 0.319 0.324 0.313 0.314 0.376 0.395

OCA′ 0.129 0.142 0.256 0.261 0.282 0.293
LVQ 0.339 0.336 0.280 0.278 0.408 0.416
IFQ 0.338 0.342 0.321 0.335 0.383 0.413
OCQ 0.339 0.338 0.266 0.271 0.344 0.343

Table 1: F1@20 of the LV, IF and OC keyword extrac-
tion methods using different types of adjacency matrix
(A, A′, Q) created with two different window sizes,
T = 5 (T5) and T = 10, on three different datasets
(NUS, WWW, DUC). The highest values appear in
bold font.

Moreover, Table 1 shows the F1@20 scores of
LV, IF, and OC on the training sets of three rep-
resentative datasets NUS, WWW and DUC (one
from each category of documents, long/short sci-
entific articles and news texts, respectively) using
unweighted (A), weighted (A′), and weighted with
positional information (Q) adjacency matrix with
two different window sizes, a lower widow size
T = 5 (T5) and the usual one T = 10 (T10). The
highest F1 scores are highlighted in bold font. The
experimental results confirm that smaller window
sizes led to lower F1 scores for most of the pro-

11value for the “natural” threshold of outliers for IF, see
Section 3.3.2

posed methods. However, in few cases where the
methods with T5 give higher F1 scores compared to
those with T10, the differences are not statistically
significant according to the two-sided Wilcoxon
signed-rank nonparametric test. Finally, another
reason to consider the same co-occurrence window
size for both the state-of-the-art graph-based ap-
proaches and the proposed ones is our interest in
investigating the methods’ efficacy employing the
same words’ context (captured in a specific window
size).

4.2 Performance Evaluation Results

Table 2 shows the F1@20 scores of various key-
word extraction methods, whereas Table 3 presents
the F1 scores calculated based on the returned num-
ber of keywords by KA, KA′ , IFA, IFA′ , and IFQ
on the six datasets using unweighted (A), weighted
(A′), and weighted with positional information (Q)
graph-of-words or adjacency matrix. The high-
est F1 scores in both tables are highlighted in red
bold font. Table 2 presents the best scores for each
group of methods in bold, whereas the second best
are underlined. We have also checked the statis-
tical significance of the results using two-sided
Wilcoxon signed-rank nonparametric test between
the graph-based (the ones in the gray background)
and the distribution-based modeling approaches
(LV, IF, OC) at significance level 0.01. Our anal-
ysis shows that differences in values > 2% are
statistically significant. In case of statistical signif-
icance between the values of two methods whose
difference is ≤2%, a superscript with the name of
the corresponding graph-based method is added
on the distribution-based modeling approach. We
compute statistical significance separately for the
groups of methods that use edge weights, node
and edge weights, and no weights, respectively, to
facilitate the results’ interpretation.

Table 2 shows that in most cases except for
the news collection (DUC), the more information
we consider, i.e., both words’ co-occurrences and
positional info, the higher F1 scores we achieve
(e.g., OCQ’s high scores compared to the ones of
OCA, OCA′). Particularly, the transition from the
unweighted graph-of-words/adjacency matrix to
their weighted versions slightly improves the per-
formance in almost all methods besides the B’s
(in all datasets) and LV’s scores (in longer doc-
uments). IFA′ outperforms the competitive ap-
proaches that consider edge weights to score the
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F1 ACM NUS SE DUC WWW KDD
PA 0.329 0.331 0.261 0.381 0.279 0.265
BA 0.318 0.325 0.260 0.354 0.270 0.256
NA 0.330 0.328 0.263 0.385 0.284 0.269

LVA 0.327B 0.321 0.267 0.384 0.277N 0.265B

IFA 0.319P,N 0.320 0.268 0.362P 0.284B 0.260
OCA 0.154 0.144 0.133 0.244 0.232 0.221
PA′ 0.331 0.326 0.269 0.383 0.284 0.270
BA′ 0.314 0.317 0.257 0.349 0.257 0.247
NA′ 0.324 0.314 0.268 0.388 0.288 0.272

LVA′ 0.311P,N 0.300 0.263 0.380 0.279N 0.269
IFA′ 0.328B 0.326N 0.275B 0.368 0.316 0.289P,N
OCA′ 0.158 0.153 0.142 0.289 0.249 0.242
PA′′ 0.374 0.358 0.300 0.383 0.285 0.269
LVQ 0.373 0.343P 0.299 0.328 0.268P 0.260
IFQ 0.353 0.348 0.287 0.384 0.338 0.305

OCQ 0.372 0.340P 0.290 0.311 0.286 0.275

Table 2: F1@20 of various keyword extraction methods
using different types of graph-of-words/adjacency ma-
trix (A,A′,Q) on six different datasets. Superscripts on
a method’s score show statistical significance between
the current method and the one whose name appears
as superscript (see Section 4.2). The highest values ap-
pear in bold red font. The best scores for each group
of methods are in bold, whereas the second best are un-
derlined.

candidates (2nd group of methods with subscript
A′) in four out of six datasets (NUS, SE, WWW,
KDD) and achieves high scores in ACM and DUC
with statistically insignificant differences compared
to the competitive methods. Moreover, the addition
of positional weights compared to the typical use of
edge weights increases most methods’ performance
remarkably apart from the LV’s (in shorter docu-
ments) and the P’s that remains almost invariable
in shorter texts. In the 3rd group of methods, IFQ
ranks first in half datasets (DUC, WWW, KDD) and
performs high in NUS and SE (without statistically
significant differences from PA′′). Additionally, LV
achieves quite high F1 scores as well.

Figure 2 shows a visual interpretation of why the
additional information facilitates the distribution-
based approaches to distinguish the keywords from
the non-keywords via heatmaps of the Euclidean
distances between the word vectors of the A (2a)
and Q (2b), respectively, for a news text. We
notice that positions combined with words’ co-
occurrences help the text’s keyword vectors diverge
from the main distribution (see the few high dis-
tances/yellow or light green values that correspond
mostly to the first words of the document that in-
clude many keywords). We also see that most vec-
tors (common words - group of inliers) are close
to each other (low/dark distance values). However,
the distances between word vectors of A do not

(a) (b)

Figure 2: The distances between the main bulk of word
vectors from the Q adjacency matrix (2b) range in low
(dark) values compared to a minority of distant word
vectors (yellow/green values). However, the word vec-
tors of A (2a) do not provide such clear separation be-
tween the main distribution of common words and the
minority of keywords (high and low distances are just
as many).

F1@T ACM NUS SE DUC WWW KDD
KA 0.176 0.160 0.132 0.240 0.250 0.234
IFA 0.273 0.305 0.274 0.186 0.307 0.267
KA′ 0.297 0.309 0.278 0.300 0.343 0.323
IFA′ 0.323 0.372 0.322 0.183 0.315 0.283
IFQ 0.360 0.413 0.345 0.223 0.347 0.313

Table 3: F1@T of KA, KA′ , IFA, IFA′ and IFQ meth-
ods on the 6 datasets, where T is equal to |KA|, |KA′ |,
|IFA|, |IFA′ | and |IFQ|, respectively. The highest values
appear in red bold font.

reveal any clear separation between the main dis-
tribution of common words and the minority of
keywords making difficult the outliers’ detection.
Note that the words’ ids (range from 0 to 363) cor-
respond to the order of the words’ presence in the
text, confirming the importance of the positional
information in the AKE task (keywords tend to ap-
pear at the beginning of a document). Similar plots
are also obtained from multiple documents.

Next, we focus on the AKE methods that deter-
mine the number of returned keywords at document
level, i.e., the KA, KA′ , IFA, IFA′ and IFQ. We
study the results of Table 3, considering Table 4

@ ACM NUS SE DUC WWW KDD
|KA| 74.1 70.2 71.5 53.8 24.5 25.4
|IFA| 10.5 8.7 10.3 2.6 5.8 5.4
|KA′ | 8.7 8.4 7.6 18.1 12.4 12.4
|IFA′ | 6.7 6.1 7.1 2.3 5.0 4.6
|IFQ| 7.5 6.6 7.5 2.3 4.8 4.4
|V| 757.7 772.4 641.8 268.8 58.2 60.1

Table 4: Average number of keywords returned by the
K and IF methods using different types of information
(A, A′, Q). The last row shows the average number of
candidate words |V| per dataset.
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that shows the average numbers of keywords re-
turned by the methods mentioned earlier for each
dataset. The last row in Table 4 shows the average
number of candidate words |V| per dataset to give
an impression for the texts’ vocabulary sizes. We
are interested in investigating which method returns
the most “accurate” keywords’ sets in terms of the
corresponding F1 scores. However, we should keep
in mind that the methods are not evaluated on the
same number of keywords. Through this discus-
sion, our goal is to discover which AKE approach
is more suitable for each type of documents in a
general sense. The low F1@|KA| scores of KA

compared to the F1 scores of KA′ , IFA, IFA′ and
IFQ are plausible due to the low precision scores
of KA as the number of the words included in the
K-Core of the unweighted graph-of-words is quite
high (greater than 70, 53 and 24 returned keywords
for the academic full-texts, news texts and scientific
abstracts, respectively). In all datasets KA′ outper-
forms KA giving reasonable number of keywords.
Moreover, in most datasets (scientific full-texts and
abstracts), IFQ outputs more accurate keyword sets
(i.e., higher F1@|IFQ| scores) than those returned
by rest approaches. Exceptions are the performance
on (a) the DUC (news) dataset where IFA, IFA′ and
IFQ detect lower number of words as keywords
compared to the golden ones and (b) the KDD col-
lection where the F1@|IFQ| score achieved by IFQ
is slightly worse than the one of KA′ .

We also present the correlation according to the
Spearman correlation coefficient between the IF’s
scoring function described in Section 3.3.2 and tra-
ditional weighting schemas, i.e., P, N, B, and K,
for each information type used by IF and the rest
graph-based methods, i.e., unweighted, weighted
and weighted with positional information graphs-
of-words/adjacency matrices. Table 5 shows that
there is a very strong positive correlation (≥ 0.8)
between the words’ scores returned by IF and those
produced by P and N for all information (input)
types for almost all datasets, interpreting (partly)
the comparable F1 scores achieved by these meth-
ods. In this vein, there is a strong positive correla-
tion (≥ 0.6) between IF and B in most cases. More-
over, the very strong positive correlation (≥ 0.8)
on the datasets with full-texts of scientific publica-
tions goes hand-in-hand with the similar accuracy
levels achieved in case there are no weights on the
corresponding input. Finally, the K’s output does
not seem to correlate with the IF’s output when

no weights are used. However, if the methods use
weights, the correlation between them turns into a
strong/moderate positive one.

S.C.C. ACM NUS SE DUC WWW KDD
IFA-PA 0.91 0.90 0.92 0.84 0.82 0.81
IFA-NA 0.92 0.91 0.92 0.84 0.81 0.81
IFA-BA 0.84 0.82 0.85 0.77 0.76 0.75
IFA-KA 0.26 0.27 0.27 0.35 0.32 0.30
IFA′-PA′ 0.91 0.91 0.92 0.85 0.84 0.83
IFA′-NA′ 0.88 0.88 0.90 0.84 0.82 0.81
IFA′-BA′ 0.75 0.75 0.78 0.71 0.63 0.62
IFA′-KA′ 0.71 0.71 0.73 0.51 0.49 0.50

IFQ-PQ 0.87 0.87 0.88 0.75 0.81 0.80

Table 5: Spearman’s correlation coefficient (S.C.C.) be-
tween the proposed approach IF and traditional graph-
based methods.

5 Conclusions and Future Work

In this article, we address the AKE task via the
distribution-based modeling of the adjacency ma-
trix that corresponds to various versions of the
graph-of-words for a target document. More specif-
ically, we propose capitalizing on unsupervised
learning algorithms for the distribution-based mod-
eling and scoring of the candidate words. Based on
our performance evaluation, the IF approach shows
the best effectiveness results in almost all datasets,
concerning the F1 score determining the number of
keywords in document level.

There are many interesting future research di-
rections, such as i) improving the scoring func-
tions of the unsupervised learning approaches used
in the context of the keyword extraction task, ii)
adapting the proposed approach to the keyphrase
extraction task , iii) developing novel distribution-
based modeling methods that simultaneously uti-
lize the information from one/multiple adjacency
matrices , and iv) applying the adjacency matrix’s
distribution-based modeling in other tasks where
only graph-based methods are used to date.
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Abstract

The quality of fully automated text simplifi-
cation systems is not good enough for use in
real-world settings; instead, human simplifica-
tions are used. In this paper, we examine how
to improve the cost and quality of human sim-
plifications by leveraging crowdsourcing. We
introduce a graph-based sentence fusion ap-
proach to augment human simplifications and
a reranking approach to both select high qual-
ity simplifications and to allow for targeting
simplifications with varying levels of simplic-
ity. Using the Newsela dataset (Xu et al., 2015)
we show consistent improvements over experts
at varying simplification levels and find that
the additional sentence fusion simplifications
allow for simpler output than the human sim-
plifications alone.

1 Introduction

Research on text simplification has largely focused
on fully automated systems, including lexical sys-
tems that change words or phrases and sentence-
level systems that make broader changes (Shard-
low, 2014; Narayan and Gardent, 2016; Zhang and
Lapata, 2017; Kriz et al., 2019). While the per-
formance of such systems is steadily improving,
for most real-world applications, the quality of
these systems is still not good enough, particularly
in domains where correctness is critical such as
health and medical (Siddharthan, 2014; Shardlow
and Nawaz, 2019). In such domains, human ex-
perts are still the main creators of simplified text
(Zarcadoolas, 2010). The challenge is that these
experts are costly to employ and the number of
people equipped with the appropriate training and
skills is limited.

In this paper, we examine a crowdsourcing ap-
proach to produce simplifications more efficiently
and of higher quality using non-experts. Crowd-
sourcing has been suggested previously as a pos-
sible source of text simplifications (Amancio and

Specia, 2014; Lasecki et al., 2015), however, no
work has addressed quality control or how to deal
with varying simplicity targets. The top part of
Table 1 shows an example sentence to be simpli-
fied with two non-expert simplifications obtained
through a crowdsourcing platform. While both
of the human simplifications roughly convey the
main idea in the original sentence, the quality is
questionable. However, there are good portions
of the simplifications, e.g., using “worried about”
instead of “chief concerns”. Our goal is to lever-
age these lower quality simplifications to generate
high-quality simplifications that are as good as or
better than those produced by an expert.

We make three main contributions. First, we
describe a new sentence fusion technique for gen-
erating additional alternative simplifications based
on the original input and the non-expert human
simplifications. This allows for many additional
simplifications to be generated by combining dif-
ferent portions of the original human simplifica-
tions. Second, we provide a supervised approach
for ranking candidate simplifications, both human
generated and sentence fusion generated. This al-
lows the system to pick high quality simplifications
from the candidates generated. Similar approaches
have been used in translation for ranking and select-
ing both human and system translations (Callison-
Burch, 2009; Zaidan and Callison-Burch, 2011).
Third, we parameterize the ranking approach to op-
timize for different levels of simplicity allowing for
different simplifications to be chosen depending
on the simplicity target. This is particularly useful
when combined with the sentence fusion technique
which allows for a much broader range of possible
candidates than just the human simplifications. We
evaluate the proposed system against human expert
simplifications and show consistently better results
at varying simplicity levels for both simplicity and
adequacy.
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Original Bird damage is often overshadowed by weather and water as a farmer’s chief concerns.

Crowdsourced 1 Farmers problems with birds is over shadowed by weather and water.
Crowdsourced 2 A farmer is mostly worried about weather and water. But a farmer might also worry about birds

causing damage.

Generated 1 Bird damage is often overshadowed by weather and water.
Generated 2 A farmer is mostly worried about weather and water as a farmer’s chief concerns.
Generated 3 Farmers problems with birds is over shadowed by weather and water as a farmer’s chief concerns.

Table 1: A sentence to be simplified (Original) with two crowdsourced simplifications. Generated 1-3 are example
sentences produced from the fusion graph of the original and crowdsourced sentences (the fusion graph is shown
in Figure 2).

2 Improving Human Simplification

Crowdsourcing platforms allow for data to be gen-
erated quickly with reasonable quality for a modest
price (Buhrmester et al., 2011). For text simplifi-
cation, given a sentence to be simplified, we can
solicit human simplifications from the crowdsourc-
ing platform. However, the quality of the resulting
simplifications is often of widely varying quality
(Amancio and Specia, 2014); the workers are not
experts and it can be difficult to give the workers
the appropriate context, e.g., the target audience,
etc.

We leverage these initial human simplifications
to create higher quality simplifications. Specifi-
cally, given the original sentence, x, and non-expert
human simplifications, s1, s2, ..., sn, the goal is to
produce a high-quality simplification of x. Previ-
ous work in translation (Zaidan and Callison-Burch,
2011) has shown that reasonable results can be ob-
tained by automatically selecting the highest qual-
ity non-expert translation from those solicited, how-
ever, you are limited to those options available and
additional iterations of human improvements were
needed to get reasonable results.

To address these limitations, we extend the can-
didate simplifications by generating additional al-
ternative candidate simplifications, s′1, s

′
2, ..., s

′
m,

using a graph-based fusion of s1, ..., sn. We
then rank all of the candidate simplifications, i.e.,
[s1, ..., sn, s

′
1, ..., s

′
m, x], which includes the human

simplifications, the simplifications generated by
sentence fusions, and the original unsimplified sen-
tence (to allow for no simplification), and pick the
top ranked option as the final simplification. To
rank the sentences, we learn a model that optimizes
a scoring function that combines simplicity and ad-
equacy, though any scoring function could be used.
We give details on each of these steps below.

2.1 Sentence Fusion

We use a graph-based sentence fusion approach
where nodes represent words and directed edges
denote candidate next words. The graph is created
by adding each sentence to the graph a word at a
time, connecting adjacent words in the sentence
with a directed edge. New nodes are created for
words that do not correspond to existing nodes in
the graph.

We follow a similar approach to Filippova
(2010), extended in two ways to adapt it to the
text simplification domain. First, we create the ini-
tial graph using the words in the original sentence.
This provides an initial node ordering where the
information flow is correct and avoids a bias to-
wards any of the human simplifications. Second,
we restrict which words are considered equivalent
and merged into a node. The original algorithm
merged words that are lexically identical. For text
simplification, structural reorderings are common
and can create inappropriate transitions connecting
content at the end of one simplification to content
at the beginning of another and vice versa. These
inappropriate transitions resulted in many low qual-
ity simplifications that were not always handled
well with filtering and reranking. To avoid this and
reduce the burden on the reranker, we word-align
each human simplification, si, with the original sen-
tence, x, using the Berkeley Aligner (Liang et al.,
2006) and consider words as equivalent if they are
lexically identical and aligned in the word align-
ment. The result is a less dense graph with less
inappropriate paths.

Figure 1 shows the fusion graph over the exam-
ple in Table 1 after building the graph first with
the original sentence and then adding only the first
crowdsourced sentence. Each path from START to
END represents one candidate simplification. The
graph is initially created with just the original sen-
tence, which can be seen as START → bird →
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damage→ ... → END. The human simplification
is then added to this graph, in this case adding an
alternative way to start the sentence (START →
farmers → problems) and the option to end the
sentence early after “water”.

Figure 2 shows the fusion graph after the sec-
ond crowdsourced example is added. Several new
nodes have been added representing alternative
phrasings in this second sentence and many addi-
tional paths through the graph have also been added.
As each additional crowdsourced sentence is added
to the fusion graph, additional paths through the
graph are created, resulting in more candidate sen-
tences produced by the system. The density of
the graph is dependent on the number of sentences
fused, the lexical overlap between the sentences,
and the diversity of phrasing. For readability, we
have only shown the example with two crowd-
sourced sentences added. Table 1 shows three sen-
tences generated from this graph.

.

‘S

Figure 1: Fusion graph generated from only the Orig-
inal and Crowdsourced 1 sentences in Table 1. A di-
rected edge (s, t) indicates that word t could follow
word s in a candidate simplification.

.

‘S

Figure 2: Fusion graph generated from the original and
crowdsourced input sentences in Table 1 (the extension
of Figure 1 after adding Crowdsourced 2). The path
highlighted in red generates Generated 1.

2.2 Candidate Filtering

Any traversal of the graph from START to END
represents a candidate simplification. In practice,
the number of candidate simplifications encoded
by the graph for actual examples can be huge and
it is infeasible to generate all of the candidate op-
tions for ranking. To help identify higher quality
candidate simplifications for the reranking stage
we employ two techniques. First, we leverage char-
acteristics of the words in the graph and the graph
structure to impose an initial ordering of the can-
didate simplifications. We can then enumerate the
candidate options from the graph based on this ini-
tial scoring, stopping after enough candidates have
been generated. Second, we apply two additional
filtering criteria to attempt to remove low quality
candidates.

2.2.1 Graph ordering
To provide an initial ordering, we follow the heuris-
tic from Filippova (2010) which weights edges in
the graph based both on word frequency and graph
path characteristics. Specifically, the weight of
each edge ei,j , representing the relationship be-
tween word i and word j, is computed as:

w(ei,j) =
f(i) + f(j)∑

s∈S diff(s, i, j)
−1

where f(k) is defined as the frequency of word
k in the sentences used to create the graph, S is
the set of all sentences used to create the graph,
diff(s, i, j) is distance from the offset position of
word i to word j in sentence s.

The formula prefers edges connecting a pair of
words that frequently appear close to each other
as well as those with lower word frequencies to
edge frequency ratio (to discourage common words
that have high edge frequency with many nodes).
The first condition is enforced by the denomina-
tor, which prefers nodes with many paths between
them, as well as nodes with short paths between
them. The second condition is enforced by the nu-
merator; if the sum of each word’s frequencies is
large, w(ei,j) is subsequently large and thus not
preferred.

The quality of a path through the graph is then
the sum of the edge weights along that path. Given
the weighted graph, we enumerate the candidate
simplifications using lowest weight path traversals
since lower edge weight denotes higher quality
transitions. As an example, in Figure 2, “is” is one
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of the nodes with several options of a successor.
The edge between “is” and “often” has a weight of
1.33, while the other two outward edges, “is mostly”
and “is over”, both have weight 2.0. Therefore, all
things being equal, the path including “is often”
would be preferred over the other two.

2.2.2 Filtering
We also applied two filtering criteria to try and
eliminate options that were obviously bad before
ranking. To avoid simplifications that were too
long or short, we filtered out candidates where the
compression ratio (number of words in the original
sentence divided by the number in the simplifica-
tion) was more than one-standard deviation from
the training set. To avoid simplifications that were
too dissimilar from the original sentence, we fil-
tered out candidates where their Siamese LSTM
similarity score (see Section 2.3.2) was less than
the average similarity score of the human simplifi-
cations and the original sentence.

We selected the first 1,000 sentences ordered by
the lowest path graph traversal that passed these
two filtering criteria to move on to the ranking stage
(or less if generating all possible sentences from the
graph yielded less). The 1,000 candidates is gen-
erated with shortest_simple_paths in the
NetworkX library (Python), an implementation of
the shortest path algorithm without repeated nodes
(Yen, 1971).

2.3 Ranking

To choose the final simplification we combined
and ranked the original sentence (to allow for no
simplification), the human simplifications, and the
sentence fusion candidates. We employed a su-
pervised, feature-based, pairwise ranking approach
using a linear SVM (Lee and Lin, 2014) with the
implementation from Pedregosa et al. (2012).

2.3.1 Ranking Metric
Supervised ranking algorithms require training data
of ranked examples. For our problem, a training ex-
ample is a list of candidate simplifications, which
we ranked with a quality score. Text simplification
quality has been evaluated using both automated
metrics, such as BLEU and SARI, and human eval-
uation metrics, including fluency, adequacy, and
simplicity (Xu et al., 2016). Automated metrics
require high-quality (i.e. expert) reference simplifi-
cations. Expert references are not available in many
domains and, since our candidate outputs include

crowdsourced sentences, it is unclear how a gold
standard reference should be defined and obtained.
Therefore, we utilize human metrics, which can be
generated using non-experts.

Among the three human metrics, previous work
has shown that fluency correlates with simplicity,
and there is an intuitive tradeoff between simplic-
ity and adequacy (Schwarzer and Kauchak, 2018):
as sentences get simpler more content tends to be
removed and the adequacy suffers. Therefore, we
focus on simplicity and adequacy. The tradeoff
between them can also be observed in the example
shown in Table 2. For instance, the fourth sen-
tence (Generated 1) is very simple, but the crucial
contextual information about farmers is missing.
On the other hand, the second sentence (Crowd-
sourced 1) retains most of the information in the
original sentence, but also some redundant infor-
mation. The tradeoff is reflected in their simplicity
and adequacy scores.

To capture this tradeoff, we use a composite of
simplicity and adequacy as our ranking metric dur-
ing training. We define the score of a candidate
simplification, s, as the weighted geometric mean
of its normalized (0-1) adequacy, As, and simplic-
ity, Ss,

scoreα(s) =
√
Aαs · Ss.

Varying α biases the ranking towards simplicity
(with lower α) or adequacy (with higher α). We
only allow positive alpha. In the extremes, α = 0
corresponds to optimizing only for simplicity and
α =∞ only for adequacy.

2.3.2 Features

We used seven features for the ranking approach
including two language model features and two
features that quantify the similarity between the
original sentence and the candidate simplification.

N-gram Language Model Log-prob normalized
by the number of words in the sentence of a tri-
gram language model using Kneser-Ney smoothing
trained on the billion-word language model corpus
(Chelba et al., 2013) using SRILM (Stolcke, 2002).

Neural Language Model Log-prob normalized
by the number of non-stop words in the sentence
of a recurrent-convolutional character-based neural
language model (Kim et al., 2016).
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Candidate Sentence Simplicity Adequacy Ngram
Logprob Logprob TF-IDF Siamese Comp.

Ratio
Original 0.000 5.000 6.226 10.986 0.000 1.000 1.000
Crowdsourced 1 1.333 4.000 7.082 13.478 4.605 0.379 0.667
Crowdsourced 2 -0.667 3.333 7.151 10.376 4.493 0.287 1.556
Generated 1 1.667 2.333 6.161 9.548 1.620 0.385 0.667
Generated 2 N/A N/A 6.408 12.322 2.650 0.497 0.889
Generated 3 N/A N/A 6.833 13.686 3.038 0.520 1.000

Table 2: Sentences from Table 1 (in the same order) along with the features used to rerank them. Simplicity and
adequacy scores are not available for the last two candidates because they did not get picked by the decile ranker
for annotation in the experiments (see Training in 3.1 for more details).

TF-IDF Cosine Similarity TF-IDF cosine simi-
larity between the original sentence and the candi-
date simplification, using sentence-level IDF values
calculated from the Newsela corpus.

Siamese LSTM Two LSTM recurrent neural
networks with shared weights trained on the Se-
mEval2014 SICK dataset (Marelli et al., 2014)
using fixed, pre-trained Google News word em-
beddings (Mikolov et al., 2013). The similarity is
calculated by comparing the hidden states of two
input sentences (Mueller and Thyagarajan, 2016).

Compression Ratio The ratio of the number of
words of the original sentence versus the candidate
simplification.

Source Label Two binary features, one indicat-
ing if the candidate is human-generated and one
indicating if it is the original sentence.

3 Experiments

To evaluate our approach, we collected training and
testing sets consisting of an original sentence and
four human simplifications. To help better train
the ranker, we also collected additional training
data by scoring some simplifications generated by
the sentence fusion approach. To understand the
effect of alpha on the output, we trained rankers
over 80 values of α, chosen to be densest near α =
1, resulting in 80 different rankers that prioritize
different levels of simplicity. We tested each of
these models on the test set and compared them to
four levels of expert human evaluations based on
adequacy, simplicity, and fluency.

3.1 Data
We used the Newsela corpus (Xu et al., 2015) as
the data set for evaluation. Newsela is a sentence-
aligned corpus generated from articles manually

simplified by experts at four simplicity levels (re-
ferred to as V1-V4, in order of increasing simplic-
ity). We chose this dataset because it provides a
strong baseline with expert simplifications and has
multiple simplicity levels, which is suitable for test-
ing our target-simplicity-specified rerankers.

Training We randomly selected 119 original sen-
tences and collected 4 human simplifications and
scored them for simplicity and adequacy. This data
lacked examples of sentence fusion-generated sim-
plifications that had been scored, and the initial
ranker trained on it did not perform well.

To include sentence fusion examples in the data,
we selected and scored some sentence fusion out-
puts. For each original sentence, we split the sen-
tence fusion candidates into deciles based on the
ranker (with α = 1) and annotated the first sen-
tence from each decile with simplicity and ade-
quacy scores. This resulted in 10 sentence fusion
simplifications per original sentence, in addition to
the 4 human. We repeated this process: starting
with the original sentences, annotating, and train-
ing on the freshly created dataset in each iteration.
After two iterations, we observed approximate con-
vergence in adequacy and simplicity scores on the
training data and stopped iterating.

This new dataset consists of 119 original sen-
tences, each with 4 human and 10 sentence fusion
simplifications (15 candidate sentences per exam-
ple, for a total of 1785 sentences) each annotated
with simplicity and adequacy, and is used as the
training data. Note that once the ranker has been
trained, the only data required to apply the model
to rank new sentences is the original sentence and
the four crowdsourced simplifications. The genera-
tion and annotation procedure described above is
only required to train the model.
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Testing For the test set we chose an additional
200 random sentences where each original sen-
tence was aligned with a sentence at each of the
four simplicity levels (V1-V4). This allowed for a
comparison of our approach against all four expert
simplification levels.

Data Collection We used Amazon Mechanical
Turk both to generate the four candidate human sim-
plifications and to score simplifications (Callison-
Burch and Dredze, 2010). The instruction for sen-
tence simplification is to “make the sentence easier
to understand" such that it “means the same thing
as the original sentence". For adequacy and sim-
plicity scores, the annotators are given the original
and the simplified sentences and asked to judge
to which degree the latter retains the meaning of
or is simpler than the former, respectively, while
fluency is annotated independently of the original
sentence. We averaged judgments from three work-
ers for each sentence. For simplicity, we asked the
annotators to compare the simplification to the orig-
inal on a five-point scale ranging from −2 (much
less simple) to 2 (much simpler). Adequacy and
fluency were assessed using on a five-point Lik-
ert scale with higher numbers representing better
values.

Workers were required to be in the United States
and have a historical 97% acceptance rate, but we
placed no other restrictions on education, English
proficiency, or previous simplification experience:
the workers generating the simplifications were not
experts. The full dataset (training and testing) with
human evaluation scores is available online1.

3.2 Results
Simplicity and Adequacy Figure 3 shows mean
adequacy (1 to 5) and simplicity (-2 to 2) on
the test set for Newsela V1-V4 and our approach
(Reranked Joint) for a range of α. Higher is better
denoting simpler output for simplicity and better
content retention for adequacy. One of the main
benefits of our approach is that different levels of
simplicity can be targeted by varying α: the sim-
plicity varies in the output ranging from points in
the bottom right where no simplification occurs
to points in the top center where significant sim-
plification has happened. In general, the system
output is both simpler and retains more informa-
tion than the human expert baseline of Newsela. In

1https://cs.pomona.edu/~dkauchak/
simplification/

Figure 3: Average simplicity and adequacy scores for
the system trained over a range of α compared to V1-
V4 of Newsela on the test set.

Source Simp. Adequacy Fluency
System (α = 5/3) 0.81 4.33 4.15
Newsela V1 0.61∗∗ 4.11∗∗∗ 4.26∗

Newsela V2 0.65∗ 3.96∗∗∗ 4.26∗

System (α = 1.5625) 1.06 4.08 4.11
Newsela V3 0.90∗∗ 3.83∗∗∗ 4.24∗

System (α = 0) 1.26 3.88 4.00
Human-Only (α = 0) 1.19∗ 3.94 4.05
Newsela V4 1.06∗∗ 3.43∗∗ 4.26∗∗∗

Table 3: Results for three α with statistical significance
for comparable Newsela versions ∗, ∗∗, ∗∗∗ denoting
p < 0.05, p < 0.01, and p < 0.001, respectively.

particular, for all levels of Newsela (V1-V4) there
is a setting of α where the system produces sim-
plifications that have significantly better simplicity
and adequacy. Table 3 gives examples along with
statistical comparison based on a paired t-test.

Fluency Table 3 also shows the fluency scores
for three different α settings. These alphas were se-
lected from the range explored in the experiments
to highlight how different settings of alpha pro-
duced models with significantly better performance
than human experts. For all approaches, the fluency
is high with values ranging from 4.00 to 4.26. The
system output is less fluent than the human experts,
particularly at lower levels of α. To understand the
cause of this difference, we compared the system
fluency to the fluency of the non-expert (crowd-
sourced) humans that the system sentences were
created from. For all three settings of α there is
no statistically significant difference between the
system output and the non-expert humans: the drop
in fluency is a result of using non-expert humans.

Qualitative Table 4 shows an original sentence
from the test dataset and the four crowdsourced
simplifications. There is a fair amount of variabil-
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Figure 4: Simplicity and adequacy scores for reranking
only the human simplifications as well as oracle output
for both the full system (joint) and human only.

ity in both the way that the text was simplified as
well as the level of simplification. Crowdsourced 1
has only minor simplifications while the fourth
is fairly aggressive. Crowdsourced 2 and 3 both
split the sentence to try and make it simpler. The
bottom part of the table shows the ranked output
of our approach with α = 1 (even balance be-
tween simplicity and adequacy). The top ranked
choice (and therefore the one chosen) is a system fu-
sion generated sentence; while simple, the sentence
maintains the critical information in the original
information. Table 4 also shows next three highest
ranked options. The original sentence was ranked
second (representing no simplification) followed
by another system generated sentence and the first
crowdsourced sentence.

3.3 Fusion and Ranking

We conducted additional experiments to understand
the contributions of sentence fusion and ranking.
To understand the contribution of the sentence fu-
sion approach, we compared the general approach
(Reranked Joint) to a version where only the four
human simplifications were ranked (Reranked Hu-
man), i.e. without sentence fusion candidates (Fig-
ure 4). When adequacy is prioritized, the results are
similar, however, as simplicity get prioritized more,
the human simplifications are limited by the simpli-
fications available. Adding sentence fusion allows
for more varied simplifications, some of which are
simpler. Table 3 gives a concrete example at α = 0;
the system is significantly simpler than the human
only output, but there is no significant difference in
adequacy or fluency.

Figure 5: The fractions of output sentences coming
from the sentence fusion system (synthetic) and unsim-
plified output sentences (the rest of the outputs are the
crowdsourced simplifications), shown against the rela-
tive weightings of adequacy and simplicity.

Overall, the approach tends to select a combina-
tion of human and sentence fusion simplifications.
Figure 5 shows the proportion of unsimplified and
synthetic (fusion generated) sentences chosen as
the best simplification by the ranker on the test
data set for varying levels of α. For higher α, bias-
ing towards adequacy, the system simply chooses
not to simplify and selects the original unsimpli-
fied sentence. For the other values of α, however,
the approach utilizes a combination of the human
simplifications and the fusion generated (synthetic)
simplifications, using the fusion generated sentence
for 30-40% of the simplifications.

We also conducted an oracle study, where we
picked the best simplification candidate based on
the the simplicity/adequacy annotations (“Oracled”
variations in Figure 4). This is similar to the ap-
proach of Zaidan and Callison-Burch (2011), and is
an option when such annotations are available. We
tested this for human simplifications only (Oracled
Human) and the full system with human simplifi-
cations and the top sentence fusion candidate (Ora-
cled Joint). Again, we see that the sentence fusion
approach enables more simplification, providing
candidates that are significantly simpler than those
generated by humans when simplicity is prioritized.
The performance gap between the reranked results
and the oracled result suggests that there could still
be room for improving the quality of the ranking.
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Input Sentences
Original Ferguson has done dozens of studies on the subject and has consistently found that violent video games

do not contribute to societal aggression.
Crowdsourced 1 Through dozens of studies on the subject, Ferguson has consistently found that violent video games do

not contribute to societal aggression.
Crowdsourced 2 Ferguson found that violent video games do not contribute to societal aggression. He has done dozens

of studies on the subject and has consistently come to the same conclusion.
Crowdsourced 3 Ferguson has completed many studies on the subject of violent video games. Ferguson concluded that

these games do not contribute to societal aggression.
Crowdsourced 4 Ferguson did over 12 studies on it and saw that violent video games don’t make people violent.

Ranked Output Sentences (α = 1.0)
1 System 1 Ferguson found that violent video games do not contribute to societal aggression.
2 Original Ferguson has done dozens of studies on the subject and has consistently found that violent video games

do not contribute to societal aggression.
3 System 2 Ferguson has completed many studies on the subject of violent video games do not contribute to societal

aggression.
4 Crowdsourced 1 Through dozens of studies on the subject, Ferguson has consistently found that violent video games do

not contribute to societal aggression.

Table 4: An example of real input from the test data set, consisting of the original sentence and four human
simplifications, and top output sentences generated and ranked by an α = 1 reranker.

4 Discussion

We introduced a new approach for leveraging
crowdsourced human simplification that generates
additional candidate simplifications using a sen-
tence fusion technique and a reranking approach
to pick high-quality simplifications. Our proposed
approach is capable of producing simplifications
that outperform expert human simplifications and
the sentence fusion technique is particularly good
at generating simpler variants.

We also introduced the new task of generating
a high-quality text simplification based on crowd-
sourced simplifications. Our sentence fusion algo-
rithm followed by reranking provides one possible
approach, but there are a number of areas where it
could be improved. We used a graph-based fusion
approach, but recent neural approaches that have
been applied in abstractive summarization may be
adapted (Chopra et al., 2016; Nallapati et al., 2016).
Many aspects of the reranker still need to be further
explored. While the reranker did a reasonable job
of selecting good candidates across different sim-
plicity levels the oracle study (Figure 4) suggests
that there is still room for improvement and addi-
tional features and alternative reranking algorithms
should be investigated. The question of how well
our trained reranker ports to different domains is
also yet to be investigated. Future research on the
relationships between α and simplicity is needed
to establish a standard for choosing appropriate
values of α as well. We hope this paper and the
associated data provides a good starting point for
future research in this area.
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Abstract

In this paper, we define an abstract task called
structural realization that generates words
given a prefix of words and a partial representa-
tion of a parse tree. We also present a method
for solving instances of this task using a Gated
Graph Neural Network (GGNN). We evaluate
it with standard accuracy measures, as well as
with respect to perplexity, in which its compar-
ison to previous work on language modelling
serves to quantify the information added to a
lexical selection task by the presence of syn-
tactic knowledge. That the addition of parse-
tree-internal nodes to this neural model should
improve the model, with respect both to accu-
racy and to more conventional measures such
as perplexity, may seem unsurprising, but pre-
vious attempts have not met with nearly as
much success. We have also learned that trans-
verse links through the parse tree compromise
the model’s accuracy at generating adjectival
and nominal parts of speech.

1 Introduction

We conjecture that this may be an opportune time
to reassess the extent to which syntax is capable
of contributing to a word prediction task. Struc-
tured realization is a generalization of language
modelling in which we receive n− j words as in-
put, together with a syntactic structure that has a
yield of n word positions and spans the input, plus
an “overhang” of j unrealized word positions. Our
task is to fill in the most likely missing j words.
Language modelling generally possesses only the
trivial annotation that consists of the words them-
selves and has historically assumed that j = 1,
constituting an n-gram. Notable exceptions date
back to the work of Chelba (2000) on structured
language modelling, in which the syntactic annota-
tion is partial, in that there is no overhang (j = 0),
but structurally non-trivial, although often sparing

relative to corpora that parsers are trained upon.1

The most thorough exploration of this direction
is probably that of Köhn and Baumann (2016),
who equip a variety of language models with a
pretrained dependency parser, which they use to
predict the part of speech (POS) of the next word
and some overarching syntactic structure, and then
predict the next word from its POS plus an n-gram
word history. They report a roughly 6% perplexity
reduction across the different models.

In the specific case where a complete, spanning,
syntactic representation is provided, but the model
is evaluated solely from a zero-prefix initialization
(i.e., n = j), this generalization can be viewed as
a simple purely syntactic surface-realization prob-
lem, as one would find in a generation task.

With no fanfare whatsoever in CL circles, the
machine learning community proposed an evalua-
tion task seven years ago called “MadLibs” Kiros
et al. (2014). In our terminology, the syntactic an-
notation provided is merely n− j words followed
by a string of j POS tags. While it may be difficult
to imagine that someone would be in possession
of this POS information without also knowing how
the POS tags connected together, the authors were
interested in testing a new multiplicative neural
language model, in which attributes (such as POS
tags) can be attached to input words.

In a neural setting, parse trees can be encoded
with a generalization of recurrent neural networks
(RNNs) called Graph Neural Networks (GNNs).
GNNs have been used as encoders to deal with
a variety of different NLP problems (see related
work section later). Gated GNNs (GGNNs) are an
improvement over GNNs that is analogous to that
of GRUs over RNNs. They train faster, and they
address problems with vanishing gradients.

1Chelba (2000) proposes that, in order to iteratively predict
one word at a time, a structured language model should predict
syntactic structure over every word that it has predicted, but in
his evaluation, it is very clear that he is more concerned with
the first stage of word prediction.
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We shall compare two modes of our model here
using GGNN-encoded parse trees: one with parse
trees from OntoNotes 5.0 (Hovy et al., 2006; Prad-
han et al., 2013; Weischedel et al., 2013), and one
with vestigial transitions between pre-terminal cat-
egories in sequence, which resembles the syntactic
annotation selected by Kiros et al. (2014), although
here the word prefix is also POS-annotated. We
also test the combination of the two: a syntactic
tree augmented by a linear pipeline of transitions
between pre-terminals. We compute sentence-level
accuracy by measuring how many words in the gen-
erated strings legitimately belong to their assigned
POS categories, and compute word-level accuracy
scores in three ways: accuracy at choosing a word
of the appropriate part of speech (this time with the
prefix of words corrected to what the corpus says,
as necessary), rank of the corpus sentences by data
likelihood, and word-guessing accuracy, relative to
what appears in the corpus.

2 Method

In this paper, we exploit a Gated Graph Neural
Network (GGNN) (Li et al., 2016) as a parse tree
encoder. GNN encoders have been shown to be
efficient for neural machine translation (Beck et al.,
2018; Bastings et al., 2017) whereas in our case,
we focus on structured realization. GGNNs define
a propagation model that extends RNNs to arbitrary
graphs and learn propagation rules between nodes.
We aim to encode syntactic trees by propagating
category labels throughout the tree’s structure.

2.1 Gated Graph Neural Networks

For completeness, we briefly summarize the
GGNN model (Li et al., 2016). A GGNN uses
a directed graph {V,E} where V and E are the sets
of nodes and edges. We represent the initial state
of a node v as sv and the hidden state of node v
at propagation time step t as htv. The adjacency
matrix A ∈ R|V |×N |V | determines how the nodes
in the graph propagate information to each other,
where N represents the number of different edge
types. Figure 1 is the visual representation of a
GGNN; it starts with h0v = sv, then follows a prop-
agation model which unrolls T steps and generates
hTv at the end. Each unroll step follows the same

rule to compute htv from h
(t−1)
v and A:

atv = A>v [ht−11
>
, ..., ht−1|V |

>
]> + b

rtv = σ(W ratv + U rh(t−1)v )

ztv = σ(W zatv + U zh(t−1)v )

h̃tv = tanh(Watv + U(rtv � h(t−1)v ))

htv = (1− ztv)� h(t−1)v + ztv � h̃tv.

(1)

b,W,W r,W z, U, U r, U z above are trainable pa-
rameters.

After information is propagated for T time steps,
each node’s hidden state collectively represents a
message about itself and its neighbourhood, which
is then passed to its neighbours. Finally there is
the output model. For example, Acuna et al. (2018)
implemented their output model by:

hv = tanh(FC1(h
T
v ))

outv = FC2(hv)
(2)

where FC1 and FC2 are two fully connected lay-
ers.

2.2 Gated Graph Neural Network Models
In this part, we will describe how we use GGNNs
and parse trees to build our three experimental mod-
els. Figure 2 depicts example trees for these models.

2.2.1 Input Tree Construction
Since we are using GGNNs, we first need to con-
struct the graph by giving the parse tree. We build
three different models:

Model 1: For a given parse tree, let N be the
number of nodes in the parse tree. Then the ad-
jacency matrix of the tree, denoted as A, is an N
× 2N matrix, concatenating two N × N matrices.
A[:N,:] is the forward adjacency matrix of the tree
and A[N:,:] is the backward adjacency matrix.

Model 2: The input does not consider interior
parse tree nodes, but instead works more like a
conventional language model. For each parse tree,
and given a sequence of words (w1, w2, ..., wn−1),
we retain all and only the pre-terminal parse tree
nodes, and then attempt to predict the next wordwn.
This is the model of Kiros et al. (2014). Note that,
while it is essentially a language model, the nodes
of this Model are a subset of the nodes of Model
1, although the edges are completely different, en-
coding only transitions between the pre-terminals
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Figure 1: An example GGNN. The GGNN generates output from a directed graph. It consists of a propagation
model and an output model. During the propagation step, there are two different edge types in this graph. Black
arrows are the OUT edges while red arrows are the IN edges.

(1) (2) (3)

Figure 2: Example of an input parse tree with a given input word prefix (w1 = Germany) and a completion
consisting of POS/pre-terminal categories. The number near each node represents its index within the adjacency
matrix of the tree (Figure 3). Red arrows are forward edges, green dashed arrows are backward edges and black
arrows represent a transverse edge between pre-terminals. The partial trees each contain 1 terminal("Germany"),
4 pre-terminals ("NP","MD","VB",".") and, in Models (1) and (3), 3 other interior categories ("S","N","V"). We
want to predict the word after Germany, which will be the child of pre-terminal "MD". The input of Model 1
considers tree nodes and forward/backward edges, but not transverse pre-terminal edges. The input of Model 2
does not include other parts of the tree except pre-terminals and the given terminals, yet it contains all three kinds
of edges. The input of Model 3 which contains all tree nodes and all edges.

in sequence. This time, the adjacency matrix A is
N × 3N which is a concatenation of three N × N
matrices: Aforward, Abackward and Apre−terminal.

Model 3: This one is the combination of the
above two. The number of nodes is the same as
for Model 1. The adjacency matrix is the addition
of each respective pair of Aforward, Abackward and
Apre−terminal, concatenated together.

Figure 2 depicts an example for each model. By
comparing the results for different models later,
we will understand how essential inner nodes and
edges between pre-terminals are for word predic-
tion. Also note that Model 1 and Model 3 have the
same number of nodes, but the number of nodes
in Model 2 is smaller. Nevertheless, in all three
models, the input may contain a prefix of n − j
words. As mentioned above, when this prefix is

zero-length, we have three classical surface realiza-
tion models. But we can also view all three models
as generalizations of language models, in which:

P (W ) = P (w1w2...wn)

=

n∏

i=1

P (wi|treei−1)
(3)

and treei−1 is the parse tree with the 1th, 2th...(i−
1)th word tokens in place.

2.2.2 Terminal, Pre-terminal and Interior
Tags

Once we have constructed the graph, we need to
construct input for the model. Let D = 100 be
the dimension of a set of word-embedding vectors
over a fixed lexicon. The input to each model is
an N × D matrix. All three types of nodes need
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Figure 3: The adjacency matrix of the above in-
put example (1) in Figure 2. Blank slots repre-
sent 0, meaning no edge between two nodes. A =
[Aforward,Abackward].

to be represented in same-dimensional vectors: 1)
terminals, i.e. words, 2) pre-terminals (nodes that
only appear as a parent of a leaf), and 3) interior
node tags (nodes that are neither leaves nor pre-
terminals). We then need to normalize all vectors.

We associate each terminal (word) with its
GloVe (Pennington et al., 2014) pre-trained word
vector (trained from Wikipedia 2014 + Gigaword
5, containing a 400K-word vocabulary).

For pre-terminals, we gather sequences (e.g.,
"NP MD VB ." in Figure 1) for each input sentence,
prepare a corpus consisting only of these tags, and
train embedding vectors directly on the POS tags
by using the GloVe algorithms (Pennington et al.,
2014). We then associate each pre-terminal with
its corresponding vector.

The number of interior tags is larger than D,
however, so one-hot is not appropriate in this case.
For each interior node, we randomly generate a
D-dimensional vector, sampling each entry of the
vector from a standard Gaussian distribution.

2.2.3 Predict Words
After the input presentation, the propagation step
and a fully connected layer, the model will gener-
ate an N × D output matrix. In other words, all
N nodes in the parse tree will have D-dimensional
output. In language modelling mode, we would
not care about any output except the one gen-
erated by the pre-terminal dominating the posi-
tion of wn−j+1. Let v̂ denote this normalized D-
dimensional output. The probability of wn−j+1

given the tree, P (wn−j+1 = i|treen−j) =:

exp(c2 × (v̂T · vi))∑V
j=0 exp(c

2 × (v̂T · vj)))
(4)

where V is the size of the pre-trained lexicon, vi
and vj are vector representations for the ith and
jth word types. We choose i with maximum con-
ditional probability. This is equivalent to choosing
the i for which vi is the closest word vector v̂.

When c = 1 and treen−j consists only of the
sequence of input words (w1, w2, ..., wn−j), Eq 4
would correspond to a standard language model.
The interval [e−1, e1] is too small as the range of the
numerator to distinguish between good predictions
and bad predictions. So instead of only normalizing
them, we also multiply by a constant c. Thus the
range of the numerator becomes [e−c

2
, ec

2
]. We

tuned c manually from 1 to 15 based on model 1.
Figure 4 shows that c = 6 is the best, as it has the
lowest cross entropy compared with other values.
We will assume c = 6 in Section 3.

Figure 4: Average cross entropy loss of validation set
using Model 1 with different magnitude of vectors.

3 Results

3.1 Datasets

We train and test all models on OntoNotes 5.0,
which contains 110,000+ English sentences from
print publications. We also train and evaluate the
perplexity of all models on the Penn Treebank
(Marcus et al., 1993), as this has become a standard
among syntax-driven language models. PTB $2-21
are used as training data, $24 is for validation, and
$23 is used for testing.
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We excluded those trees/sentences with words
that are not in GloVe’s (Pennington et al., 2014)
pre-trained vocabulary from both the training and
validation data. The test set and validation set were
excluded from our development cycle. Dataset
statistics are provided in Table 1.

3.2 Training Details

We used 100-dimensional pre-trained GloVe vec-
tors to represent different kinds of leaves in the
tree. As the loss function, we use cross entropy
loss which is calculated based on Equation 4. For
each complete parse tree in the training set, let n
be the number of leaves/terminals in this tree. So
this tree has n different possible prefixes of known
words(w1...wi, 0 ≤ i ≤ n− 1), each with a parse
tree as training input. In addition, since the num-
ber of nodes in different graphs is distinct, we use
stochastic gradient descent with a learning rate of
0.01 to train the model (i.e. batch size = 1).

Perplexity relates to cross-entropy loss:

PPL = e−
1
N

∑
i p(x) log y(x) (5)

This is corpus-level perplexity, where x is an arbi-
trary word and p(x) is the function we discussed
in Eq 4 and N is the number of predictions. The
magnitude c = 6 also has lowest perplexity.

3.3 Realization Accuracy

A simple way to evaluate the accuracy of the mod-
els as implementations of the structured realiza-
tion task is to consider their sentence output in
terms of POS accuracy. If we simply remove the
yields of corpus trees and attempt to regenerate
them from the trees, the resulting strings will often
differ from the original yields, but they may still
be grammatical in the sense of the first j tokens
having the appropriate POS tag sequence. Table 2
shows the sentence-level word and POS accura-
cies on the OntoNotes test set. Both OntoNotes
and PTB provide gold-standard (human labeled)
syntactic constituency parse trees. We trained our
model on these trees. These trees are expensive,
however, so we also evaluated on trees obtained
from the Berkeley neural parser (Kitaev and Klein,
2018) a state-of-the-art constituency parser with an
F1 = 95 score on the PTB.

3.4 Continuity of Latent Spaces

Some trees have the same unlabelled tree structure,
although they may have different nodes. We can

randomly pick two such isomorphic constituency
trees T1 and T2, delete their leaves then linearly
interpolate between their corresponding nodes and
generate. For an arbitrary node of the ith inter-
mediate tree, the vector representation would be:

node = (1− λ)× T1(node)
+ λ× T2(node),

(6)

for some value of λ ∈ [0, 1]. Table 3 demonstrates
sentences generated from trees for various values
of λ. This kind of “semantic continuity” has been
demonstrated before on vector encodings, but, to
our knowledge, not on structured spaces such as
parallel trees of vectors.

3.5 Perplexity

Perplexity is perhaps the most common evaluation
measure in the language modelling literature. The
formula of perplexity was shown in Eq 5.

We trained and evaluated our Models on the dif-
ferent datasets listed in Table 1. The perplexities
of the test data sets are listed in Table 4. RNNG
(Dyer et al., 2016) is a state-of-the-art syntax-aware
model. LSTM-256 LM is our self implemented
language model using 2-layer LSTM cell with se-
quence length 20 and hidden state size 256. Our
three models have lower perplexities across the
board compared with RNNG on both OntoNotes
and PTB. Model 3 on gold parse trees has the low-
est perplexity overall, although it is important to
remember that our models benefit from distribu-
tions from Wikipedia that are implicitly encoded
in the GloVe vectors. LSTMs that use GloVe per-
form worse than the LSTMs with trainable word
embeddings shown here.2

In addition, for comparion, we trained our mod-
els on PTB $2–21 excluding those trees that contain
words that are not in GloVe, but tested on the entire
PTB $23 with gold syntactic constituency parsing
trees. For those words not in GloVe, we followed
the method in RNNG (Dyer et al., 2016). First,
we replace them by <UNK-XXX>(e.g. <UNK-
DASH>,<UNK-NUM>). Then, for each UNK to-

2Kruskal-Wallis and post-hoc Mann-Whitney tests with
Bonferroni correction reveal that M1–3 with benepar trees are
statistically significantly different (p < 10−10) from RNNG
at the sentence level (H=56.84 PTB; 65.54 OntoNotes), and
from LSTM at the word level (H=1485.94 PTB; 2561.44
OntoNotes), on both corpora, except that there was no signifi-
cant difference found between M1 and RNNG with OntoNotes.
All effect sizes were small (df=3, V=0.05). With OntoNotes,
no significance was found between M1 and M2; with PTB,
none was found between M2 and M3.
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Dataset Train Test Valid Vocabulary Max_s Ave_s Max_t Ave_t
OntoNotes 102254 5430 5625 45408 210 19 570 54
PTB 31680 1945 1114 30924 116 23 308 68

Table 1: Statistics of the datasets used in this project. Max_s/Ave_s are the maximum/average lengths of sentences.
Max_t/Ave_t are the maximum/average numbers of nodes in trees.

Accuracy M1 M2 M3
word gold 32.34 32.09 34.64
word benepar 31.47 31.93 33.96
POS gold 94.39 89.47 92.3
POS benepar 93.6 89.19 91.9

Table 2: Sentence-level accuracies of the models on the
OntoNotes test set. "Benepar" is the Berkeley neural
parser (Kitaev and Klein, 2018).

T1 god was very good to me .
jesus was very happy for him .
god said accusatory ones while it .
i made my people talking alone .
he had their people talking again .

T2 he told their people coming again .

Table 3: Sentences generated between two random
trees that have the same unlabelled tree structure. T1
= "(S (NP (NNP)) (VP (VBD) (ADJP (ADJP (RB ) (JJ
)) (PP (IN ) (NP (PRP ))))) (. .))", T2 = "(S (NP (PRP
)) (VP (VBD ) (S (NP (PRP$ ) (NNS )) (VP (VBG )
(ADVP (RB ))))) (. .))."

ken, we use the average of the vector representa-
tions of words labelled as XXX in the training set
to obtain the vector representation of this token.
The perplexity of the entire PTB $23 is listed in Ta-
ble 5. RNNG, SO-RNNG, GA-RNNG and NVLM
are all syntax-aware models. Our Models achieve
very good perplexity. Note that while Transformer-
XL does perform better, it uses roughly 2.4× 107

parameters whereas ours uses 9× 105. We have a
larger vocabulary size because we retain words that
appear in GloVe regardless of frequency. Larger
vocabulary sizes generally increase perplexity.

Model OntoNotes PTB Tree type
LSTM-256 125.8 126.43

RNNG 116.7 119.66
Model 1 92.86 75.14 gold
Model 2 90.10 66.78 gold
Model 3 73.65 65.75 gold
Model 1 101.4 75.56 benepar
Model 2 95.13 69.02 benepar
Model 3 80.18 68.06 benepar

Table 4: Perplexities of the OntoNotes/PTB test trees
in which all words have GloVe vectors.

Model Test ppl
KN-5-gram (Kneser and Ney, 1995) 169.3
LSTM-128 (Zaremba et al., 2014) 113.4
GRU-256 112.3
RNNG (Dyer et al., 2016) 102.4
SO-RNNG (Kuncoro et al., 2017) 101.2
GA-RNNG (Kuncoro et al., 2017) 100.9
NVLM (Zhang and Song, 2019) 91.6

Model 1 (gold) 81.05
Model 2 (gold) 72.09
Model 3 (gold) 71.07 (benepar) 84.44

Transformer-XL 54.52

Table 5: Perplexities of the PTB test set (entire $23).
RNNG, SO-RNNG, GA-RNNG and NVLM use the
same method to preprocess data, keeping only vocab-
ulary that appear more than once in the training set.
For hapaxes in the training set and words in the vali-
dation/test sets that occur once in the training set, they
replace them with <UNK-POS> tokens. Their models
only contain 24 000 word types, whereas ours contain
31 000. In some other language modelling settings, the
vocabulary size can be as small as 10 000.

3.6 Word-prediction Accuracy and Rank

Given a parse along with the prefix w1, ...wn−j ,
we can remove the leaves (wn−j+1, wn+1, ..., wn)
from the parse tree, and predict wn−j+1, where
1 ≤ j ≤ n. Thus, for a tree with n word po-
sitions, we can perform word prediction up to n
times. Unlike the structured realization accuracies
above, conventional practice in language modelling
evaluation is to restore the integrity of wn−j ac-
cording to the corpus before predicting wn−j+1

when the previous prediction step was unsuccess-
ful. Word accuracies according to this regimen are
given in Table 8, along with accuracy at predicting
any word with the required part of speech.

To better evaluate the results, we also compute
the rank for each predicted word. Let v′ be the
vector representation of the true wn−j+1 and v̂ de-
note the output vector as discussed earlier. For each
vector representation of a word in the pre-trained
GloVe vocabulary set, compute the Euclidean dis-
tance between it and v̂. Rank r means ||v′ − v̂||
is the rth smallest distance in comparison to the
other words in the vocabulary set. If the rank is
small, then the model is capable of finding a close
prediction. Small rank also means the model is
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model ≤ 10 ≤ 100 ≤ 1000 ≤ 10000 >10000 Med Mean
Model 1 55.5% 11.9% 16.7% 13.1% 2.8% 5 1057
Model 2 55.2% 12.8% 17.1% 12.3% 2.6% 5 965
Model 3 57.8% 12.2% 15.8% 11.9% 2.4% 4 907

LSTM-256 LM 50.7% 23.7% 16.1% 8.2% 1.4% 10 564

Table 6: Rank distributions for models on the OntoNotes Test Set.

model ≤ 10 ≤ 100 ≤ 1000 ≤ 10000 >10000 Med Mean
Model 1 55.7% 13.8% 17.6% 11.3% 1.4% 4 678
Model 2 57.0% 14.5% 16.5% 10.7% 1.3% 4 614
Model 3 57.2% 13.9% 16.7% 10.8% 1.3% 4 624

LSTM-256 LM 50.9% 22.3% 17.1% 8.8% 0.9% 10 470

Table 7: Rank distributions for models on the PTB Test Set.

able to learn the relation between the next word
and the given partial parse tree.

Table 6 and Table 7 show the overall, median,
and mean rank distributions of the different models,
compared to LSTM-256 within the ranges 10φ to
10φ+1, 0 ≤ φ ≤ 4. Most of the ranks are ≤ 10
and the median ranks for all models are less than 5.
Our GGNN based models have more predictions
that rank less than or equal to 10 compared with
LSTM-256. Model 1 and Model 2 have similar
ranks; Model 3’s are slightly better. Model 3 has
the lowest median rank. Although LSTM-256 has
the lowest mean rank, LSTM-256’s vocabulary size
is much smaller than our GGNN based models.’

3.7 Generating words of a specific POS

Sometimes a model has an output vector located
very far from the vector representation of the true
word (i.e. its rank is very large), but the pre-
dicted word can at least be assigned the correct
pre-terminal POS. This means the prediction is in
some sense correct, because it is more likely to be
grammatically and semantically acceptable. For
example, given a sequence "within three days she
had," and a gold-standard next word of "worked,"
with parent "VBN," "turned" could be a good pre-
diction even though it is far from "worked", be-
cause "turned" also belongs to "VBN."

Since we train terminals and pre-terminals sepa-
rately, there is no prior connection defined between
them. For example, given a tag "NN," we do not
know which words belong to "NN" when training
the vectors for the words, or when choosing the
vector for “NN.” So this is a learned ability. Let
us denote the true ith word as t and the predicted
ith word as p. To evaluate this capability, every
time the model predicts a word p, we count it as
a correct prediction if: (1) p occurs somewhere in

the training data, dominated by a category c, and
(2) c also dominates this occurrence of t.

In Table 8, we present this accuracy rate in the
second column for each of the different models.
On the OntoNotes test data, Models 1 and 3 have
higher rates than Model 2, while Model 2 has the
highest POS accuracy on the PTB test data. Along-
side this, we also compute the overall accuracy
of selecting the correct word (i.e., when the true
word has rank 1), as well as the macro-averaged
and macro-median accuracy of selecting the correct
word, broken down by the pre-terminal dominating
the position to be predicted.

All three models have high POS accuracies in
general (medians: 99.90, 99.93 and 99.7, respec-
tively), but Models 2 and 3 have very bad accura-
cies for some POSs such as ’NN’ (60.68–67.45),
’NNS’ (32.32–68.31) and ’VBN’ (38.5–49.1).

4 Related Work

Graph Neural Networks as Graph Encoders
GNNs were first proposed by Scarselli et al. (2009).
Li et al. (2016) added gating mechanisms for re-
current networks on graphs. In parallel, (Bruna
et al., 2013) proposed Graph Convolutional Net-
works. GCNs differ from GGNNs in their graph
propagation model. GGNNs exploit recurrent neu-
ral networks to learn propagation weights through
time steps. Each step shares the same set of pa-
rameters. On the other hand, GCNs train unshared
CNN layers through time steps. In this paper, we
employed GGNNs as a design choice. Similar to
our model architecture, Bastings et al. (2017); Beck
et al. (2018) used graphs to incorporate syntax into
neural machine translation and Marcheggiani and
Titov (2017) used ERS graph convolutional net-
works as dependency tree encoders for semantic
role labelling. Even before graph neural networks
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OntoNotes PTB
Word acc Word acc

Model POS acc µavg macavg med POS acc µavg macavg med
Model 1 94.35 32.4 26.6 38.6 94.28 35.47 41.74 47.46
Model 2 89.4 32.0 37.39 43.52 97.66 37.12 43.74 49.22
Model 3 92.33 34.7 37.9 44.3 95.73 37.27 41.69 44.37

LSTM-256 LM 22.4 23.57

Table 8: Percentage POS prediction accuracies and word prediction accuracies, for each model.

become popular, there were attempts akin to graph
encoders. Dyer et al. (2015); Socher et al. (2013);
Tai et al. (2015); Zhu et al. (2015); Le and Zuidema
(2014) encoded tree structure with recursive neural
networks or Tree-LSTMs.

Surface Realization Song et al. (2018) intro-
duced a graph-to-sequence LSTM for AMR-to-
text generation that can encode AMR structures
directly. The model takes multiple recurrent transi-
tion steps in order to propagate information beyond
local neighbourhoods. But this method must main-
tain the entire graph state at each time step. Our
models also simultaneously update every node in
the tree at every time step. The encoder of Trisedya
et al. (2018) takes input RDF triples rendered as
a graph and builds a dynamic recurrent structure
that traverses the adjacency matrix of the graph one
node at a time. Marcheggiani and Perez-Beltrachini
(2018), again using a GCN, take only the nodes of
the RDF graph as input, using the edges directly as
a weight matrix. They, too, must update the entire
graph at every time step.

Language Modelling The task of language mod-
elling has a long and distinguished history. Al-
though the term itself was not coined until Jelinek
et al. (1975), the earliest work of Shannon (1948)
on entropy presents what are effectively character-
level language models as a motivating example. In
both cases, given a prefix of characters/words or
classes (Brown et al., 1992), the aim of the task is
to predict the next such event. n-gram language
models factor any dependency of the next event
on the prefix through its dependency on the final
n− 1 events in the prefix. This long remained the
dominant type of language model, but the advent of
neural language models (Bengio et al., 2003), and
particularly vector-space embeddings of certain
lexical-semantic relations, has drastically changed
that landscape. See, e.g., models using recurrent
networks (Mikolov et al., 2010), year (Mikolov
et al., 2011), LSTMs (Sundermeyer et al., 2012),
sequence-to-sequence LSTMs models (Sutskever

et al., 2014), and convolutional networks (Gehring
et al., 2017) and transformers (Devlin et al., 2019).

An earlier, but ultimately unsuccessful attempt
at dislodging n-gram language models was that of
Chelba (2000), who augmented this prefix with syn-
tactic information. Chelba (2000) did not use con-
ventional parse trees from any of the then-common
parse-annotated corpora, nor from linguistic the-
ory, because these degraded rather than enhanced
language modelling performance. Instead, he had
to remain very sparing in order to realize an em-
pirical improvement. The present model not only
shares information at the dimensional level, but
projects syntactic structure over the words to be
predicted. While this makes structured realization
a very different task from structured language mod-
elling, this not only appears to improve perplexity,
but does so without having to change the conven-
tional representation of trees found in syntactic cor-
pora. The present model could therefore be used to
evaluate competing syntactic representations in a
controlled way that quantifies their ability to assist
with word prediction, as we have here.

5 Conclusion

GGNNs have proved to be effective as encoders
of constituent parse trees from a variety of per-
spectives, including realization accuracy, perplex-
ity, word-level prediction accuracy, categorical co-
hesion of predictions, and novel lexical selection. A
limitation of this study is the comparatively modest
size of its corpora, which is due to the requirement
for properly curated parse-annotated data. Find-
ing ways to scale up to larger training and test sets
without the bias introduced by automated parsers
remains an important issue to investigate.
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Abstract

Pre-trained models like Bidirectional Encoder
Representations from Transformers (BERT),
have recently made a big leap forward in Nat-
ural Language Processing (NLP) tasks. How-
ever, there are still some shortcomings in the
Masked Language Modeling (MLM) task per-
formed by these models. In this paper, we
first introduce a multi-graph including differ-
ent types of relations between words. Then,
we propose Multi-Graph augmented BERT
(MG-BERT) model that is based on BERT.
MG-BERT embeds tokens while taking advan-
tage of a static multi-graph containing global
word co-occurrences in the text corpus beside
global real-world facts about words in knowl-
edge graphs. The proposed model also em-
ploys a dynamic sentence graph to capture lo-
cal context effectively. Experimental results
demonstrate that our model can considerably
enhance the performance in the MLM task.

1 Introduction

In recent years, pre-trained models have led to
promising results in various Natural Language Pro-
cessing (NLP) tasks. Recently, Bidirectional En-
coder Representations from Transformers (BERT)
(Devlin et al., 2019) has received much attention
as a pre-trained model that can be easily fine-tuned
for a wide range of NLP tasks. BERT is pre-trained
using two unsupervised tasks, Masked Language
Modeling (MLM) and Next Sentence Prediction
(NSP). In (Ettinger, 2019), some psycholinguistic
diagnostics are introduced for assessing the lin-
guistic capacities of pre-trained language models.
These diagnostic tests consist of commonsense and
pragmatic inferences, role-based event prediction,
and negation. Ettinger (2019) observes some short-
comings in BERT’s results and demonstrates that
although BERT sometimes predicts the first candi-
date for the masked token almost correctly, some of
its top candidates contradict each other. Besides, in

the tests targeting commonsense and pragmatic in-
ference, it is illustrated that BERT can not precisely
fill the gaps based on just the input context (Et-
tinger, 2019).

In this paper, we incorporate co-occurrences and
global information about words through graphs
describing relations of words along with local con-
texts considered by BERT. The intention is to find
more reliable and meaningful embeddings that re-
sult in better performance in MLM task. Utilizing
external information about the corpus and the world
in the form of graphs helps the model fill the gaps
in the MLM task more easily and with more cer-
tainty. We take advantage of the rich information
source accessible in knowledge graphs and also
condensed information of words co-occurrence in
graphs using Relational Graph Convolutional Net-
work (R-GCN) to enrich the embedding of tokens.
We also utilize the words in the current context as a
dynamic complete graph using an attention mecha-
nism. These graphs can considerably influence the
performance of BERT in the MLM task as shown
in the experiments.

2 Related Work

Knowledge graphs (KGs) are valuable sources
of facts about real-world entities. Many studies
have been recently introduced to utilize knowl-
edge graphs for various purposes, such as rec-
ommender systems (Wang et al., 2019a,b; He
et al., 2020) or link prediction (Feng et al., 2016;
Nguyen et al., 2018; Sun et al., 2019; Zhang et al.,
2020). Recently, using BERT along with knowl-
edge graphs has also been attended for knowledge
graph completion and analysis. Yao et al. (2019)
employ KG-BERT in triple classification, link pre-
diction, and relation prediction tasks. Furthermore,
knowledge graphs are used in NLP tasks such as
text classification (K M et al., 2018; Ostendorff
et al., 2019; Zhang et al., 2019a), named entity
recognition (Dekhili et al., 2019), and language
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modeling (Ahn et al., 2016; Logan et al., 2019).
ERNIE (Zhang et al., 2019b) is an enhanced lan-
guage representation model incorporating knowl-
edge graphs. In addition to BERT’s pre-training ob-
jectives, it uses an additional objective that intends
to select appropriate entities from the knowledge
graph to complete randomly masked entity align-
ments. Moreover, named entity mentions in the text
are recognized and aligned to their corresponding
entities in KGs.

Other types of graphs have also been utilized
in NLP tasks in some studies. For instance, Text
GCN (Yao et al., 2018) applies Graph Convolu-
tional Network (GCN) to the task of text classi-
fication. This paper’s employed graph is a text
graph created based on token co-occurrences and
document-token relations in a corpus. Moreover,
VGCN-BERT (Lu and Nie, 2019) enriches the
word embeddings of an input sentence using the
text graph inspired by Text GCN (Yao et al., 2018)
and examines the obtained model in FIRE hate
language detection tasks (Mandl et al., 2019).

In this paper, we aim to improve BERT’s perfor-
mance (in the MLM task) by incorporating a static
multi-graph that includes both the knowledge graph
and global co-occurrence graphs derived from the
corpus as well as a dynamic graph including in-
put sentence tokens. Static text graphs have been
recently employed in VGCN-BERT (Lu and Nie,
2019) via a modified version of GCN that extends
the input by a fixed number of embeddings. How-
ever, the modification of embeddings in this work
is only based on input tokens. Neither other vocab-
ularies in the static text graphs nor real-world facts
(available in KGs) affect the final embeddings of
tokens. On the other hand, while ENRIE (Zhang
et al., 2019b) and KEPLER (Wang et al., 2019c)
utilize KGs to reach an improved model, they do
not employ other graphs derived from the corpus.
Also, ERNIE does not learn graph-based embed-
ding during representation learning and only adopts
embeddings trained by TransE (Bordes et al., 2013).
However, in our model, since we incorporate a
multi-graph by extending BERT architecture and
providing a graph layer of an R-GCN module and
attention mechanism, a multi-graph augmented rep-
resentation learning model is obtained.

3 Preliminaries

GCN (Kipf and Welling, 2017) is one of the most
popular models for graph node embedding. R-

GCN (Schlichtkrull et al., 2018) extends GCN to
provide node embedding of multi-relational graphs:

h
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where h(l)i is the l-th layer’s hidden state of node
vi, W

(l)
r is the weight matrix for relation r in layer

l, and W0 is the weight matrix for self-loops. N r
i

is the set of vi’s neighbours under relation r and
ci,r is a normalization constant.

4 Methodology

This section presents the overall architecture of our
model, called Multi-Graph augmented BERT (MG-
BERT). MG-BERT takes advantage of BERT’s
power in capturing context of an input text as well
as a graph module including an R-GCN layer over
a static multi-graph and a graph attention layer over
a dynamic sentence graph. This static multi-graph
includes global information about words available
as facts in KGs in addition to dependencies be-
tween tokens of the input text and other words in
the vocabulary which are discovered by computing
co-occurrence statistics in the corpus. Two graphs
are used to condense co-occurrences of words in
the corpus inspired by Text GCN (Yao et al., 2018)
that are also employed by VGCN-BERT (Lu and
Nie, 2019). One of these graphs includes local
co-occurrences of terms that is computed based on
point-wise mutual information (PMI) of terms i
and j which is calculated by:

p(i) =
#W (i)

#W
, p(i, j) =

#W (i, j)

#W
,

PMI(i, j) = log
p(i, j)

p(i)p(j)
. (1)

In the above equations, #W (i) and #W (i, j) de-
note the number of fixed size windows contain-
ing term i and both of the terms i and j, respec-
tively. #W is the whole number of windows in
the corpus. The other graph includes the docu-
ment level co-occurrence of tokens in the corpus
computed based on term frequency-inverse docu-
ment frequency (TF-IDF). The knowledge graph
is also incorporated in this multi-graph. Formally,
the weighted edges between token i and token j for
three types of relations R = {KG,PMI,TF-IDF}
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in the multi-graph are:





ATF−IDFij = λT
∑

d∈docs
TidTjd

AKGij = λK
∑
e∈KG

KGieKGej if i, j ∈ KG

APMI
ij = λP PMI(i, j) if PMI(i, j) > 0

A∗ij = 1 if i = j
(2)

where Tid denotes the TF-IDF of token i in docu-
ment d, PMI(i, j) shows PMI calculated by Eq. 1,
and KGe1e2 is nonzero when a relation between
these two entities exists in the knowledge graph.
Note that we add a self-connection relation to our
knowledge graph for maintaining one-hop links,
while also considering two hops as in Eq. 2 to
employ indirect relations through paths of length
two in the knowledge graph. λK , λP , and λT are
also hyperparameters that can control the impact of
three types of relations on tokens’ embeddings. To
utilize the multi-graph introduced above, we add a
single-layer R-GCN described in Section 3 to the
BERT model.

Furthermore, we use a graph attention mecha-
nism to capture local information via a dynamic
and complete graph in which nodes represent all to-
kens of the input sentence. The complete dynamic
graph is used in order to obtain context-dependent
new embeddings while the R-GCN layer itself pro-
vides the same new embeddings for a specific token
even if the token appears in different contexts. This
happens because the single R-GCN layer always
performs on the same static multi-graph.

As shown in Fig. 1, the whole graph module is
placed immediately after the BERT token embed-
dings layer since the hidden states of the whole
vocabulary are available in this layer. We pass the
entire multi-graph to the R-GCN module so that
the global dependencies would affect embeddings
of tokens properly using Eq. 3. We also use an at-
tention mechanism as in Eq. 4 to consider the local
context. The new embedding of token i in sentence
s is computed as:

h
′
i =(1− λdyn)

∑

r∈R
ÂrihiWr (3)

+ λdyn


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Kn
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Query
k ).(hjW

Key
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∑
t∈s exp((hiW

Query
k ).(htW

Key
k ))

, (5)

where Âr refers to the normalized adjacency matrix
of relation r, W s are trainable weight matrices (i.e.
Wrs denote parameters of the R-GCN layer and
WQuery
k , WKey

k , and W V al
k denote the attention

parameters), and hi is the ith token’s embedding
from the BERT token embeddings layer.

Next, we aggregate the obtained tokens’ embed-
dings by the graph module with position embed-
dings and segment embeddings (similar to BERT).
Afterward, we feed these representations to BERT
encoders to find final embeddings. The proposed
model architecture is shown in Figure 1.

In the training phase, a token from each sentence
is randomly masked, and the model is trained to
predict the masked token based on both the context
and the incorporated static multi-graph.

5 Experiments

In this section, we explain the details of training
MG-BERT and conduct experiments to evaluate
and compare our model with the related methods
recently proposed.
Datasets. During training, we use the WN18
knowledge graph, derived from WordNet, as an
unlabeled graph (Bordes et al., 2014). We also
experiment MG-BERT and other recent models on
CoLA, SST-2, and Brown datasets (Warstadt et al.,
2019; Socher et al., 2013; Francis and Kucera,
1979). The detailed description of these datatsets
is given in Appendix A.

Parameter Setting. In order to capture word
co-occurence statistics of the corpus, we use the
BERT’s tokenizer on sentences and set the sliding
window size to 20 when calculating the PMI value.
The whole BERT module in MG-BERT is first
initialized with the pre-trained bert-base-uncase
version of BERT in PyTorch and the model is
trained on the MLM task with cross entropy
loss (Wolf et al., 2019). Regarding Eq. 2, different
hyper-parameter settings have been used for
each dataset. λK , λP , and λT are set to 0.01,
0.001, and 0.001, respectively in both CoLA
and Brown datasets and 0.001, 1.0, and 0.001
in SST-2 dataset. The hyperparameter λdyn is
also set to 0.8. The graph attention mechanism
is performed with 12 heads. The R-GCN and
graph attention layers’ output dimension are also
set to 768 that equals to the dimension of the
BERT token embeddings layer to substitute easily
BERT’s token embeddings with the embeddings
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Figure 1: The architecture of MG-BERT. The “Aggregate" phase includes an aggregation of new tokens’ embed-
dings with the position embeddings and the segment embeddings of the BERT model.

derived from the graph module. We also employ
the normalization trick introduced in GCN (Kipf
and Welling, 2017) to normalize each adjacency
matrix in the multi-graph.

Compared methods. To assess our model,
we compare it with BERT as the baseline.
Moreover, ERNIE and VGCN-BERT are being
compared as the recent methods utilizing knowl-
edge graph and text graph, respectively (Zhang
et al., 2019b; Lu and Nie, 2019). We also compare
MG-BERT with MG-BERT(base) which doesn’t
use the dynamic graph incorporating the context
according to Eq. 4. All these models are fine-tuned
on the text datasets for a fair evaluation.

Results. We evaluate our model using Hits@1 and
Hits@5 metrics. Hits@k shows the proportion
of correct tokens appearing in the top k results
for each sample. In Table 1, we report the results
of evaluations performed on the test sets of
CoLA, SST-2, and Brown datasets. These results
demonstrate that the proposed method outperforms
other models and taking advantage of the graph
module with dataset-specific hyper-parameters
improves the performance.

The reason to our superiority over VGCN-BERT
(Lu and Nie, 2019) is that it doesn’t take advantage
of real-world facts (available in KGs). Moreover,
as opposed to MG-BERT, it modifies initial em-
beddings of tokens only based on input tokens of
each sentence and other vocabularies in the text
graphs don’t influence the final embeddings of to-
kens. On the other hand, ERNIE (Zhang et al.,
2019b) doesn’t take full advantage of graphs since
it doesn’t use graphs derived from the corpus. Be-

sides, it does not learn graph-based embeddings
during representation learning. It is worth men-
tioning that the entity embedding model used in
ERNIE has been trained on a huge subset of Wiki-
data1, which is almost 120 times bigger than WN18
knowledge graph employed in our method.

The superiority of MG-BERT over MG-
BERT(base) demonstrates the importance of the
dynamic sentence graph and the results of MG-
BERT(base) itself shows that utilizing the static
multi-graph has been useful.

Graphs Hits@1 Hits@5
K 70.51± 1.28 86.27± 0.31

P 69.63± 1.78 85.75± 0.91

T 69.78± 1.18 84.78± 1.10

KP 70.37± 1.41 85.66± 0.92

KT 70.50± 0.99 85.54± 0.83

PT 70.60± 1.32 85.22± 0.80

KPT 70.94± 1.20 85.12± 1.20

Table 2: Experimental results of variations of MG-
BERT(base) using different graphs on CoLA dataset.
The symbols K, P, and T stand for employing KG, PMI,
and TF-IDF relations, respectively.

In addition, evaluation results of different varia-
tions of MG-BERT(base) on CoLA dataset, consid-
ering different graphs, are represented in Table 2,
demonstrating the effect of each graph on the per-
formance. The experimental results indicate the
role of exploiting various graphs in language repre-
sentation learning.

We also compare MG-BERT and MG-
BERT(base) with other models using perplexity

1https://www.wikidata.org/
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Model CoLA SST-2 Brown
Hits@1 Hits@5 Hits@1 Hits@5 Hits@1 Hits@5

BERT
(Devlin et al., 2019)

68.50
±1.49

84.53
±1.18

80.48
±0.85

88.42
±0.70

58.31
±1.17

76.38
±0.49

ERNIE
(Zhang et al., 2019b)

69.57
±0.89

84.58
±0.72

81.17
±0.77

88.26
±0.57

57.42
±0.73

75.34
±0.65

VGCN-BERT
(Lu and Nie, 2019)

69.03
±0.78

84.81
±0.62

80.85
±0.48

88.37
±0.58

57.97
±0.97

76.17
±0.67

MG-BERT(base) 70.95
±1.20

85.12
±1.20

81.28
±0.51

88.56
±0.79

58.66
±0.11

76.64
±0.61

MG-BERT 71.72
±0.97

86.67
±0.51

83.07
±0.47

89.13
±0.39

58.38
±0.60

76.59
±0.67

Table 1: Hits@k esults on CoLA, SST-2, and Brown datasets. The best score is highlighted in bold and the second
best score is highlighted with underline.

Model CoLA SST-2 Brown
BERT

(Devlin et al., 2019)

1.33
±0.01

1.43
±0.01

1.66
±0.02

ERNIE
(Zhang et al., 2019b)

1.23
±0.01

1.20
±0.01

1.71
±0.02

VGCN-BERT
(Lu and Nie, 2019)

1.32
±0.01

1.41
±0.01

1.75
±0.02

MG-BERT(base) 1.26
±0.02

1.45
±0.01

1.82
±0.01

MG-BERT 1.23
±0.01

1.25
±0.01

1.63
±0.01

Table 3: Perplexity results on CoLA, SST-2, and Brown
datasets. The best score is highlighted in bold.

metric in Table 3. In this paper, the perplexity is
only calculated on the masked tokens as:

PPL = exp

(
n∑

i=1

− log ŷ
[MASK]
i

)
,

where ŷ[MASK]
i is the predicted probability of the

masked token in the i-th sample. A model with
higher perplexity allocates lower probability to the
correct masked tokens, which is not desired. The
results shown in Table 3 generally demonstrate the
fact that both MG-BERT and ERNIE solve the
MLM task with more certainty compared to BERT
and VGCN-BERT.

We also illustrate some examples of MLM task
performed by MG-BERT(base) and BERT in Ap-
pendix B. These examples demonstrate that real-
world information of knowledge graph and global
information of co-occurrence graphs remarkably

compensate BERT’s shortage.

6 Conclusion

In this paper, we proposed a language representa-
tion learning model that enhances BERT by aug-
menting it with a graph module (i.e. an R-GCN
layer over a static multi-graph, including global
dependencies between words, and a graph atten-
tion layer over a dynamic sentence graph). The
static multi-graph utilized in this work consists
of a knowledge graph as a source of information
about real-world facts and two other graphs built
based on word co-occurrences in local windows
and documents in the corpus. Therefore, the pro-
posed model utilizes the local context, the corpus-
level co-occurence statistics, and the global word
dependencies (through incorporating a knowledge
graph) to find the input tokens’ embeddings. The
results generally show the superiority of the pro-
posed model in the Masked Language Modeling
task compared to both the BERT model and the re-
cent models employing knowledge or text graphs.
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Abstract

Recent works show that the graph structure of
sentences, generated from dependency parsers,
has potential for improving event detection.
However, they often only leverage the edges
(dependencies) between words, and discard
the dependency labels (e.g., nominal-subject),
treating the underlying graph edges as homo-
geneous. In this work, we propose a novel
framework for incorporating both dependen-
cies and their labels using a recently proposed
technique called Graph Transformer Networks
(GTN). We integrate GTNs to leverage depen-
dency relations on two existing homogeneous-
graph-based models, and demonstrate an im-
provement in the F1 score on the ACE dataset.

1 Introduction

Event detection is an important task in natural lan-
guage processing, which encompasses predicting
important incidents in texts, e.g., news, tweets, mes-
sages, and manuscripts (Yang and Mitchell, 2016;
Nguyen et al., 2016; Feng et al., 2016; Zhang et al.,
2020; Du and Cardie, 2020; McClosky et al., 2011;
Ji and Grishman, 2008; Liao and Grishman, 2010;
Li et al., 2013; Yang et al., 2019). As an exam-
ple, consider the following sentence: The plane
arrived back to base safely. Here, the word ar-
rived is an event trigger that denotes an event of
the type “Movement:Transport,” while “The plane”
and “base” are its arguments. Given a sentence, the
objective of the event detection task is to predict
all such event triggers and their respective types.

Recent works on event detection (Nguyen and
Grishman, 2018; Liu et al., 2018; Yan et al., 2019;
Balali et al., 2020) employ graph based methods
(Graph Convolution Networks (Kipf and Welling,
2017)) using the dependency graph (shown in
Fig. 1) generated from syntactic dependency-
parsers. These methods are able to capture use-
ful non-local dependencies between words that are

∗S. Dutta was a research intern at Dataminr.

Figure 1: Examples of syntactic dependency parsing.

relevant for event detection. However, in most of
these works (with the notable exception of Cui et al.
(2020)), the graph is treated as a homogeneous
graph, and the dependency labels (i.e., edge-types
in the graph) are ignored.

Dependency labels can often better inform
whether a word is a trigger or not. Consider the two
sentences in Fig. 1. In both the sentences, there is
an edge between “police” and “fired”. A model that
does not take into account dependency labels will
only have access to the information that they are
connected. However, in the first sentence, “fired” is
an event trigger of type “Conflict:Attack,” whereas
in the second sentence, it is of type “Personnel:End
Position.” The fact that the edge label between “po-
lice” and “fired” is a nominal-subject or an object
relation serves as an indicator of the type of event
trigger. Hence, leveraging the dependency labels
can help improve the event detection performance.

In this work, we propose a simple method to
employ the dependency labels into existing models
inspired from a recently proposed technique called
Graph Transformer Networks (GTN) (Yun et al.,
2019). GTNs enable us to learn a soft selection of
edge-types and composite relations (e.g., multi-hop
connections, called meta-paths) among the words,
thus producing heterogeneous adjacency matrices.

We integrate GTNs into two homogeneous-
graph-based models (that previously ignored the de-
pendency relations), namely, a simple gated-graph-
convolution-based model inspired by Nguyen and
Grishman (2018); Liu et al. (2018); Balali et al.
(2020), and the near-state-of-the-art MOGANED
model (Yan et al., 2019), enabling them to now
leverage the dependency relations as well. Our
method demonstrates a relative improvement in the
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Figure 2: Embedding and BiLSTM Module.

Figure 3: Basic Gated-Graph-Convolution Network.

F1 score on the ACE dataset (Walker et al., 2006)
for both models, proving the value of leveraging de-
pendency relations for a graph-based model. While
the goal of this paper is not to establish a state-of-
the-art (SOTA) method, but rather to show the merit
of our approach, we do note that the improvements
with our method approach the current SOTA (Cui
et al., 2020) (which leverages dependency relations
using embeddings instead of GTNs).

To summarize, our main contribution is a method
of enabling existing homogeneous-graph-based
models to exploit dependency labels for event de-
tection, inspired from GTNs. Incorporating GTNs
in NLP tasks has received less attention (also see
recent related work Veyseh et al. (2020)).
Notations: We denote matrices and vectors in bold,
e.g., A (matrix) or a (vector). Note that, A(u, v)
denotes the element at index (u, v) in matrixA.

2 Proposed Method

In this work, we incorporate GTNs onto two
homogeneous-graph-based models: (i) Model I:
a gated-graph-convolution-based model inspired
by Nguyen and Grishman (2018); Liu et al. (2018);
Balali et al. (2020); and (ii) Model II: MOGANED
model (Yan et al., 2019). Both models have a sim-
ilar initial embedding and BiLSTM module, fol-
lowed by a graph-based module (where their differ-
ences lie), and finally a classification module.
Embedding and BiLSTM Module: Our initial
module (shown in Fig. 2) is similar to existing
works (e.g., Yan et al. (2019)). Each word of the
sentence is represented by a token which consists of
the word embedding, the POS tag embedding, the
Named-Entity type embedding, and its positional

Figure 4: (Left) Model I; (Right) Model II.

embedding. For a sentence of n words, we denote
this sequence of tokens as X = x0, x1, . . . , xn−1.
Next, we introduce a BiLSTM to encode X into
its context P = p0, p1, . . . , pn−1 where pi =

[
→

LSTM(xi)||
←

LSTM(xi)], and || denotes the con-
catenation operation. P is then fed to the graph-
based module, as discussed next.
Graph-Based Module: We first introduce the
basic unit of both Model I and II, i.e., gated-
graph-convolution network (see Fig. 3). Let
Hk = hk0, h

k
1, . . . , h

k
n−1 be the input and Hk+1 =

hk+1
0 , hk+1

1 , . . . , hk+1
n−1 be the output of the k-th

layer of this module with H0 = P . Given any
adjacency matrix A and input Hk, consider the
following operation at layer k:

fu(H
k,A) =

n−1∑

v=0

GkA(u, v)(W k
Ah

k
v + b

k
A). (1)

Here, W k
A and bkA are the weight matrix and

bias item for the adjacency matrix A at layer k,
and GkA(u, v) is the gated-importance, given by
GkA(u, v) = A(u, v)σ(wk

att,Ah
k
v + εkatt,A), where

σ(·) is an activation function, andwatt,A and εatt,A
are the attention weight vector and bias item.

A dependency parser, e.g., Stanford Core
NLP (Manning et al., 2014), generates a directed
heterogeneous graph G for each sentence (recall
Fig. 1). Existing works typically do not use the de-
pendency labels (e.g., nominal-subject); they only
derive three homogeneous adjacency matrices from
G as follows: (i) Afwd where Afwd(i, j) = 1 if
there is an edge from node i to j; (ii)Arev where
Arev(i, j) = 1 if there is an edge from node j to i;
and (iii)Aloop which is an identity matrix.

For Model I (see Fig. 4 (Left)), the output
of the k-th layer (input to k+1-th layer) is given by
hk+1
u =ReLu(

∑
A∈{Afwd,Arev ,Aloop} fu(H

k,A)).
The first layer of gated-graph-convolution network
captures dependencies between immediate neigh-
bors (1-hop). To capture K-hop dependencies,
Model I has K consecutive layers of such gated-
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Figure 5: GTN to obtain heterogeneous adjacency ma-
trix of meta-path length 1 (Recall Fig. 1 for the graph).

graph-convolution networks. The output of this
graph-based module is then fed to a multi-layer
perceptron (MLP) with attention weights for
classifying each word into its event-type (or “not
an event”).

In Model II, instead of passing the BiLSTM
output P through a series of K consecutive gated-
graph-convolution layers (to capture K-hop con-
nections), this model separately aggregates the
outputs of T parallel graph-convolution layers
with separate adjacency matrices representing hops
of length 1, 2, . . . , T (see Fig. 4 (Right)). Let
H0(= P ) be the input and H1 be the output
of the graph-based module of Model II (which
effectively has only one layer, i.e., k=0). In
Yan et al. (2019), the homogeneous adjacency
matrices Afwd, Arev, and Aloop are considered
with their corresponding t-hop adjacency matri-
ces At

fwd, A
t
rev, and At

loop (multiplied t times)
respectively. The output of the graph-based
module is given by: h1u=

∑T−1
t=0 watt,tvt where

vt =
∑

A∈{Afwd,Arev ,Aloop} σ(fu(H
0,At)).

Here,watt,t is an attention-weight (further details
in (Yan et al., 2019)) and σ(·) is the exponential lin-
ear unit1. Finally, these outputs are passed through
an MLP with attention weights for classification.
Remark. The reason for using only three matri-
ces instead of a separate adjacency matrix for each
edge-type is that it results in an explosion of pa-
rameters for the gated-graph-convolution network,
as individual weight matrices have to be learnt for
each type of edge (see also Nguyen and Grishman
(2018)). In this work, we replace the homogeneous
matrices Afwd and Arev with heterogeneous ad-
jacency matrices without a significant overhead in
the number of parameters, as discussed next.
Obtaining Heterogeneous Adjacency Matrices
With GTN: Consider a directed heterogeneous
graph G with each edge belonging to one ofL types.
This graph can be represented using a set of L adja-
cency matrices {Afwd,0,Afwd,1, . . . ,Afwd,L−1},

1The gated-importance GkA(u, v) has subtle differences
between Model I and II.

each corresponding to a different edge-type (depen-
dency label). Afwd,l(i, j) = 1 if there is a directed
edge from node i to j of type l. A GTN obtains a
heterogeneous adjacency matrix by learning a con-
vex combination Qfwd =

∑L−1
l=0 αlAfwd,l (see

Fig. 5) where α = softmax(w) and w is a weight
vector that the model learns. The matrixQfwd is a
heterogeneous adjacency matrix with an “appropri-
ately weighted” edge between any two nodes that
have an edge in any of the L original matrices.

For Model I, we first generate a set of L adja-
cency matrices (for L edge-types) corresponding
to the directed forward edges, and another set of
L adjacency matrices corresponding to the reverse
edges. Next, we learn heterogeneous adjacency ma-
trices, i.e.,Afwd = Qfwd andArev = Qrev. Our
technique enables baseline Model I to leverage de-
pendency relations by learning only 2Lmore scalar
parameters which is significantly less than learning
individual weight matrices for L edge-types.

For Model II, we not only aim to learn hetero-
geneous adjacency matrices to replace the homo-
geneous Afwd and Arev, but also learn heteroge-
neous adjacency matrices that have an “appropri-
ately weighted” edge between every two nodes that
are t-hops apart in the original graph G (called a
meta-path of length t) so as to replace At

fwd and
At
rev. Specifically, for the case of t = 2, GTN

first learns two convex combinations Qfwd,0 and
Qfwd,1 (each corresponds to meta-paths of length
1), and then computes the productQfwd,0Qfwd,1.
Similarly, one can compute a product of t such
adjacency matrices to learn meta-paths of length t.

We replace all t-hop adjacency matrices with het-
erogeneous adjacency matrices of meta-path length
t, learnt through GTNs, e.g.,At

fwd is replaced by
Qfwd,0Qfwd,1 . . .Qfwd,t−1, where eachQfwd,i is
a convex combination of L-adjacency matrices cor-
responding to the directed forward edges. Simi-
lar heterogeneous adjacency matrices of meta-path
length t are learnt for the reverse edges as well to
replaceAt

rev. This modification enables the base-
line Model II to leverage the dependency relations,
by only learning 2Lt more scalar parameters for
each t, which is practicable.

3 Results

Dataset and Evaluation Metrics: We use the
benchmark ACE2005 English dataset (Walker et al.,
2006) with the same data split as in prior works
(where the sentences from 529, 30, and 40 docu-
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K P R F1
1 72.0 75.5 73.7
2 70.7 75.7 73.1
3 72.8 70.7 71.7

K P R F1
1 72.9 76.4 74.6
2 72.1 75.9 74.0
3 73.8 73.6 73.7

Table 1: Performance of gated-graph-convolution-
based models (Model I) for varying number of consec-
utive convolution layers (K): (Left) Baseline models
with no GTNs; (Right) Proposed models with GTNs.

Method P R F1
Baseline (no GTNs) 79.5 72.3 75.7
Proposed (with GTNs) 80.9 73.2 76.8

Table 2: Performance of MOGANED (Model II).

ments are used as the training, validation, and test
set). We use the Stanford CoreNLP toolkit (Man-
ning et al., 2014) for sentence splitting, tokeniz-
ing, POS-tagging and dependency parsing. We
use word embeddings trained over the New York
Times corpus with Skip-gram algorithm following
existing works (Yan et al., 2019). We evaluate the
Precision (P), Recall (R) and F1 score.
Model Settings: For Model I, the number of
consecutive layers of gated-graph-convolution net-
works (K) is varied from 1 to 3. For Model II, we
use the code2 with same hyper parameter settings.
Performance: For both Models I and II, GTNs
demonstrate an improvement of about 1 point F1
score (see Tables 1 and 2). The 76.8 F1 score for
Model II with GTNs is also quite close to the SOTA
performance of 77.6 for this task (Cui et al., 2020).
Examining Specific Predictions For Insights:
To explain the role of GTNs, we examined all the
predictions on the validation set using the baseline
Model II (no GTNs) and the proposed Model II
(with GTNs). We include some specific instances
here that we found interesting and insightful.

We observe that using GTNs makes the predic-
tions more “precise,” by reducing the number of
false-positive event trigger detections. For instance,
He’s now national director of Win Without War, and
former Congressman Bob Dornan, Republican of
California. Here, “former” is the only event trigger
(type Personnel:End-Position), as is correctly iden-
tified by our model. However, the baseline model
also falsely identifies “War,” as an event trigger
of type Conflict:Attack. Another example is: In
a monstrous conflict of interest, [...]. Here, the
baseline falsely identifies “conflict,” as a trigger of

2https://github.com/ll0iecas/MOGANED

type Conflict:Attack. Our model is able to identify
“War,” and “conflict” as non-triggers based on their
context in the sentence, while the baseline seems
to be over-emphasizing on their literal meaning.

In some cases, the baseline model also leads to
misclassification. For instance, The Apache troop
opened its tank guns,[...]. Here, “opened,” is an
event trigger of type Conflict:Attack, as is correctly
identified by our model; however, the baseline mis-
classifies it as type Movement:Transport.

Another interesting example is: [...] Beatriz
walked into the USCF Offices in New Windsor and
immediately fired 17 staff members. Here, “walked”
is an event trigger of type Movement:Transport,
and “fired” is of type Personnel:End-Position.
The baseline model misclassifies “fired” as Con-
flict:Attack, while using GTNs help classify it cor-
rectly. However, using GTNs can sometimes miss
certain event triggers while attempting to be more
precise, e.g., “walked” is missed when using GTNs
while the baseline model identifies it correctly.

Lastly, there are examples where both the base-
line and proposed models make the same errors.
E.g., I visited all their families. or, I would have
shot the insurgent too. Here, both models mis-
classify “visited,” (type Contact:Meet) as Move-
ment:Transport, and “shot,” (type Life:Die) as Con-
flict:Attack. As future work, we are examining
alternate techniques that better inform the context
of the event trigger in such sentences. Another in-
teresting example is: “It is legal, and it is done.”
Both models miss “it,” (type Transaction:Transfer-
Money). For this example (and some other similar
examples of anaphora resolution), we believe that
it might be quite non-intuitive to classify the event
trigger from the sentence alone, and dependencies
among sentences from the same article might need
to be leveraged to better inform the context, as we
will examine in future work.

4 Conclusion

We developed a novel method of enabling existing
event extraction models to leverage dependency
relations without a significant rise in the number of
parameters to be learnt. Our method relies on GTN,
and demonstrates an improvement in F1 score over
two strong baseline models that do not leverage
dependency relations. The benefits of using GTN
in an NLP task suggests that other NLP tasks could
be improved in the future.
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A More Details on the MOGANED model

There are some subtle differences in the graph-attention mechanisms of Model I and II. In par-
ticular, for Model II, the gated-importance G0

A(u, v) in equation (1) is redefined as follows:
G0

A(u, v)=softmax(E(u, v)),whereE(u, v)=A(u, v)γ(Wc,A[Watt,Ah
0
u||Watt,Ah

0
v]), γ is LeakyReLU

(with negative input slope α), andWc,A andWatt,A are weight matrices. Further details are provided in
Yan et al. (2019).

B Data Preprocessing

We use the same data split as several existing works (Nguyen et al., 2016; Nguyen and Grishman, 2018;
Liu et al., 2018; Balali et al., 2020; Yan et al., 2019; Cui et al., 2020; Ji and Grishman, 2008; Liao and
Grishman, 2010; Li et al., 2013), where the sentences from 529, 30, and 40 documents are used as the
training, validation, and test set. For preprocessing, we directly used the following code3 which uses the
Stanford Core NLP toolkit (Manning et al., 2014).

C Hyper Parameter Setting

For both the models, we select 100 as the dimension of the word embeddings, and 50 as the dimension
of all the other embeddings, i.e., POS-tag embedding, Named-Entity-type embedding, and positional
embedding. Following prior work, we restrict the length of each sentence to be 50 (truncating long
sentences if necessary). We select the hidden units of the BiLSTM network as 100. We choose a batch size
of 10, and Adam with initial learning rate of 0.0002. We select the dimension of the graph representation
to be 150. When using GTNs, the number of edge-types (L) is 35, which is determined by the number of
unique types of dependency relations, e.g., nsubj, case, etc., as obtained from the dependency parser.

3https://github.com/nlpcl-lab/ace2005-preprocessing

137



Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15), pages 138–143
June 11, 2021. ©2021 Association for Computational Linguistics

Fine-grained General Entity Typing in German using GermaNet

Sabine Weber
University of Edinburgh

s.weber@sms.ed.ac.uk

Mark Steedman
University of Edinburgh

steedman@inf.ed.ac.uk

Abstract

Fine-grained entity typing is important to tasks
like relation extraction and knowledge base
construction. We find however, that fine-
grained entity typing systems perform poorly
on general entities (e.g. "ex-president") as
compared to named entities (e.g. "Barack
Obama"). This is due to a lack of general en-
tities in existing training data sets. We show
that this problem can be mitigated by automat-
ically generating training data from WordNets.
We use a German WordNet equivalent, Ger-
maNet, to automatically generate training data
for German general entity typing. We use this
data to supplement named entity data to train a
neural fine-grained entity typing system. This
leads to a 10% improvement in accuracy of the
prediction of level 1 FIGER types for German
general entities, while decreasing named entity
type prediction accuracy by only 1%.

1 Introduction

The task of fine-grained entity typing is to assign
a semantic label (e.g. ‘/person/politician’ or ‘/lo-
cation/city’) to an entity in a natural language sen-
tence. In contrast to coarse grained entity typing
it uses a larger set of types (e.g. 112 types in
the FIGER ontology (Ling and Weld, 2012)), and
a multilevel type hierarchy. An example of fine
grained entity typing can be seen in Figure 1. Fine-
grained entity typing is an important initial step in
context sensitive tasks such as relation extraction
(Kuang et al., 2020), question answering(Yavuz
et al., 2016) and knowledge base construction (Hos-
seini et al., 2019).

Entities can appear in text in many forms. In the
sentences ‘Barack Obama visited Hawaii. The ex-
president enjoyed the fine weather.’ both ‘Barack
Obama’ and ‘ex-president’ should be assigned the
type ‘/person/politician’ by a fine-grained entity
typing system. While the typing of the named
entity (NE) ‘Barack Obama’ can be performed

Figure 1: Fine-grained entity typing with the FIGER
ontology in English. Correct types are highlighted.

by state of the art entity typing systems, it is un-
clear how well these systems perform on general
entities (GEs) like ‘ex-president’. We find that ac-
curacy and F1 score of a state-of-the-art German
fine-grained entity typing system are 17% lower on
general entities than on named entities (see Table 1
and section 5). This is because the training data for
these systems contains only named entities, but not
general entities (e.g. Weber and Steedman (2021,
under submission); Ling and Weld (2012)). This is
the problem we address with our approach.

Because manual annotation of training data is
costly and time intensive we propose an approach
that uses existing resources to create silver anno-
tated GE typing data. For this we use German text
taken from Wikipedia, GermaNet (a German Word-
Net equivalent, Hamp and Feldweg (1997)) and the
FIGER type ontology (Ling and Weld, 2012). The
resulting data can be added to existing NE typing
data for the training of a neural entity typing sys-
tem. In our approach we use the hierarchical typing
model of Chen et al. (2020), which builds upon con-
textualized word embeddings. It has shown good
performance on public benchmarks and is freely
available.

We compare our approach against using only
NE data for training and a rule-based approach and
achieve 10% improvement in accuracy of the pre-
diction of level 1 FIGER types for German general

138



entities, while decreasing named entity prediction
accuracy by only 1%. Our approach can be seen
as a proof of concept and a blueprint for the use
of existing WordNet resources to improve entity
typing quality in other languages and domains.

2 Related work

The problem of GE typing performance has not
been examined specifically before, nor has it been
addressed for the case of German. Choi et al.
(2018) create a fine-grained entity typing system
that is capable of typing both GE and NE in En-
glish by integrating GEs into their training data.
Their approach relies on large amounts of manu-
ally annotated data, and is therefore not feasible
for our case. Moreover they propose a new type
hierarchy, while we stick to the widely used FIGER
type hierarchy, to make the output of our system
consistent with that of other systems for tasks like
multilingual knowledge graph construction.

Recent advances in typing NE in English have
harnessed the power of contextualized word embed-
dings (Peters et al., 2018; Conneau et al., 2020) to
encode entities and their context. These approaches
use the AIDA, BNN, OntoNotes and FIGER ontolo-
gies, which come with their own human annotated
data sets (Chen et al., 2020; Dai et al., 2019; López
et al., 2019). By choosing to use the model of
(Chen et al., 2020), we build upon their strengths
to enable GE typing in German.

German NE typing suffers from a lack of man-
ually annotated resources. Two recent approaches
by by Ruppenhofer et al. (2020) and Leitner et al.
(2020) use manually annotated data from bio-
graphic interviews and court proceedings. Owing
to the specific domains, the authors modify exist-
ing type onthologies (OntoNotes in the case of bio-
graphic interviews) or come up with their own type
ontology (in the case of court proceedings). This
limits the way their models can be applied to other
domains or used for multilingual tasks. Weber and
Steedman (2021, under submission) use annotation
projection to create a training data set of Wikipedia
text annotated with FIGER types. We build upon
their data set to create a German model that types
both NEs and GEs.

3 Method

GermaNet (Hamp and Feldweg, 1997) is a broad-
coverage lexical-semantic net for German which
contains 16.000 words and is modelled after the En-

Figure 2: An example of FIGER type assignment using
GermaNet. The manual mapping between GermaNet
and FIGER is indicated by double lines. Whenever a
word in the hypernym path of the input word is mapped
to a FIGER type, the respective type gets assigned.

glish WordNet (Fellbaum, 2010). The net contains
links that connect nouns to their hyponyms and hy-
pernyms. This way GermaNet implicitly contains
a fine-grained ontology of nouns. Although some
NE are contained in GermaNet, the vast majority
of nouns are GEs.

We manually map the 112 FIGER types to nouns
in GermaNet. Starting from a German translation
of the type name (e.g. the type ‘person’ translates
to ‘Mensch’) we add terms that best describe the
FIGER type. This mapping enables us to look up
a word in GermaNet and check if any of its hyper-
nyms are mapped to a FIGER type. If this is the
case, we can assign the corresponding FIGER type
to the word in question. Figure 2 illustrates this
method. We use this method to generate German
GE training data and as our rule-based baseline.

We use this GE training data in addition to Ger-
man NE typing data to train the hierarchical typ-
ing model of Chen et al. (2020). In this model
the entity and its context are encoded using XLM-
RoBERTa (Conneau et al., 2020). For each type
in the FIGER ontology the model learns a type
embedding. We pass the concatenated entity and
context vector trough a 2-layer feed-forward net-
work that maps into the same space as the type
embedding. The score is an inner product between
the transformed entity and context vector and the
type embedding. For further model details refer to
Chen et al. (2020).
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4 Experimental setup

4.1 Data sets

As a NE training set we use the German fine-
grained entity typing corpus of Weber and Steed-
man (2021, under submission). This data set was
generated from the WikiMatrix corpus by Schwenk
et al. (2019) using annotation projection.

To create the GE training data, we use the Ger-
man portion of the WikiMatrix corpus. By using
the same genre we make sure that no additional
noise is added by domain differences. Moreover,
the original English FIGER data set was created
from Wikipedia text, so we can assume that all
FIGER types are well represented in the WikiMa-
trix data.

4.2 GE training data generation

To generate GE training data we take the following
steps: First, we split off 100 K sentences from the
top of the German part of the WikiMatrix corpus.
We use spaCy (Honnibal et al., 2020) for part of
speech tagging. Every word tagged as a noun is
looked up in GermaNet. We use the method de-
scribed in Section 3 to assign FIGER types to the
noun.

This lookup in GermaNet is not context-aware,
so polysemous words are assigned multiple con-
tradicting types. We only include words in our
training data that have less than two level 1 types
and not more than one level 2 type. This filter dis-
cards about 41% of all input words. We discuss the
implications of this filter in Section 6. The result-
ing corpus consists of 200K sentences of German
FIGER typed GE data 1.

4.3 Training set up

In our experiments we compare six different train-
ing setups against a rule-based baseline using only
GermaNet.

Only NE data: In this setup we train the hier-
archical typing model on 200K sentences taken
from the German fine-grained NE typing corpus by
Weber and Steedman (2021, under submission).

Mixing NE and GE data: In this setup we add
either 20K, 40K, 60K, 80K or 100K sentences of
automatically generated GE training data to 200K
sentences taken from the corpus of Weber and
Steedman (2021, under submission) and train the

1The generation code and generated data can be found here:
https://github.com/webersab/german_general_entity_typing

hierarchical typing model on it. We shuffle the
sentence order before training.

Baseline: We compare these two neural ap-
proaches against using only GermaNet. In this
baseline we use the approach described in Section
3 and Figure 2 to type our test data.

4.4 Evaluation

Metrics Following previous fine-grained entity typ-
ing literature we evaluate the results of our model
using strict accuracy (Acc) and micro F1 score.
The strict accuracy is the ratio of instances where
the predicted type set is exactly the same as the
gold type set. The micro F1 score computes F1
score biased by class frequency. We also evaluate
per hierarchy level accuracy (level 1 type labels
being more coarse grained and level 2 labels more
fine grained).

Test sets We use the German NE typing test set
of Weber and Steedman (2021, under submission)
for testing the performance of our systems on the
task of NE typing. The test set consists of 500
manually annotated sentences.

We create our GE typing data sets by taking that
same test set and manually replacing the named en-
tities in it with plausible general entities (e.g. swap-
ping ‘Barack Obama’ for ‘ex-president’). Where
this was not possible, we chose another noun from
the sentence and manually added the correct type.
In all other cases we removed the sentence from
the data set. The resulting GE data set consists of
400 sentences, which we split into a 100 sentence
development set and a 300 sentence test set.

5 Results

Table 1 shows the accuracy and F1 scores on the
gold German test set. Additionally, development
set results are presented in appendix A. We com-
pare the performance of models trained with differ-
ent amounts of GE data on the GE and NE test sets
described in section 4.4.

The test set performance on NE is best when
no GE data is added, but GE performance is at its
lowest. After adding 20K sentences of GE training
data the level 1 accuracy and F1 score on the GE
test set rises by 9%. Increasing the amount of
GE training data to 40K improves the GE test set
performance further with best level 1 results at 40K
sentences GE data and best level 2 results at 60K
sentences GE data. Adding more GE data beyond
these points decreases GE performance.
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Acc L1 F1 L1 Acc L2 F1 L2
Model NE GE NE GE NE GE NE GE
200K (only NE) 0.74 0.57 0.79 0.62 0.39 0.25 0.44 0.30
220K 0.73 0.66 0.78 0.71 0.37 0.29 0.42 0.34
240K 0.73 0.67 0.77 0.72 0.38 0.29 0.43 0.34
260K 0.72 0.66 0.77 0.70 0.39 0.30 0.44 0.35
280K 0.72 0.66 0.77 0.71 0.37 0.30 0.42 0.35
300K 0.70 0.64 0.75 0.68 0.37 0.30 0.42 0.34
GermaNet BL 0.10 0.48 0.10 0.48 0.27 0.08 0.27 0.08

Table 1: Accuracy and micro F1 score based on training input, tested on 500 NE annotated sentences and 300 GE
annotated sentences. GE Level 1 accuracy and Level 1 F1 rises by 9% when 20K sentences of GE training data are
added, while NE accuracy and F1 declines by only 1%.

Although NE performance is worsened by
adding GE training data, the decrease in level 1 per-
formance in both accuracy and F1 is only 1% for
20K and 40K GE sentences, with a maximum de-
crease of 3% when 100K GE sentences are added.

Adding GE training data has a smaller effect on
level 2 performance than on level 1 performance,
with level 2 accuracy and F1 on the GE test set in-
creasing by 5% when 60K sentences of GE data are
added. Adding GE training data initially decreases
performance on NE level 2 types, but at 60K sen-
tences of GE data is just as good as without them.

Adding more than 60K sentences of GE data
does not improve GE test set performance, but de-
creases both NE and GE test set performance in
accuracy and F1 score. We can also see that the
GermaNet baseline is outperformed by all systems,
although its performance on level 2 GE types is
close to our best models. We will discuss possible
explanations in the next section.

6 Discussion

The results show that the models’ performance on
GE typing can be improved using a simple data
augmentation method using WordNet, while only
lightly impacting the performance on NE typing.

All neural models outperform the GermaNet
baseline. This raises the question why the neural
systems were able to perform better than GermaNet
on GE, although the training data was generated
from GermaNet. We speculate that the hierarchi-
cal typing model is very context sensitive because
of its usage of contextualized word embeddings
(XLM-RoBERTa) to encode entities and their con-
text during training. While our GE data provides it
with high confidence non-polysemous examples, it
is able to learn which context goes with which type.

At test time this awareness of context enables the
neural systems to disambiguate polysemous cases,
even though it has not observed these cases at train-
ing time. This intuition is supported by our test
results: For the best performing model (240K) 40%
of the general entities that occur in our test set are
never seen in the training data.

A second reason why the neural models outper-
form GermaNet is that GermaNet does not repre-
sent every German noun. A certain word might not
be part of GermaNet and therefor no type can be
assigned. This is the case for 23% of words seen
during training data generation. The neural models
do not have this problem because our vocabulary
is larger than the 16.000 words contained in Ger-
maNet and because the neural models assign type
labels to out of vocabulary words on the basis of
the language model XML-RoBERTa.

Despite these factors the neural models’ perfor-
mance is closely matched by the GermaNet base-
line on level 2 labels. Level 2 types are underrepre-
sented in the data, because their prevalence follows
their occurrence in the Wikipedia data. This leads
to some low-level types being very rare: a signal
that is too weak to be learned sufficiently by a neu-
ral model. On the other hand, a lookup of words
in a preexisting data base like GermaNet is not af-
fected by this issue. While the neural models offer
high recall at low precision, GermaNet has higher
precision at low recall.

The results also show that 20K sentences of
GE data produce the highest increase of GE per-
formance while impacting NE performance least.
Adding GE data beyond 60K sentences does not
only worsen NE performance by also GE perfor-
mance. This is due to noise in the GE typing data.
A manual error analysis of 100 GE training data
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sentences shows that 35% have incorrect type as-
signments. With more GE training data the model
starts to overfit to this noise, which leads to decreas-
ing test set performance, affecting NE performance
slightly more than GE performance.

7 Conclusion and future work

In this paper we have shown that it is possible to
improve the performance of a German fine-grained
entity typing system using GermaNet. We create
silver annotated general entity typing data for train-
ing a fine-grained entity typing model that builds
upon contextualised word embeddings (in our case,
XLM-RoBERTa). Our results can be taken as a
blueprint for improving fine-grained entity typ-
ing performance in other languages and domains,
as there are WordNets for over 40 different lan-
guages. Moreover, the manual mapping we intro-
duced could be replaced by machine-translating
English type labels into the language of the Word-
Net, which would require less resources for human
annotation than a manual mapping.

Avenues for future work could be a combination
between high-precison but low recall WordNets
and neural models, e.g. through incorporating the
models’ prediction confidence to make a decision
whether a WordNet look-up should be trusted over
the models’ own prediction.

The problem of general entity typing could also
be viewed through the lens of coreference resolu-
tion: The type of a general entity could be inferred
from a named entity that the general entity refers to.
However, there might be cases in which no named
entity referent exists, or domains and languages
where coreference resolution systems are unavail-
able. In all of these cases combining our method
with existing approaches opens new possibilities.
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220K 0.62 0.66 0.73 0.71 0.34 0.29 0.36 0.34
240K 0.73 0.67 0.75 0.72 0.36 0.29 0.38 0.34
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280K 0.73 0.66 0.73 0.71 0.36 0.30 0.38 0.35
300K 0.69 0.64 0.71 0.68 0.35 0.30 0.37 0.34

Table 2: We report development set and test set perfor-
mance of the fine-grained entity typing model trained
with different amounts of general entity training data.
Best development set performance aligns with best test
set performance on Level 1 metrics, and is only off by
1% for Level 2 metrics.
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A Development set results

Development set results can be seen in Table 2. We
use the development set to determine which amount
of of added GEs achieves the best result. The exact
amount of GEs necessary for an ideal result might
vary depending on the fine-grained entity typing
model and the NE data used. The development
set enables the user to determine this amount for
their individual application. Best development set
performance aligns with best test set performance
on Level 1 metrics, and is only off by 1% for Level
2 metrics.

B Reproducibility

In keeping with the NAACL reproducibility
guildines we report the following implementation
details of our model: We trained all models using a
single GeForce RTX 2080 Ti GPU. Training each
of the models took under an hour. The number
of model parameters is 50484362. All hyperpa-
rameters of the model were taken from the imple-
mentation of Chen et al. (2020). All additional
code used and all of our data sets are available on
github.com/webersab/german_general_entity_typing.
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Abstract

In some memory-constrained settings like IoT
devices and over-the-network data pipelines,
it can be advantageous to have smaller con-
textual embeddings. We investigate the effi-
cacy of projecting contextual embedding data
(BERT) onto a manifold, and using nonlinear
dimensionality reduction techniques to com-
press these embeddings. In particular, we pro-
pose a novel post-processing approach, apply-
ing a combination of Isomap and PCA. We
find that the geodesic distance estimations, es-
timates of the shortest path on a Riemannian
manifold, from Isomap’s k-Nearest Neighbors
graph bolstered the performance of the com-
pressed embeddings to be comparable to the
original BERT embeddings. On one dataset,
we find that despite a 12-fold dimensional-
ity reduction, the compressed embeddings per-
formed within 0.1% of the original BERT em-
beddings on a downstream classification task.
In addition, we find that this approach works
particularly well on tasks reliant on syntactic
data, when compared with linear dimension-
ality reduction. These results show promise
for a novel geometric approach to achieve
lower dimensional text embeddings from ex-
isting transformers and pave the way for data-
specific and application-specific embedding
compressions.

1 Introduction

Contextual embeddings, like those BERT (Devlin
et al., 2019) generates, improve on non-contextual
word embeddings by providing contextual seman-
tics to the real-valued representation of a text. Al-
though these models have been shown to achieve
state-of-the-art performance on most NLP tasks,
they are notably expensive to train. To help combat
this, as mentioned by May et al. (2019), model com-
pression techniques like data quantization (Gong
et al., 2014), model pruning (Han et al., 2016), and

∗Equal contribution

knowledge distillation (Sanh et al., 2019, Hinton
et al., 2015) have been developed. However, at
768 dimensions, the embeddings themselves can
be prohibitively large for some tasks and settings.

Smaller embeddings both enable more compact
data sizes in storage-constrained settings and over-
the-air data pipelines, and help lower the requisite
memory for using the embeddings for downstream
tasks. For non-contextual word embeddings, Ling
et al. (2016) note that loading matrices can take
multiple gigabytes of memory, a prohibitively large
amount for some phones and IoT devices. While
contextual embeddings are smaller, downstream
models will face similar headwind for large cor-
pora.

Although there has been more extensive study
in the efficacy of compressing non-contextual
word embeddings (Raunak et al., 2019, Mu and
Viswanath, 2018), to the best of our knowl-
edge few contextual embedding compression post-
processing approaches have been proposed (Li and
Eisner, 2019). In their work, Li and Eisner (2019)
propose the Variational Information Bottleneck, an
autoencoder to create smaller, task specific embed-
dings for different languages. While effective, the
computational expense of additional training loops
is not appropriate for some memory constrained
applications.

Our approach more closely mirrors the work of
Raunak et al. (2019) who propose a Principal Com-
ponent Analysis (PCA)-based post-processing algo-
rithm to lower the dimensionality of non-contextual
word embeddings. They find that they can repli-
cate, or, in some cases, increase the performance
of the original embeddings. One limitation to this
approach is the lack of support for nonlinear data
patterns. Nonlinear dimensionality reductions, like
the Isomap shown in Figure 1, can pick up on la-
tent textual features that evade linear algorithms
like PCA. To achieve this nonlinearity, we extend
this approach to contextual embeddings, adding in
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Figure 1: Visualization of two-dimensional PCA and Isomap compressions based on BERT embeddings for the
SMS-SPAM dataset (Almeida et al., 2013). Spam is represented by a blue dot and ham by an orange x. We see
that for this dataset in two dimensions, the Isomap compression appears more linearly separable than the PCA
compression, making classification easier for the former.

additional geodesic distance information via the
Isomap algorithm (Tenenbaum et al., 2000). To the
best of our knowledge, the application of graph-
based techniques to reduce the dimensionality of
contextual embeddings is novel.

The goal of this paper is not to compete with
state-of-the-art models, but, rather, (1) to show that
12-fold dimensionality reductions of contextual em-
beddings can, in some settings, conserve much of
the original performance, (2) to illustrate the effi-
cacy of geodesic similarity metrics in improving
the downstream performance of contextual embed-
ding compressions, and (3) propose the creation
of more efficient, geodesic-distance-based trans-
former architectures. In particular, our main result
is showing that a 64-dimensional concatenation
of compressed PCA and Isomap embeddings are
comparable to the original BERT embeddings and
outperform our PCA baseline. We attribute this suc-
cess to the locality data preserved by the k-Nearest
Neighbors (k-NN) graph generated by the Isomap
algorithm.

2 Related Work

As best we know, there is very little literature re-
garding the intersection of contextual embedding
compression and geodesic distances. Most of the
existing work in related spaces deals with non-
contextual word embeddings. Despite the rapid
growth in the popularity of transformers, these em-
beddings still retain popularity.

For non-contextual word embeddings, Mu and
Viswanath (2018) propose a post-processing algo-
rithm that projects embedded data away from the
dominant principal components, in order to greater
differentiate the data. Raunak et al. (2019) expand
on this algorithm by combining it with PCA re-
ductions. Both approaches are effective, but, are

limited to linear dimensionality reductions.
Some nonlinear approaches include Andrews

(2016) and Li and Eisner (2019) who both use
autoencoder-based compressions. Notably, the for-
mer only addresses non-contextual embeddings.

Meanwhile the usage of graphs in NLP is well
established, but their usage in the compression of
contextual embeddings is not well documented.
Wiedemann et al. (2019) use a k-NN classification
to achieve state-of-the-art word sense disambigua-
tion. Their work makes clear the effectiveness of
the k-NN approach in finding distinctions in hyper-
localized data.

3 Method

With the goal of reducing the contextual embedding
dimensionality, we first processed our data using
a pre-trained, uncased BERT Base model. Then,
we compressed the data to a lower dimension using
both PCA and Isomap as described in Section 3.2.
This method aims to capture as much information
as possible from the original BERT embeddings
while preserving graphical locality information and
nonlinearities in the final contextual embeddings.

3.1 Isomap and Geodesic Distances

For this paper, to blend geodesic distance informa-
tion and dimensionality reduction, we use Tenen-
baum’s Isomap (Tenenbaum et al., 2000). Isomap
relies on a weighted neighborhood graph that al-
lows for the inclusion of complex, nonlinear pat-
terns in the data, unlike a linear algorithm like
PCA. In specific, this graph is constructed so that
the edges between each vertex (datapoint) and its
k-nearest neighbors have weight corresponding to
the pairwise Euclidean distance on a Riemannian
manifold. Dijkstra’s shortest path between two
points then estimates their true geodesic distance.

145



Figure 2: PCA baseline performance on CoLA (Warstadt et al., 2019) and SST-2 (Socher et al., 2013). PCA
embedding performance by dimension is represented by the solid blue line. Regression at 768 dimensions is
represented by an orange dashed line. On these two datasets, even at much smaller dimensionality, we see that
PCA has comparable performance.

These geodesics are particularly useful for delin-
eating points that are close in Euclidean space but
not on a manifold i.e. similar BERT embeddings
with different meanings.

If we assume the data follows a manifold,
Isomap can exploit the Riemannian locality of
these complex contextual embeddings. As Figure 1
shows, in some cases this is a good assumption to
make since we are then able to dissect complex em-
beddings into near-linearly separable clusters. No-
tably, there are some limitations to this approach. If
the manifold is sparse, i.e. there are few data points
on certain regions of the manifold, or k is too small,
the shortest path estimation of the geodesic dis-
tance can be unrepresentative of the true distance.
On the contrary, if k is too large, Isomap overgen-
eralizes and loses its fine-grained estimation of the
Riemannian surface.

Nonetheless, we hypothesize that these global
geodesic distance approximations explain the em-
pirical advantage Isomap has in our setting over
other popular nonlinear dimensionality reduction
techniques. Many alternatives, like Locally Lin-
ear Embeddings (Roweis and Saul, 2000) focus,
instead, on preserving intra-neighborhood dis-
tance information that may not encompass inter-
neighborhood relationships as Isomap does.

3.2 Our Approach

We applied our post-processing method to the
BERT embeddings through three different dimen-
sionality reductions. We used (1) PCA, (2) Isomap,
and (3) a concatenation of embeddings from the
two before training a small regression model on the
embeddings. This approach aims to use linear and
nonlinear dimensionality reduction techniques to
best capture the data’s geodesic locality informa-
tion.

PCA. To compute linearly-reduced dimensional-
ity embeddings, we used PCA to reduce the 768-
dimensional BERT embeddings down to a num-
ber of components ranging from 16 to 256. While
there are other linear dimensionality reduction tech-
niques, PCA is a standard benchmark and empir-
ically performed the best. These serve as a linear
baseline for reduced dimension embeddings.

Isomap. To compute geodesic locality informa-
tion, we post-processed our BERT embeddings
with Isomap. The final Isomap embeddings ranged
from 16 to 96 dimensions, all computed with 96
neighbors and Euclidean distance.

Concatenated Embeddings. To include fea-
tures from both of these reductions, we combined
an Isomap embedding with a PCA embedding to
form concatenations of several dimensions. We ex-
perimented with ratios of PCA embedding size to
Isomap embedding size from 0 to 1

2 at 1
8 intervals.

We found that this ratio was the main determinant
of relative accuracy, so for analysis we fixed the
total dimension to 64.

4 Experiments and Results

We assess the results of these compression tech-
niques on two text classification datasets. We pro-
vide the code for our experiments1.

4.1 Data
We evaluate our method on two text classifica-
tion tasks: the Corpus of Linguistic Acceptability
(CoLA) (Warstadt et al., 2019), a 10657 sentence
binary classification dataset on grammatical cor-
rectness and the Stanford Sentiment Treebank v2
(SST-2) (Socher et al., 2013), a 70042 sentence

1https://github.com/kaimihata/geo-bert
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Embedding Isomap Dim PCA Dim CoLA SST-2
PCA N/A 64 0.339 0.842
Concatenation* 16 48 0.421 0.846
Concatenation 32 32 0.384 0.822
Concatenation 48 16 0.357 0.817
Isomap 64 N/A 0.332 0.814
BERT N/A N/A 0.455 0.847

Table 1: 64-dimensional embedding performance on CoLA (Warstadt et al., 2019) and SST-2 (Socher et al., 2013).
CoLA is measured by Matthews correlation and SST-2 by accuracy. While Isomap did not perform the best
outright, on these datasets we found that some inclusion of locality data proved meaningful. This shows the
trade-off between locality information and performance mentioned in Section 4.4. The best 12-fold compression
performance is asterisked.

binary (positive / negative) sentiment classification
dataset.

For CoLA, we used the predefined, 9594 data-
point train set and for SST-2, we used the first 8000
samples of their training set to construct ours due
to computational limitations. For testing and evalu-
ation, we used the corresponding datasets defined
by GLUE (Wang et al., 2018). In addition, for all
of our evaluations, we used the same pre-trained
BERT embeddings for consistency.

4.2 Training and Evaluation

All of these post-processed embeddings, as well
as the BERT embeddings, were trained on a down-
stream regression model consisting of one hidden
layer (64 dim) with ReLU activation, a learning
rate of 1× 10−4, and were optimized via ADAM
(Kingma and Ba, 2015). The BERT embeddings
are used as a baseline for comparison.

To evaluate our embeddings on CoLA and SST-2,
we used their GLUE-defined metrics of Matthews
correlation and validation accuracy, respectively.
For each embedding experiment, our procedure
consisted of running our post-processing method
on the BERT embeddings then training the down-
stream model. Each reported metric is the average
of three of these procedures.

4.3 Baseline Comparison

Agnostic of post-processing algorithm, we found
reduced-dimensionality embeddings were compet-
itive with the original embeddings. Although
smaller reduction factors, understandably, per-
formed better, we found that even when reduced
by a factor as large as 12, our PCA embeddings
experienced small losses in performance on both
datasets (Figure 2). To demonstrate the effect of the
inclusion of locality data, we picked an embedding

size of 64 dimensions (a reduction factor of 12) to
balance embedding size and performance for our
main experiment.

In comparison to our 768-dimensional baseline,
at 64 dimensions, the best reduction results were
within 7.5% and 0.1% for CoLA and SST-2, respec-
tively (Table 1). These results show that with or
without the presence of locality data, compressed
embeddings can perform comparably to the origi-
nal embeddings.

4.4 Locality Information Trade-off

As shown in Table 1, on neither dataset did the fully
PCA or Isomap embeddings perform the best. The
best performer was, instead, a combination of these
two approaches. This indicates that there must
exist a trade-off on the effectiveness of locality
data. While without locality data, the embedding
obviously misses out on geodesic relationships, too
much locality information may replace more useful
features that the PCA embeddings extract. Just as
the quality of the geodesic distance estimations rely
on how well the data fits the underlying manifold,
as discussed in Section 3, so, too, does its effective-
ness. To explain this phenomenon, we hypothesize
that the addition of small amounts of locality data
bolsters performance by describing the geodesic
relationships without drowning out important syn-
tactic and semantic information provided by PCA.

4.5 Task-Specific Locality

While the best reduction consisted of a concatena-
tion of 16-dimensional Isomap and 48-dimensional
PCA embeddings, whether the other concatena-
tions performed better than our PCA baseline was
dependent on the task. For CoLA, we found that all
three concatenated embeddings performed better
than PCA, whereas for SST-2, only the top perform-
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ing concatenated embedding beat out our baseline.
To describe this disparity we look towards the na-
ture of the datasets and tasks. Notably, CoLA re-
quires models to identify proper grammar, a syntac-
tic task, while SST-2 requires models to understand
the sentiment of sentences, a semantic task. Syn-
tactic data often has some intrinsic structure to it,
and perhaps our manifold approach encompasses
this information well. Based on this result, explor-
ing this distinction could be an exciting avenue for
further study.

5 Conclusions and Future Work

We present a novel approach for compressing
BERT embeddings into effective lower dimension
representations. Our method shows promise for
the inclusion of geodesic locality information in
transformers and future compression methods. We
hope our results lead to more work investigating the
geometric structure of transformer embeddings and
developing more computationally efficient NLP
training pipelines. To further this work, we plan to
investigate the efficacy of (1) other graph dimen-
sionality reduction techniques, (2) non-Euclidean
distance metrics, and (3) our approach on differ-
ent transformers. In addition, we would like to
investigate whether datasets for other tasks can be
effectively projected onto a manifold.
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Abstract

Readability or difficulty estimation of words
and documents has been investigated indepen-
dently in the literature, often assuming the ex-
istence of extensive annotated resources for
the other. Motivated by our analysis showing
that there is a recursive relationship between
word and document difficulty, we propose to
jointly estimate word and document difficulty
through a graph convolutional network (GCN)
in a semi-supervised fashion. Our experimen-
tal results reveal that the GCN-based method
can achieve higher accuracy than strong base-
lines, and stays robust even with a smaller
amount of labeled data.1

1 Introduction

Accurately estimating the readability or difficulty
of words and text has been an important funda-
mental task in NLP and education, with a wide
range of applications including reading resource
suggestion (Heilman et al., 2008), text simplifica-
tion (Yimam et al., 2018), and automated essay
scoring (Vajjala and Rama, 2018).

A number of linguistic resources have been cre-
ated either manually or semi-automatically for non-
native learners of languages such as English (Capel,
2010, 2012), French (François et al., 2014), and
Swedish (François et al., 2016; Alfter and Volodina,
2018), often referencing the Common European
Framework of Reference (Council of Europe, 2001,
CEFR). However, few linguistic resources exist
outside these major European languages and manu-
ally constructing such resources demands linguistic
expertise and efforts.

This led to the proliferation of NLP-based read-
ability or difficulty assessment methods to automati-
cally estimate the difficulty of words and texts (Vaj-
jala and Meurers, 2012; Wang and Andersen, 2016;
Alfter and Volodina, 2018; Vajjala and Rama, 2018;

1Our code is at https://github.com/akkikiki/
diff_joint_estimate
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Figure 1: Overview of the proposed GCN architecture
which recursively connects word wi and document dj
to exploit the recursive relationship of their difficulty.

Settles et al., 2020). However, bootstrapping lexi-
cal resources with difficulty information often as-
sumes the existence of textual datasets (e.g., digi-
tized coursebooks) annotated with difficulty. Sim-
ilarly, many text readability estimation methods
(Wang and Andersen, 2016; Xia et al., 2016) as-
sume the existence of abundant lexical or grammat-
ical resources annotated with difficulty information.
Individual research studies focus only on one side,
either words or texts, although in reality they are
closely intertwined—there is a recursive relation-
ship between word and text difficulty, where the
difficulty of a word is correlated to the minimum
difficulty of the document where that word appears,
and the difficulty of a document is correlated to
the maximum difficulty of a word in that document
(Figure 2).

We propose a method to jointly estimate word
and text readability in a semi-supervised fashion
from a smaller number of labeled data by leverag-
ing the recursive relationship between words and
documents. Specifically, we leverage recent devel-
opments in graph convolutional networks (Kipf and
Welling, 2017, GCNs) and predict the difficulty of
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words and documents simultaneously by modeling
those as nodes in a graph structure and recursively
inferring their embeddings using the convolutional
layers (Figure 1). Our model leverages not only the
supervision signals but also the recursive nature of
word-document relationship. The contributions of
this paper are two fold:

• We reframe the word and document readabil-
ity estimation task as a semi-supervised, joint
estimation problem motivated by their recur-
sive relationship of difficulty.

• We show that GCNs are effective for solving
this by exploiting unlabeled data effectively,
even when less labeled data is available.

2 Task Definition

Given a set of words W and documents D, the
goal of the joint readability estimation task is
to find a function f that maps both words and
documents to their difficulty label f : W ∪
D → Y . Documents here can be text of an
arbitrary length, although we use paragraphs as
the basic unit of prediction. This task can be
solved as a classification problem or a regres-
sion problem where Y ∈ R. We use six CEFR-
labels representing six levels of difficulty, such as
Y ∈ {A1 (lowest), A2, B1, B2, C1, C2 (highest)}
for classification, and a real-valued readability es-
timate β ∈ R inspired by the item response the-
ory (Lord, 1980, IRT) for regression2. The β for
each six CEFR level are A1= −1.38, A2= −0.67,
B1= −0.21, B2= 0.21, C1= 0.67, and C2= 1.38.

Words and documents consist of mutually ex-
clusive unlabeled subsetsWU and DU and labeled
subsets WL and DL. The function f is inferred
using the supervision signal fromWL and DL, and
potentially other signals from WU and DU (e.g.,
relationship between words and documents).

3 Exploiting Recursive Relationship by
Graph Convolutional Networks

We first show how the readability of words and doc-
uments are recursively related to each other. We
then introduce a method based on graph convolu-
tional networks (GCN) to capture such relationship.
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Figure 2: Recursive relationship of word/document dif-
ficulty. Word difficulty is correlated to the minimum dif-
ficulty of the document where that word appears, and
document difficulty is correlated to the maximum diffi-
culty of a word in that document.

3.1 Recursive Relationship of Word and
Document Difficulty

The motivation of using a graph-based method for
difficulty classification is the recursive relationship
of word and document difficulty. Figure 2 shows
such recursive relationship using the difficulty-
labeled datasets explained in Section 5. One insight
here is the strong correlation between the difficulty
of a document and the maximum difficulty of a word
in that document. This is intuitive and shares mo-
tivation with a method which exploits hierarchical
structure of a document (Yang et al., 2016). How-
ever, the key insight here is the strong correlation
between the difficulty of a word and the minimum
difficulty of a document where that word appears,
indicating that the readability of words informs that
of documents, and vise versa.

3.2 Graph Convolutional Networks on
Word-Document Graph

To capture the recursive, potentially nonlinear re-
lationship between word and document readabil-
ity while leveraging supervision signals and fea-
tures, we propose to use graph convolutional net-
works (Kipf and Welling, 2017, GCNs) specifically
built for text classification (Yao et al., 2019), which
treats words and documents as nodes. Intuitively,
the hidden layers in GCN, which recursively con-
nects word and document nodes, encourage exploit-
ing the recursive word-document relationship.

Given a heterogeneous word-document graph
G = (V,E) and its adjacency matrix A ∈
R|V |×|V |, the hidden states for each layer Hn ∈
R|V |×hn in a GCN with N hidden layers is com-

2We assumed the difficulty estimate β is normally dis-
tributed and used the mid-point of six equal portions of
N(0, 1) when mapping CEFR levels to β.

151



puted using the previous layer Hn−1 as:

Hn = σ(ÃHn−1Wn) (1)

where σ is the ReLU function3, Ã = D−
1
2AD−

1
2

i.e., a symmetrically normalized matrix of A with
its degree matrix D, and Wn ∈ Rhn−1×hn is the
weight matrix for the nth layer. The input to the
first layer H1 is H0 = X where X ∈ R|V |×h0
is the feature matrix with h0 dimensions for each
node in V . We use three different edge weights
following Yao et al. (2019): (1) Aij = tfidfij if i
is a document and j is a word, (2) the normalized
point-wise mutual information (PMI) i.e., Aij =
PMI(i, j) if both i and j are words, and (3) self-
loops, i.e., Aii = 1 for all i.

We now describe the components which differs
from Yao et al. (2019). We use separate final linear
layers for words and documents4:

Zw = HNWw + bw (2)

Zd = HNWd + bd (3)

where W and b are the weight and bias of the layer,
and used a linear combination of word and docu-
ment losses weighted by α (Figure 1)

L = αL(Zw) + (1− α)L(Zd) (4)

For regression, we used Z (Zw for words and
Zd for documents) as the prediction of node v and
used the mean squared error (MSE):

L(Z) = 1

|VL|
∑

v∈VL
(Zv − Yv)2 (5)

where VL =WL ∪ DL is the set of labeled nodes.
For classification, we use a softmax layer followed
by a cross-entropy (CE) loss:

L(Z) = −
∑

v∈VL
log

exp(Zv,Yv)∑
i exp(Zv,i)

. (6)

Since GCN is transductive, node set V also in-
cludes the unlabeled nodes from the evaluation sets
and have predicted difficulty labels assigned when
training is finished.

3A simplified version of GCN with linear layers (Wu et al.,
2019) in preliminary experiments shows that hidden layers
with ReLU performed better.

4A model variant with a common linear layer (i.e., original
GCN) for both words and documents did not perform as well.

Dataset Train Dev Test

Words (CEFR-J + C1/C2) 2,043 447 389
Documents (Cambridge + A1) 482 103 98

Table 1: Dataset size for words and documents

4 Experiments

Datasets We use publicly available English
CEFR-annotated resources for second language
learners, such as CEFR-J (Negishi et al., 2013)
Vocabulary Profile as words and Cambridge En-
glish Readability Dataset (Xia et al., 2016) as doc-
uments (Table 1). Since these two datasets lack
C1/C2-level words and A1 documents, we hired a
linguistic PhD to write these missing portions5.

Baselines We compare our method against meth-
ods used in previous work (Feng et al., 2010;
Vajjala and Meurers, 2012; Martinc et al., 2019;
Deutsch et al., 2020): (1) logistic regression for
classification (LR cls), (2) linear regression for re-
gression (LR regr), (3) Gradient Boosted Decision
Tree (GBDT), and (4) Hierarchical Attention Net-
work (Yang et al., 2016, HAN), which is reported
as one of the state-of-the-art methods in readability
assessment for documents (Martinc et al., 2019;
Deutsch et al., 2020).

Features For all methods except for HAN, we
use both surface or “traditional” (Vajjala and Meur-
ers, 2012) and embedding features on words and
documents which are shown to be effective for read-
ability estimation (Culligan, 2015; Settles et al.,
2020; Deutsch et al., 2020). For words, we use
their length (in characters), the log frequency in
Wikipedia (Ginter et al., 2017), and GloVe (Pen-
nington et al., 2014). For documents, we use the
number of NLTK (Loper and Bird, 2002)-tokenized
words in a document, and the output of embeddings
from BERT-base model (Devlin et al., 2019) which
are averaged over all tokens in a given sentence.

Hyperparameters We conduct random hyperpa-
rameter search with 200 samples, separately se-
lecting two different sets of hyperparameters, one
optimized for word difficulty and the other for doc-
ument. We set the number of hidden layers N = 2
with hn = 512 for documents and N = 1 with
hn = 64 for words. See Appendix A for the details
on other hyperparameters.

5The dataset is available at https://github.com/
openlanguageprofiles/olp-en-cefrj.

152



Word Document
Method Acc Corr Acc Corr

HAN - - 0.367 0.498
LR (regr) 0.409 0.534 0.480 0.657
LR (cls+m) 0.440 0.514 0.765 0.723
LR (cls+w) 0.440 0.540 0.765 0.880
GBDT 0.432 0.376 0.765 0.833
GCN (regr) 0.434 0.579 0.643 0.849
GCN (cls+m) 0.476 0.536 0.796 0.878
GCN (cls+w) 0.476 0.592 0.796 0.891

Table 2: Difficulty estimation results in accuracy (Acc)
and correlation (Corr) on classification outputs con-
verted to continuous values by taking the max (cls+m)
or weighted sum (cls+w) and regression (regr) variants
for the logistic regression (LR) and GCN.

Evaluation We use accuracy and Spearman’s
rank correlation as the metrics. When calculat-
ing the correlation for a classification model, we
convert the discrete outputs into continuous values
in two ways: (1) convert the CEFR label with the
maximum probability into corresponding β in Sec-
tion 2, (cls+m), or (2) take a sum of all β in six
labels weighted by their probabilities (cls+w).

4.1 Results

Table 2 shows the test accuracy and correlation
results. GCNs show increase in both document ac-
curacy and word accuracy compared to the baseline.
We infer that this is because GCN is good at captur-
ing the relationship between words and documents.
For example, the labeled training documents in-
clude an A1 document and that contains the word
“bicycle,” and the difficulty label of the document
is explicitly propagated to the “bicycle” word node,
whereas the logistic regression baseline mistakenly
predicts as A2-level, since it relies solely on the
input features to capture its similarities.

4.2 Ablation Study on Features

Table 3 shows the ablation study on the features
explained in Section 4. By comparing Table 2
and Table 3, which are experimented on the same
datasets, GCN without using any traditional or em-
bedding features (“None”) shows comparative re-
sults to some baselines, especially on word-level
accuracy. Therefore, the structure of the word-
document graph provides effective and complemen-
tary signal for readability estimation.

Overall, the BERT embedding is a powerful fea-

Word Document
Features Acc Corr Acc Corr

All 0.476 0.592 0.796 0.891
−word freq. 0.476 0.591 0.796 0.899
−doc length 0.481 0.601 0.796 0.890
−GloVe 0.463 0.545 0.714 0.878
−BERT 0.450 0.547 0.684 0.830
None 0.440 0.436 0.520 0.669

Table 3: Ablation study on the features used. “None”
is when applying GCN without any features (X = I
i.e., one-hot encoding per node), which solely relies on
the word-document structure of the graph.

ture for predicting document readability on Cam-
bridge Readabilty Dataset. Ablating the BERT em-
beddings (Table 3) significantly decreases the doc-
ument accuracy (−0.112) which is consistent with
the previous work (Martinc et al., 2019; Deutsch
et al., 2020) that BERT being one of the best-
performing method for predicting document read-
ability on one of the datasets they used, and HAN
performing relatively low due to not using the
BERT embeddings.

4.3 Training on Less Labeled Data

To analyze whether GCN is robust when training
dataset is small, we compare the baseline and GCN
by varying the amount of labeled training data. In
Figure 3, we observe consistent improvement in
GCN over the baseline especially in word accu-
racy. This outcome suggests that the performance
of GCN stays robust even with smaller training
data by exploiting the signals gained from the re-
cursive word-document relationship and their struc-
ture. Another trend observed in Figure 3 is the
larger gap in word accuracy compared to document
accuracy when the training data is small likely due
to GCN explicitly using context given by word-
document edges.

5 Conclusion

In this paper, we proposed a GCN-based method
to jointly estimate the readability on both words
and documents. We experimentally showed that
GCN achieves higher accuracy by capturing the
recursive difficulty relationship between words and
documents, even when using a smaller amount of
labeled data. GCNs are a versatile framework that
allows inclusion of diverse types of nodes, such as
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subwords, paragraphs, and even grammatical con-
cepts. We leave this investigation as future work.
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A Hyperparameter Details

We conduct random hyperparameter search
with 200 samples in the following ranges:
α ∈ {0.1, 0.2, ..., 0.9}, the learning rate from
{1, 2, 5, 10, 20, 50, 100}× 10−4, dropout probabil-
ity from {0.1, 0.2, ..., 0.5}, the number of epochs
from {250, 500, 1000, 1500, 2000}, the number of
hidden units hn ∈ {32, 64, 128, 256, 512, 1024},
the number of hidden layers from {1, 2, 3}, and the
PMI window width from {disabled, 5, 10, 15, 20}.

We now describe the selected best combination
of hyperparameters for each setting. For GCN in
the classification setting, the selected hyperparame-
ters for document difficulty estimation are:

• α: 0.3
• Learning rate: 5 · 10−4
• Dropout probability: 0.5
• The number of epochs: 500
• The number of hidden units hn: 512
• The number of hidden layers N : 2
• PMI window width: 5

and for word difficulty estimation, the selected hy-
perparameters are:

• α: 0.2
• Learning rate: 5 · 10−3
• Dropout probability: 0.2
• The number of epochs: 250
• The number of hidden units hn: 64
• The number of hidden layers N : 1
• PMI window width: disabled

For GCN in the regression setting, the selected
hyperparameters for document difficulty estimation
are:

• α: 0.4
• Learning rate: 2 · 10−4
• Dropout probability: 0.3
• The number of epochs: 1500
• The number of hidden units hn: 128
• The number of hidden layers N : 2
• PMI window width: 5

and for word difficulty estimation, the selected hy-
perparameters are:

• α: 0.2
• Learning rate: 1 · 10−3
• Dropout probability: 0.1
• The number of epochs: 500
• The number of hidden units hn: 512
• The number of hidden layers N : 2
• PMI window width: disabled
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Abstract

The Shared Task on Multi-Hop Inference for
Explanation Regeneration asks participants to
compose large multi-hop explanations to ques-
tions by assembling large chains of facts from
a supporting knowledge base. While previ-
ous editions of this shared task aimed to eval-
uate explanatory completeness – finding a set
of facts that form a complete inference chain,
without gaps, to arrive from question to correct
answer, this 2021 instantiation concentrates on
the subtask of determining relevance in large
multi-hop explanations. To this end, this edi-
tion of the shared task makes use of a large
set of approximately 250k manual explanatory
relevancy ratings that augment the 2020 shared
task data. In this summary paper, we describe
the details of the explanation regeneration task,
the evaluation data, and the participating sys-
tems. Additionally, we perform a detailed anal-
ysis of participating systems, evaluating var-
ious aspects involved in the multi-hop infer-
ence process. The best performing system
achieved an NDCG of 0.82 on this challeng-
ing task, substantially increasing performance
over baseline methods by 32%, while also leav-
ing significant room for future improvement.

1 Introduction

Multi-hop inference is the task of aggregating more
than one fact to perform an inference. In the context
of natural language processing, multi-hop inference
is typically evaluated using auxiliary tasks such as
question answering, where multiple sentences from
external corpora need to be retrieved and composed

Figure 1: The motivating example provided to par-
ticipants. Given a question and correct answer (top),
the explanation regeneration task requires participating
models to find sets of facts that, taken together, pro-
vide a detailed chain-of-reasoning for the answer (bot-
tom). This 2021 instantiation of the shared task focuses
on the subtask of collecting the most relevant facts for
building explanations.

to form reasoning chains that support the correct an-
swer (see Figure 1). As such, multi-hop inference
represents a crucial step towards explainability in
complex question answering, as the set of support-
ing facts can be interpreted as an explanation for
the underlying inference process (Thayaparan et al.,
2020).

Constructing long inference chains can be ex-
tremely challenging for existing models, which
generally exhibit a large drop in performance when
composing explanations and inference chains re-
quiring more than 2 inference steps (Fried et al.,
2015; Jansen et al., 2017, 2018; Khashabi et al.,
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2019; Yadav et al., 2020). To this end, this Shared
Task on Multi-hop Inference for Explanation Re-
generation (Jansen and Ustalov, 2019, 2020) has fo-
cused on expanding the capacity of models to com-
pose long inference chains, where participants are
asked to develop systems capable of reconstructing
detailed explanations for science exam questions
drawn from the WorldTree explanation corpus (Xie
et al., 2020; Jansen et al., 2018), which range in
compositional complexity from 1 to 16 facts (with
the average explanation including 6 facts).

Large explanations are typically evaluated on
two dimensions: relevance and completeness. Rele-
vance refers to whether each fact in an explanation
is relevant, topical, and required to complete the
chain of inference that moves from question to cor-
rect answer. Conversely, completeness evaluates
whether the entire set of facts in the explanation,
together, composes a complete chain of inference
from question to answer, without significant gaps.
In practice, both of these are challenging to eval-
uate automatically (Buckley and Voorhees, 2004;
Voorhees, 2002), given that multi-hop datasets typ-
ically include a single example of a complete ex-
planation, in large part due to the time and expense
associated with generating such annotation. Un-
derscoring this difficulty, post-competition manual
analyses on participating systems in the previous
two iterations of this shared task showed that mod-
els may be performing up to 20% better at retriev-
ing correct facts to build their explanation from,
highlighting this significant methodological chal-
lenge.

This 2021 instantiation of the Shared Task on
Explanation Regeneration focuses on the theme
of determining relevance in large multi-hop ex-
planations. To this end, participants were given
access to a large pre-release dataset of approx-
imately 250k explanatory relevancy ratings that
augment the 2020 shared task data (Jansen and
Ustalov, 2020), and were tasked with ranking the
facts most critical to assembling large explanations
for a given question highest. Similarly to the pre-
vious instances of our competition, the shared task
has been organized on the CodaLab platform.1 We
released train and development datasets along with
the baseline solution in advance to allow one to get
to know the task specifics.2 We ran the practice

1https://competitions.codalab.org/
competitions/23615

2https://github.com/cognitiveailab/
tg2021task

phase from February 15 till March 9, 2021. Then
we released the test dataset without answers and
ran the official evaluation phase from March 10 till
March 24, 2021. After that we established post-
competition phase to enable long-term evaluation
of the methods beyond our shared task. Partici-
pating systems substantially increased task perfor-
mance compared to a supplied baseline system by
32%, while achieving moderate overall absolute
task performance – highlighting both the success
of this shared task, as well as the continued chal-
lenge of determining relevancy in large multi-hop
inference problems.

2 Related Work

Semantic Drift. Multi-hop question answering
systems suffer from the tendency of composing
out-of-context inference chains as the number of
required hops (aggregated facts) increases. This
phenomenon, known as semantic drift, has been
observed in a number of works (Fried et al., 2015;
Jansen, 2017), which have empirically demon-
strated that multi-hop inference models exhibit a
substantial drop in performance when aggregating
more than 2 facts or paragraphs. Semantic drift has
been observed across a variety of representations
and traversal methods, including word and depen-
dency level (Pan et al., 2017; Fried et al., 2015),
sentence level (Jansen et al., 2017), and paragraph
level (Clark and Gardner, 2018). Khashabi et al.
(2019) have demonstrated that ongoing efforts on
“very long” multi-hop reasoning are unlikely to suc-
ceed without the adoption of a richer underlying
representation that allows for reasoning with fewer
hops.

Many-hop multi-hop training data. There is a
recent explosion of explanation-centred datasets for
multi-hop question answering (Jhamtani and Clark,
2020; Xie et al., 2020; Jansen et al., 2018; Khot
et al., 2020; Yang et al., 2018; Thayaparan et al.,
2020; Wiegreffe and Marasović, 2021). However,
most of these datasets require the aggregation of
only two sentences or paragraphs, making it hard
to evaluate the robustness of the models in terms of
semantic drift. On the other hand, the WorldTree
corpus (Xie et al., 2020; Jansen et al., 2018) used
in this shared task is explicitly designed to test
multi-hop inference models on the reconstruction
of long inference chains requiring the aggregation
of an average of 6 facts, and as many as 16 facts.
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Question: Which of the following best explains why the Sun appears to move across the sky every day?
Answer: Earth rotates on its axis.

Explanatory Relevance Ratings

# Fact (Table Row) Relevance
1 The Earth rotating on its axis causes the Sun to appear to move across the sky during the day 6
2 If a human is on a rotating planet then other celestial bodies will appear to move from that human’s perspective due to

the rotation of that planet
6

3 The Earth rotates on its tilted axis 6
4 Diurnal motion is when objects in the sky appear to move due to Earth’s rotation on its axis 6
5 Apparent motion is when an object appears to move relative to another object’s perspective / another object ’s position 5
6 Earth rotating on its axis occurs once per day 4
7 Rotation is a kind of motion 4
8 A rotation is a kind of movement 4
9 The Sun sets in the west 2
10 The Sun is a kind of star 2
11 Earth is a kind of planet 2
12 Earth’s angle of tilt causes the length of day and night to vary 0
13 The Earth being tilted on its rotating axis causes seasons 0
14 Revolving is a kind of motion 0
15 The Earth revolving around the Sun causes stars to appear in different areas in the sky at different times of year 0

Table 1: An example of the relevance ratings used in the 2021 shared task. (top) The question and correct answer.
(bottom) Facts from the corpus, and their associated relevance rating, sorted from most-relevant to least-relevant.
While the dataset provides manual relevancy ratings for the top 30 rows, only 15 are shown here for space.

Explanation regeneration approaches on
WorldTree. A number of approaches have been
proposed for the explanation regeneration task on
WorldTree, including those from previous itera-
tions of this shared task. These approaches adopt a
set of diverse techniques ranging from graph-based
learning (Li et al., 2020), to Transformer-based
language models (Cartuyvels et al., 2020; Das
et al., 2019; Pawate et al., 2020; Chia et al.,
2019), Integer Linear Programming (Gupta and
Srinivasaraghavan, 2020), and sparse retrieval
models (Valentino et al., 2021; Chia et al., 2019).
The current state-of-the-art on the explanation
regeneration task is represented by a model that
employs a combination of language models and
Graph Neural Networks (GNN) (Li et al., 2020),
with the bulk of performance contributed from
the language model. Strong performance is also
achieved by transformer models adapted to rank
inference chains (Das et al., 2019) or operating
in an iterative and recursive fashion (Cartuyvels
et al., 2020). In contrast with neural-based models,
recent works (Valentino et al., 2021) have shown
that the explanatory patterns emerging in the
WorldTree corpus can be leveraged to improve
sparse retrieval models and provide a viable way
to alleviate semantic drift.

3 Task Description

Following the previous editions of the shared task,
we frame explanation generation as a ranking prob-
lem. Specifically, for a given science question, a
model is supplied both the question and correct
answer text, and must then selectively rank all the
atomic scientific and world knowledge facts in the
knowledge base such that those that were labelled
as most relevant to building an explanation by a hu-
man annotator are ranked the highest. Additional
details on the ranking problem are described in
the 2019 shared task summary paper (Jansen and
Ustalov, 2019).

4 Training and Evaluation Dataset

Questions and Explanations: The 2021 shared
task adopts the same set of questions and knowl-
edge base included in the 2020 shared task (Jansen
and Ustalov, 2020), with additional relevance an-
notation described below. The questions and expla-
nations are drawn from the WorldTree V2 expla-
nation corpus (Xie et al., 2020), a set of detailed
multi-fact explanations to standardized elementary
and middle-school science exam questions drawn
from the Aristo Reasoning Challenge (ARC) cor-
pus(Clark et al., 2018). WorldTree V2 contains
2207 train, 496 development, and 1665 held-out
test questions and explanations.
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Team Performance (NDCG)

DeepBlueAI 0.820
RedDragonAI 0.771
Google-BERT 0.700
Huawei noah 0.683

Baseline 0.501

Table 2: Overall task performance systems participat-
ing in the 2021 Shared Task on Multi-Hop Inference
for Explanation Regeneration. Performance is mea-
sured using Normalized Discounted Cumulative Gain
(NDCG).

Relevancy Ratings: The WorldTree V2 dataset
used in previous iterations of the shared task in-
cludes a single complete explanation per question,
supplied as a list of binary classifications that de-
scribe which facts are included in the gold expla-
nation for a given question. This 2021 edition of
the shared task augments these original WorldTree
explanations with a pre-release dataset3 of approxi-
mately 250,000 manual relevancy ratings. Specif-
ically, for each question in the corpus, a set of 30
facts determined to be the most likely facts relevant
to building an explanation were manually assigned
relevancy ratings by annotators. Ratings are on a
7-point scale (0-6), where facts rated as a 6 are the
most critical to building an explanation, while facts
rated as 0 are unrelated to the question. An example
of these relevance ratings is shown in Table 1.

Evaluation Metrics: Historically, performance on
the explanation regeneration task was evaluated
using Mean Average Precision (MAP) , using the
binary ratings (gold or not gold) associated with
each fact for a given explanation. To leverage the
new graded annotation schema, here we switch
to evaluate system performance using Normalized
Discounted Cumulative Gain (NDCG) (Järvelin
and Kekäläinen, 2002; Wang et al., 2013).

5 System Descriptions and Performance

The 2021 shared task received 4 submissions, with
3 teams choosing to submit system description pa-
pers. The performance of the submitted systems
are shown in Table 2. Overall, we observe that all
participating teams substantially improved upon
the NDCG score achieved by the baseline model,
with increases of up to 30%. In this section, we

3We thank the authors of this dataset for allowing it to
be used anonymously for this shared task, while it is under
consideration for publication.

summarize the key features of the approaches pro-
posed by the teams.

Baseline (tf.idf). We adopt a term frequency-
inverse document frequency (tf.idf) baseline (see,
e.g. Manning et al., 2008, Ch. 6). Specifically,
given a question and its correct answer, the baseline
calculates the cosine similarity between a query
vector (representing the question and correct an-
swer) and document vectors (representing a given
fact) for each fact in the knowledge base. The
model then adopts the tf.idf weighting scheme to
rank each fact in the knowledge base for a given
question-answer pair. This baseline achieves a
NDCG score of 0.501 on the test set.

DeepBlueAI. The model presented by Pan et al.
(2021) represents the top-performing system in this
edition of the shared task with a NDCG score of
0.820 – representing a substantial 32% improve-
ment when compared to the tf.idf baseline. The
model employs a two step retrieval strategy. In
the first step, a pre-trained language model is fine-
tuned to retrieve the top-K (K > 100) relevant
facts for each question and answer pair. Subse-
quently, the same architecture is adopted to build
a re-ranking model to refine the list of the top-
K candidate facts. The authors propose the use
of a triplet loss for the fine-tuning of the model.
Specifically, the triplet loss minimizes the distance
between an anchor and a positive example, while
maximizing the distance between the same anchor
and a negative example. The team treats question
and correct answer as the anchor, while the facts
annotated with high ratings are adopted as positive
examples. Different experiments are conducted
with three negative sampling strategies for retrieval
and re-ranking. The best results are obtained when
sampling negative examples from the same tables
of highly relevant facts. The authors find that the
best performance is obtained when averaging the re-
sults from RoBERTa (Liu et al., 2019) and ERNIE
2.0 (Sun et al., 2020) with different random seeds.

RedDragonAI. The system developed by
Kalyan et al. (2021) combines iterative information
retrieval with an ensemble of language models,
achieving a NDCG score of 0.771. The first step
of the proposed approach is to retrieve a limited
number of facts to be subsequently re-ranked by
language models. The first step is a modification
of the approach proposed by Chia et al. (2020),
where the model iteratively selects the closest n
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Table type DeepBlueAI RedDragonAI Google-BERT Baseline (tf.idf)

Retrieval 0.775 0.736 0.671 0.477
Inference-supporting 0.716 0.712 0.683 0.433
Complex inference 0.738 0.688 0.664 0.406

Table 3: Performance (NDCG) of the systems when considering different types of knowledge.

Relevance (>) DeepBlueAI RedDragonAI Google-BERT Baseline (tf.idf)

0 0.820 0.771 0.700 0.501
2 0.818 0.764 0.686 0.489
4 0.831 0.692 0.601 0.416

Table 4: Performance (NDCG) when restricted to examining facts with a given minimum relevance rating.

facts to the question using BM25 vectors and then
update the query vector via a max operation. The
iterative retrieval step is performed until a list of
K = 200 facts is selected from the knowledge
base. Subsequently, the top K explanation facts
are re-ranked using language models. The best
model consists of an ensemble of BERT (Devlin
et al., 2019) and SciBERT (Beltagy et al., 2019).
These models are fine-tuned to predict the target
explanatory relevance ratings using the follow-
ing input: Question + Answer [SEP]
Explanation. Specifically, the authors frame
the problem as a regression via mean squared
error loss. The ensemble is achieved by linearly
combining the scores of the models. The authors
reported two negative results obtained using
a two-stage approach and different negative
sampling techniques. In the two-stage approach,
the facts were firstly categorized using binary
scores to discriminate between relevant and
irrelevant sentences, and then re-ranked predicting
the target explanatory relevance rating. Regarding
the negative sampling strategy, the authors noticed
that highest percentage of errors occurring at
inference time was due to irrelevant facts that
are lexically close to highly relevant explanation
sentences. They attempted to alleviate this problem
by randomly sampling facts from the knowledge
base and retrieving close negative examples during
training. Neither of these two methods resulted in
significant improvements.

Google-BERT. Xiang et al. (2021) propose a
framework composed of three main steps. In the
first step, the model adopts a simple tf.idf model
with cosine similarity to retrieve the top-K relevant
explanation sentences (K = 50) for each question

and correct answer pair. In the second step, the
authors employ an autoregressive model which se-
lects the most relevant facts in a iterative manner.
Specifically, the authors propose the adoption of a
BERT-based model (Devlin et al., 2019) that selects
the facts at iteration n given the facts retrieved in
the previous step. The model uses up to 4 iterations.
Finally, the authors employ a re-ranking module to
re-score the retrieved candidate explanations com-
puting the relevance between each fact and the
question-answer pairs. The re-ranking model is
implemented using a BERT model for binary clas-
sification. The ablation study shows that the first
two steps allow achieving a performance of 0.679
NDCG, that is improved up to 0.700 NDCG using
the re-ranking model. Moreover, the experiments
show that the best performance is achieved when
the re-ranking model is adopted to re-score the top
K = 30 facts.

6 Detailed Analysis

In order to better understand the behavior and con-
tribution of the proposed systems, we perform a
detailed analysis by grouping the explanatory facts
in the supporting knowledge base in different cate-
gories. Specifically, we adopt categories that cover
various aspects of the multi-hop inference process,
ranging from different kinds of knowledge to dif-
ferent degrees of explanatory relevance and lexical
overlap, to analyse the performance of each model
beyond the overall explanation regeneration score.

6.1 Performance by Table Knowledge Types

Similarly to the previous editions of the shared
task (Jansen and Ustalov, 2019, 2020), we present
the results achieved by the systems considering
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Precison@k DeepBlueAI RedDragonAI Google-BERT Baseline (tf.idf)

k = 1 0.941 0.918 0.845 0.715
k = 3 0.878 0.849 0.791 0.582
k = 5 0.817 0.784 0.743 0.501
k = 10 0.686 0.661 0.647 0.381
k = 20 0.512 0.507 0.523 0.272
k = 50 0.296 0.303 0.315 0.161

Table 5: Precision@k for each model across varying values of k.

Overlaps (≤ T ) DeepBlueAI RedDragonAI Google-BERT Baseline (tf.idf)

100.0% 0.820 0.771 0.700 0.501
90.0% 0.820 0.771 0.700 0.501
80.0% 0.820 0.771 0.699 0.501
70.0% 0.818 0.769 0.698 0.497
60.0% 0.816 0.766 0.695 0.493
50.0% 0.813 0.763 0.691 0.487
40.0% 0.804 0.754 0.679 0.471
30.0% 0.791 0.738 0.661 0.443
20.0% 0.751 0.704 0.628 0.382
10.0% 0.653 0.603 0.559 0.261
0.0% 0.467 0.358 0.425 0.134

Table 6: Percentage of lexical overlap and respective NDCG scores for each model. In this experiment, we measure
the performance of the systems considering only those facts that have a percentage of overlap≤ a given threshold T .
The percentage of overlap is computed by dividing the number of shared terms between question-answer pair and
a fact by the total number of unique terms. To evaluate the systems in the most challenging setting, we gradually
decrease the value of T down to 0.

different knowledge types in the knowledge base.
The explanatory facts in the WorldTree corpus are
stored in semi-structured tables that are broadly
divided into three main categories:

• Retrieval: Facts that generally encode knowl-
edge about taxonomic relations or properties.

• Inference-Supporting: Facts that include
knowledge about actions, affordances, uses
of materials or devices, sources of things, re-
quirements, or affect relationships.

• Complex Inference: Facts that encode knowl-
edge of causality, processes, changes, coupled
relationships, and if/then relationships.

We break down the NDCG performance of each
model across these knowledge types and report the
results in Table 3.

In line with previous editions of the shared task,
we observe that the performance of the models
tends to be higher for the retrieval type, while de-

creasing for inference-supporting and complex in-
ference facts. This can be explained by the fact
that retrieval knowledge is generally specific to
the concepts in the questions and therefore eas-
ier to rank, while inference-supporting and com-
plex facts typically include more abstract scientific
knowledge requiring multi-hop inference. These
results are consistent across all the models except
from Google-BERT, which exhibits the best perfor-
mance on the inference-supporting type and more
stable results in general. We attribute this outcome
to the autoregressive component adopted by the
system, which may facilitate the ranking of more
challenging explanatory facts. With respect to the
general performance of the models, we observe
that DeepBlueAI consistently outperforms other
approaches across all knowledge categories.

6.2 Performance by Relevance Ratings
As described in Section 4, the dataset for the 2021
shared task includes relevance ratings that range
from 0 (not relevant) to 6 (highly relevant). To
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better understand the quality of the facts retrieved
by each model, we calculated the NDCG score of
each model broken down by relevance ratings. The
results of this analysis are reported in Table 4.

Similar to the results obtained on different
knowledge types, we observe that DeepBlueAI con-
sistently outperforms other approaches across all
relevance rating bins. In contrast to other models,
DeepBlueAI exhibits increasing performance for
higher relevance ratings, confirming that the model
is particularly suited for retrieving highly relevant
facts (i.e., facts with relevance ratings > 4). We
conjecture that these results are due to the partic-
ular training configuration adopted by the system,
which employs a triplet loss to encourage the re-
trieval of highly relevant facts.

6.3 Precision@k
We compute the Precision@k to complement the
results obtained via the NDCG metric. In contrast
to NDCG which weights facts based on relevancy
ratings, here for this evaluation we consider all the
facts with a rating greater than 0 as gold. The re-
sults of the analysis are reported in Table 5. The
results show that DeepBlueAI substantially out-
performs other models for values of k ≤ 10. As
k becomes large, other models overtake it’s per-
formance, though the difference between models
becomes small.

6.4 Performance by Lexical Overlap
One of the crucial issues regarding the evaluation
of multi-hop inference models is the possibility to
achieve strong overall performance without using
real compositional methods (Min et al., 2019; Chen
and Durrett, 2019; Trivedi et al., 2020). Therefore,
in order to evaluate multi-hop inference more ex-
plicitly, we break down the performance of each
model with respect to the difficulty of accessing
specific facts in an explanation via direct lexical
overlap. This comes from the assumption that facts
sharing many terms with question or answer are
relatively easier to find and rank highly.

Table 6 reports the performance of the systems
by considering a difference percentage L of lexical
overlaps between question-answer pairs and facts
computed as follows:

L =
|t(Q||A) ∩ t(Fi)|
|t(Q||A) ∪ t(Fi)|

× 100

In the equation above, t(Q||A) represents the set
of unique terms (without stop-words) in question

and correct answer, while t(Fi) is the set of unique
terms in a given fact Fi. The percentage of overlaps
is then derived by dividing the number of shared
terms between a question-answer pair and a fact
by the number of their unique terms. Therefore, a
value of L equal to 50%, for example, means that
50% of the unique terms in a question-answer pair
and a fact are shared.

Given a question and a value L computed for
each fact annotated with relevance ratings, we mea-
sure the performance of the systems considering
only those facts that have a percentage of overlaps
≤ a given threshold T . To evaluate the systems in
the most challenging setting, we gradually decrease
the value of T down to 0.

Overall, we observe that DeepBlueAI consis-
tently outperforms all the other models across all
the considered categories. Interestingly, we ob-
serve that Google-BERT performs better than Red-
DragonAI when considering facts that have zero
lexical overlaps with question or answer, confirm-
ing the importance of performing specific analysis
for the evaluation of multi-hop inference.

Despite the substantial improvement on the base-
line obtained by the competing models, we still
observe a significant drop in performance with low
degrees of lexical overlaps. This drop indicates
that the proposed models still struggle to retrieve
abstract explanatory facts requiring multi-hop infer-
ence, leaving wide space for future improvements.

7 Conclusion

The 2021 edition of the Shared Task on Multi-Hop
Inference for Explanation Regeneration was a suc-
cess, with 4 participating teams each substantially
improving performance over the baseline model.
The best performing team, DeepBlueAI, produced
a system that improves absolute performance by
32%, up to 0.820 NDCG, bringing overall state-of-
the-art performance at this relevancy ranking as-
pect of multi-hop inference to a moderate level. We
hope that future systems for many-hop multi-hop
inference that aim to build large detailed explana-
tions for question answering will be able to lever-
age these results to build strong relevancy retrieval
subcomponents to augment their compositional in-
ference algorithms.
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Abstract
This paper describes the winning system
for TextGraphs 2021 shared task: Multi-hop
inference explanation regeneration. Given a
question and its corresponding correct answer,
this task aims to select the facts that can
explain why the answer is correct for that
question and answering (QA) from a large
knowledge base. To address this problem and
accelerate training as well, our strategy in-
cludes two steps. First, fine-tuning pre-trained
language models (PLMs) with triplet loss to
recall top-K relevant facts for each question
and answer pair. Then, adopting the same
architecture to train the re-ranking model to
rank the top-K candidates. To further improve
the performance, we average the results
from models based on different PLMs (e.g.,
RoBERTa) and different parameter settings
to make the final predictions. The official
evaluation shows that, our system can outper-
form the second best system by 4.93 points,
which proves the effectiveness of our system.
Our code has been open source, address is
https://github.com/DeepBlueAI/TextGraphs-
15

1 Introduction

Multi-hop inference is the task of doing infer-
ence by combining more than one piece of infor-
mation, such as question answering (Jansen and
Ustalov, 2019). The TextGraphs 2021 Shared Task
on Multi-Hop Inference Explanation Regenera-
tion focuses on the theme of determining relevance
versus completeness in large multi-hop explana-
tions, which asks participants to rank how likely
table row sentences are to be a part of a given ex-
planation. Concretely, given an elementary science
question and its corresponding correct answer, the
system need to perform the multi-hop inference
and rank a set of explanatory facts that are expected
to explain why the answer is correct from a large
knowledge base. An example is shown in Figure 1.

Q：Where does the sound waves travel the fastest?

A：Through the rock 

E1：Sound travels fastest through solid

E2：A rock is usually a solid

E3：Waves can travel through matter

Figure 1: A multi-hop inference example which can
explain why the answer is correct for the question.

A number of contemporary challenges exist in
performing multi-hop inference for question an-
swering (Thayaparan et al., 2020), including se-
mantic drift, long inference chains, etc. Several
Multi-hop inference shared tasks have been con-
ducted in the past few years (Jansen and Ustalov,
2019, 2020), and methods based on large pre-
trained language models (PLMs) such as BERT
(Das et al., 2019; Chia et al., 2019), RoBERTa
(Pawate et al., 2020) and ERNIE (Li et al., 2020)
are proposed.

In this paper, we describe the system that we sub-
mitted to the TextGraphs 2021 shared task on Multi-
Hop Inference Explanation Regeneration. There
are two main parts of our system. First, we use a
pre-trained language model-based method to recall
the top-K relevant explanations for each question.
Second, we adopt the same model architecture to
re-rank the top-K candidates to do the final predic-
tion.

When determine whether an explanation sen-
tence is relevant to the question, the previous works
(Das et al., 2019; Li et al., 2020) constructed a pair
of explanations with the QA (questions with cor-
responding answers) sentence as the input of the
PLMs. To reduce the amount of calculation and
accelerate training, instead of using all the explana-
tions from the given table, we propose to fine-tune
PLMs with triplet loss (Schroff et al., 2015), a loss
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Figure 2: The architecture of the proposed model.

function where a baseline (anchor) input is com-
pared to a positive (true) input and a negative (false)
input. For choosing samples as the negative input,
we design several ways which will be introduced in
Section 3. Experiments on the given dataset show
the effectiveness of our model and we rank first in
this task.

2 Background

Task Definition The explanation regeneration
task supplies models with questions, their correct
answers, the gold explanation authored by human
annotators, as well as a knowledge base of expla-
nations. From this, for a given question and its
correct answer, the model must select a set of ex-
planations from the knowledge base that explain
why the answer is correct.

Dataset The data used in this shared task con-
tains approximately 5,100 science exam questions
drawn from the AI2 Reasoning Challenge (ARC)
dataset (Clark et al., 2018), together with multi-
fact explanations for their correct answers extracted
from the WorldTree V2.1 explanation corpus (Xie
et al., 2020; Jansen et al., 2018). Different from
shared task in 2020 (Jansen and Ustalov, 2020), this
year’s dataset has been augmented with a new set of
approximately 250k pre-release expert-generated
relevancy ratings. The knowledge base support-
ing these questions and their explanations contains
approximately 9,000 facts. These facts are a combi-
nation of scientific knowledge as well as common-
sense/world knowledge.

Evaluation As mentioned in the official evalu-
ation procedure of TextGraphs 2021, the partic-
ipating systems are evaluated using Normalized
Discounted Cumulative Gain (NDCG), a common
measure of ranking quality. Therefore, it inspires
us to think of this task as a ranking task.

3 Model Architectures

Our system consists of two major components. The
first part is the retrieval procedure, which utilize the
PLMs fine-tuned with triplet loss to recall top-K
(K>100) relevant explanations. The second part
is the re-ranking procedure, which use the same
model architecture to rank the top-K candidates.
The model architecture is shown in Figure 2.

3.1 Model

Inspired by the work of Schroff et al. (2015), we
adopt the triplet loss in this task. The triplet loss
minimizes the distance between an anchor and a
positive, and maximizes the distance between the
anchor and a negative. We treat the sentences of
questions with corresponding answers as the an-
chor, the facts annotated with high reference value
as positives. Both in retrieval procedure and re-
ranking procedure, we generate three different neg-
ative samples for each positive and anchor pair,
which will be discussed in Section 3.3.

After constructing triplet (an anchor, a posi-
tive, a negative), we put them into the PLMs (e.g.,
RoBERTa) to get their representations. These
PLMs first tokenize the input sentences and then
output the last layer embedding of each tokens. We
average each token’s embedding as the final repre-
sentations for the positives, anchors and negatives,
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which are denoted by ep, ea and en respectively.
Then, the models can be fine-tuned by the triplet
loss.

3.2 Triplet loss

After obtaining the embeddings of the triplet (an
anchor (a), a positive (p) and a negative (n)), the
triplet loss can be calculated as follow,

L(a, p, n) = max{d(ea, ep)− d(ea, en)
+α, 0} (1)

d(x, y) = ‖x− y‖2 (2)

α is a margin that is enforced between positive
and negative pairs.

3.3 Training procedure

Retrieval First, we use the model introduced
above to recall top-K relevant facts. In this step,
for each anchor and positive pair, the negative sam-
ples are selected by three ways: 1) a sample which
comes from the same table file with the positive
one and does not annotated as the relevant one with
the anchor; 2) a sample within the same mini-batch
of positives and does not annotated as the relevant
one with the anchor 3) a sample selected randomly
among the facts irrelevant to the anchors.

Re-ranking After obtaining the top-K relevant
facts, we train the re-ranking model with the same
model architecture, yet use the another three differ-
ent ways to select negative samples: 1) a sample
within the top-K candidates but is irrelevant to the
anchors; 2) a sample within top-100 candidates but
irrelevant to the anchors; 3) a sample within the
same mini-batch of positives but irrelevant to the
anchors.

Ensembling Finally, to further improve the per-
formance, we average different results from models
based on different PLMs and random seeds.

4 Experiments

4.1 Parameter settings

All models are implemented based on the open
source transformers library of hugging face (Wolf
et al., 2020), which provides thousands of pre-
trained models that can be quickly download and
fine-tuned on specific tasks. The PLMs we used
in this task are RoBERTa (Liu et al., 2019) and

Method NDCG
within the same mini-batch 0.7597
randomly 0.7621
within the same file 0.7726
all the three above 0.771

Table 1: The comparison between different ways of se-
lecting negative samples

Methods Recall
TF-IDF 0.7001
Ensemble Retriever 0.97562

Table 2: The comparison between different retrieval
models

ERNIE 2.0 (Sun et al., 2020). For all the experi-
ments, we set the batch size as 48 and set 15 epochs
for both retrieval and re-ranking procedure. We use
the Adam optimizer and create a schedule with a
learning rate that decreases linearly from the initial
lr set (1e−5) in the optimizer to 0, after a warmup
period during which it increases linearly from 0 to
the initial lr set in the optimizer.

4.2 Ablation studies

Retrieval Since we have design three different
ways to choose the negative samples during the
retrieval procedure, we did experiments on the val-
idation set to test whether these mechanisms valid
or not. From Table 1, we find the most effective
way is to choose the negative samples from the
same table file with the positive one. Facts in the
same table file have the same pattern.

Since for each question and answer pair, there
are usually more than ten annotated relevant facts,
we select the top-2000 ranked facts from the re-
trieval phrase, and we find that the NDCG score
can reach 97.56% as shown in Table 2. Besides,
though the TF-IDF method can quickly score all
the facts, its NDCG score is very low compared
with our retriever, which proves the effectiveness
of our proposed method.

Re-ranking To re-rank the top-K candidates, we
adopt the same model architecture. We compared
the results of the proposed ensemble re-ranker with
the TF-IDF baseline model and the proposed en-
semble retriever on the test set, as shown in Ta-
ble 3. We also set different top-K for calculating
NDCG@K including 100, 500, 1000, and 2000.
From Table 3, we can see that after re-ranking the
top-K candidates, the model performance will be
improved. Besides, as the increase of K value, the
growth rate of NDCG gradually slows down.
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Model NDCG @100 NDCG@500 NDCG@1000 NDCG@2000
TF-IDF 0.5011 0.5271 0.5318 0.5352
Ensemble Retriever 0.7635 0.7819 0.7846 0.7857
Ensemble Re-ranker 0.8027 0.8171 0.8189 0.8198

Table 3: The final results compared with different models

4.3 Official Ranking

We submitted the scores predicted by the re-ranking
model introduced above. The official ranking is
presented in Table 4. We rank first in the task, 4.9%
higher than the second place, which verifies the
validity of our system.

Team NDCG
DeepBlueAI 0.8198
RedDragonAI 0.7705
google-BERT 0.7003
huawei_noah 0.6831
tf-idf baseline 0.5010

Table 4: Leaderboard

5 Conclusion

In this paper, we propose a top performing ap-
proach for the task of multi-hop inference expla-
nation regeneration. We fine-tune pre-trained lan-
guage models with the triplet loss to accelerate
training and design different ways for negative sam-
pling. The same model architecture is utilized to
recall the top-K candidates from all the facts and
to re-rank the top-K relevant explanations for the
final prediction. Experimental results show the ef-
fectiveness of the proposed method and we win the
first place for the task.
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Abstract

Multi-hop inference for explanation genera-
tion is to combine two or more facts to make
an inference. The task focuses on generating
explanations for elementary science questions.
In the task, the relevance between the explana-
tions and the QA pairs is of vital importance.
To address the task, a three-step framework is
proposed. Firstly, vector distance between two
texts is utilized to recall the top-K relevant ex-
planations for each question, reducing the cal-
culation consumption. Then, a selection mod-
ule is employed to choose those most relative
facts in an autoregressive manner, giving a pre-
liminary order for the retrieved facts. Thirdly,
we adopt a re-ranking module to re-rank the re-
trieved candidate explanations with relevance
between each fact and the QA pairs. Experi-
mental results illustrate the effectiveness of the
proposed framework with an improvement of
39.78% in NDCG over the official baseline.1

1 Introduction

Multi-hop inference for explanation generation
(Jansen and Ustalov, 2020), aiming to combing
two or more facts to make an inference and provid-
ing users with human-readable explanations, has
shown significant potential and alluring technologi-
cal value to improve medical or judicial systems. A
typical application in natural language processing
is question answering tasks (QA). Multi-hop expla-
nation generation for QA aims to retrieve multiple
textual facts from pre-defined candidates (typically
retrieved from different books, web pages, or other
documents) for a given question-answer pair. Fig-
ure 1 shows an example. The input is a QA sample
and candidate facts, and the task is designed to re-
trieve facts f1, f2, f3, which contribute greatly to
inferring the answer.

Multi-hop explanation generation for QA suf-
fers from a key issue: computationally prohibitory,

∗ Corresponding author
1https://github.com/apricotxingya/tg2021task
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Figure 1: An example of multi-hop inference for expla-
nation generation.

which causes by unaffordable amount of fact com-
binations, especially when the number of facts re-
quired to perform an inference increases. Empir-
ically speaking, the issue causes large drops in
performance (Fried et al., 2015; Jansen et al., 2017)
and limits the inference capacity (Khashabi et al.,
2019). To solve the issue, previous works com-
pute scores for facts in isolation, or by severely
limiting the number of combinations of facts (Das
et al., 2019; Banerjee, 2019; Chia et al., 2019). Car-
tuyvels et al. (2020) proposed a two-step inference
algorithm for multi-hop explanation regeneration
with a relevant fact recall step and an autoregres-
sive fact selection step. In this way, the two-step
algorithm prompts efficiency and accuracy.

In the TextGraphs 2021 Shared Task, the rele-
vance between the explanations and the QA pairs
is of vital importance. However, the autogression
selection process may hinder model’s ability to rec-
ognize the relevance between each fact and QA.
The main reason is that the autogression selection
proceess emphasizes the relevance between QA
and the retrieved facts, paying more attention on
retrieved facts when there are many retrieved facts.
As the example in Figure 2, the two-step algorithm
fails to recognize the order of the retrieved two
facts form means kind and ultraviolet
rays means ultraviolet light. To ad-
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dress the problem, we propose a reranking module
to fine-rank the results of the two-step method with
the relevance between each fact and the QA pair.
Then, we propose a three-step framework to solve
the task: recall, selection and reranking, aiming to
iteratively recall facts, select core facts, and then
rerank retrieved core facts, respectively.

Experiments on the 2021 version of the task
demonstrate the effectiveness of the proposed
method, which achieves improvements of 39.78%
in NDCG, in comparison with the official baseline.

2 Method

The proposed framework is designed to predict a
ranked list of facts inferring a QA sample, includ-
ing three modules: a recall, selection and reranking
module, as illustrated in Figure 2.

2.1 Recall Module

We stitch the text of Question and Answer together
as qa. We extract the roots of words in qa and all
e to reduce the number of different textual expres-
sions caused by singular and plural tenses. For
example, cats and made are modified to cat
and make, respectively.

The recall module aims to iteratively recall facts
with high relevance from the candidates. Formally,
the recall module can be defined as a function:
f(q, a, f1, · · · , fi, · · ·) : TL 7→ R|C|, where q de-
notes the question token sequence, a denotes the an-
swer token sequence, fi denotes the recalled facts,
T denotes the token set, L denotes the length of the
sequence [q, a, f1, · · · , fi, · · ·], and C denotes the
candidate set.

Specifically, we use the distances between tf-idf
vectors to compute the distances between two texts.
Let si = [qa, f

∗
1 , ..., f

∗
i ], where f∗i is the ith best

candidate selected from Ci by the selection module
(refer to subsection ’Selection Module’). For the
convenience of expression, we will write qa as s0.

First, we compute the Topk of fi with the small-
est distance from qa, forming C1. Then we com-
pute the top K fi with the smallest distance from
s1 to form C2. And so on.

2.2 Selection Module

We first normalize the score of each candidate fact
to between 0 and 1. Since the score of si is 0 to
6, we divide the score by 6 to complete the nor-
malization. Then we use Bert’s own binary clas-
sification model to calculate the probability size

Question: Which form of solar radiation causes sunburn?
Answer: Ultraviolet

…

Recall Module Selection Module Rerank Module

form means kind

light is a kind of electromagnetic radiation

form means kind

ultraviolet rays means 
ultraviolet light

light is a kind of 
electromagnetic 
radiation

ultraviolet light 
causes sunburn

…
light is a kind of electromagnetic radiation

form means kind

…

Figure 2: An overview of our method.

P (fi|si−1) = BERT (fi, si−1) of each candidate
fi under si−1. Eventually, we will select a pre-
ferred choice with the highest probability as f∗i .

In the prediction process, we keep TopB can-
didates for each fi for iteration and treat the cur-
rently used fact in TopB as f∗i in the iteration pro-
cess. That is, for a qa our method will generate
B(m−1) ∗K fact links of length m. The probability
of each fact link is obtained by chain decomposi-
tion to P (qa, f1, ..., fm) = P (f1|s0)P (f2|s1).......
Our algorithm computes only sequences of length
m < M . We finally sort the output sequences
(f r11 , f

r1
2 , ..., f

r1
m , f

r2
1 , f

r2
2 , ..., f

r2
m , ...). where f rji

denotes the fi of the fact link of sort jth. Then
the output sequence is de-weighted by removing
the non-first occurrence of the fact, to obtain the
sequence O.

2.3 Rerank Module

The selection module hypothesizes that the pre-
dicted facts are always true and predicts the next
fact given the previous facts. Such a process tends
to suffer from error propagation since errors in the
early modules cannot be corrected in later modules.
Furthermore, one QA pair may have 20-30 relevant
facts in average. The selection module may pay
attention to QA at the beginning, but retrieved facts
when there are many retrieved facts.

To relieve this problem, we introduce a rerank
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Parameters Value

Learning rate 2e-5
L2 weight decay 0.01
K 50
B 5
M 4
Epochs 4

Table 1: Hyperparameters

module, which computes the relevance between
the q-a pair and each fact. Unlike the selection
module, rerank module does not consider the cor-
relations between pieces of facts, which is com-
plementary to the selection module. Inspired by
Natural Language Inference(NLI) task (Williams
et al., 2017; Bowman et al., 2015), we cast q-a pairs
as premises and candidate facts as hypotheses and
identify whether a candidate fact is related to a q-a
pair. Following the standard practice for sentence-
pair tasks as in BERT (Devlin et al., 2018), we
concatenate the q-a pair and the candidate fact with
[SEP], prepend the sequence with [CLS], and feed
the input to BERT. The representation for [CLS] is
fed into a sigmoid layer for a binary classifier.

We select the top N candidate facts from the pre-
dicted results of the selection module and assign
a score for every candidate fact according to its
order. In the inference process, we calculate the
probability for each candidate fact. If the probabil-
ity is above a threshold, the original score of the
specific candidate fact is added by a constant. After
that, we rerank these candidate facts according to
the updated scores. In this way, the model can ob-
tain complementary results from both the selection
module and rerank module.

3 Experiment

3.1 Data and Setting
In the 2021 version of the task, some facts are
marked as deleted, duplicated, or low quality. We
removed these facts, leaving 8983 facts in the end.
The training dataset has 2206 data, the develop-
ment dataset has 496 data, and the test dataset
has 1664 data. This year, the sponsors include a
very large dataset of approximately 250,000 expert-
annotated relevancy ratings for facts ranked highly
by baseline language models from previous years
(e.g. BERT, RoBERTa).

We ran experiments on one 16GB Nvidia Tesla
P100 GPU. The details of the experimental setup
are shown in the table 1. The parameters not men-

method NDCG

Baseline 50.10%
Recall+Selection 67.89%
Recall+Selection+Rerank 70.03%

Table 2: Main Results

tioned in the table use the default parameter settings
of the Bert model.

3.2 Evaluation

The evaluation uses NDCG and the organizer pro-
vides a very large dataset of approximately 250,000
expert-annotated relevancy ratings for facts ranked
highly by baseline language models from previous
years (e.g. BERT, RoBERTa).

3.3 Baseline

The shared task data distribution includes a base-
line that uses a term frequency model (tf.idf) to
rank how likely table row sentences are to be a
part of a given explanation. The performance of
this baseline on the development partition is 0.513
NDCG.2

3.4 Main Results

It can be seen from the experimental results that
our method is significantly better than the base-
line model. At the same time, the Rerank module
brings an improvement of 2.14%. The experimen-
tal results prove that our strategy of recall module
and selection module is effective, which is 17.79%
higher than the baseline. The rerank module also
brings performance improvements as we expected,
thus the rerank module make the results more fo-
cused on question is reasonable.

3.5 Case Study

We show three cases in Table 3. For each case,
we show the top10 facts before the rerank module
and after the rerank module. We can see from
these cases that after applying the recall module
and the section module, most of the top10 facts
are related to the question and the answer. But
there will be some irrelevant facts or less relevant
facts that are ranked higher. And, after applying
the rerank module, The ranking of facts with high
references has generally been improved.

2https://github.com/cognitiveailab/tg2021task
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Recall+Selection Recall+Selection+Rerank
Fact (Top10) Ref. Fact (Top10) Ref.
the amount of daylight is greatest in the summer 6 the amount of daylight is greatest in the summer 6
summer is a kind of season 4 summer is a kind of season 4
daylight hours means time during daylight 0 summer has the most sunlight 6
the amount of daylight is least in the winter 2 increase means more 0
winter is a kind of season 2 daylight means sunlight 0
increase means more 0 summer is hemisphere tilted towards the sun 5
daylight means sunlight 0 high is similar to increase 0
summer is hemisphere tilted towards the sun 5 greatest means largest; highest 1
summer has the most sunlight 6 receiving sunlight synonymous absorbing sunlight 0
high is similar to increase 0 amount of daylight means length of daylight 0

(a) Question: About how long does it take Earth to make one revolution around the Sun? Answer: summer.

Recall+Selection Recall+Selection+Rerank
Fact (Top10) Ref. Fact (Top10) Ref.
seals return the same beaches to give birth 4 if humans disturb animals; move to different location 6
a seal is a kind of animal 4 a seal is a kind of sea mammal 4
if humans disturb animals; move to different location 6 a seal is a kind of animal 4
a seal is a kind of sea mammal 4 seals return the same beaches to give birth 4
mammals give birth to live young 0 a mammal is a kind of animal 2
a mammal is a kind of animal 2 mammals give birth to live young 0
a beach is a kind of habitat; environment 4 a beach is a kind of location 4
a beach is a kind of location 4 a human is a kind of mammal 2
if something moves; something in different location 0 an environment is a kind of place 2
a human is a kind of mammal 2 an animal is a kind of living thing 2

(b) Question: Female seals usually return to the same beaches year after year to give birth. If they are repeatedly disturbed by
humans at those beaches, how will the seals most likely respond? Answer: They will give birth at different beaches.

Recall+Selection Recall+Selection+Rerank
Fact (Top10) Ref. Fact (Top10) Ref.
plucking; strumming a string cause that string to vibrate 6 matter; molecules vibrating can cause sound 5
a violin is a kind of musical instrument 4 plucking; strumming a string cause that string to vibrate 6
to cause means to be responsible for 0 a violin is a kind of musical instrument 4
musical instruments make sound when they are played 4 musical instruments make sound when they are played 4
matter; molecules vibrating can cause sound 5 a string is a kind of object 3
a string is a part of a guitar for producing sound 1 to cause means to be responsible for 0
a string is a kind of object 3 a string is a part of a guitar for producing sound 1
a guitar is a kind of musical instrument 0 a musical instrument is a kind of object 3
a musical instrument is a kind of object 3 make means produce 0
make means produce 0 vibrating matter can produce sound 5
(c) Question: Bruce plays his violin every Friday night for the symphony. Before he plays, he plucks each string to see if his

violin is in tune. Which is most responsible for the generation of sound waves from his violin? Answer: vibrations of the string.

Table 3: Some cases in evaluation dataset.

3.6 Parameters in Rerank Module

Different number of parameter N in the rerank mod-
ule can affect the performance to some extent, thus
we report the performances using different param-
eter N. As shown in Table 4, the model achieves
best performance with 70.03% NDCG score when
N is 50. The NDCG score decreases when N is too
low since the rerank module does not play its due
role. Further more, a larger N is not necessary.

4 conclusion

We proposed our approach to the shared task on
“Multi-hop Inference Explanation Regeneration”.
Our framework consists of three modules: a recall
module, a selection module and a reranking module.

K NDCG

5 67.64%
20 69.84%
30 70.03%
50 69.20%
100 68.13%

Table 4: Experiments on parameter of K

The recall module retrieves top-K relevant facts
using the distances between tf-idf vectors. Then
an antoregressive fact selection module is applied
to predict the next fact considering the retrived
facts. Finally a rerank module is applied to correct
the order. The proposed framework achieved an
improvement of 39.78% over the official baseline.
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Abstract

Creating explanations for answers to science
questions is a challenging task that requires
multi-hop inference over a large set of
fact sentences. This year, to refocus the
Textgraphs Shared Task on the problem of
gathering relevant statements (rather than
solely finding a single ‘correct path’), the
WorldTree dataset was augmented with
expert ratings of ‘relevance’ of statements
to each overall explanation. Our system,
which achieved second place on the Shared
Task leaderboard, combines initial statement
retrieval; language models trained to predict
the relevance scores; and ensembling of a
number of the resulting rankings. Our code
implementation is made available at https:
//github.com/mdda/worldtree_
corpus/tree/textgraphs_2021

1 Introduction

Complex question answering often requires rea-
soning over many evidence documents, which is
known as multi-hop inference. Existing datasets
such as Wikihop (Welbl et al., 2018), Open-
BookQA (Mihaylov et al., 2018), QASC (Khot
et al., 2020), are limited due to artificial questions
and short aggregation, requiring less than 3 facts. In
comparison, the TextGraphs Shared Task (Jansen
and Ustalov, 2020) makes use of WorldTree V2
(Xie et al., 2020) which a large dataset of over
5,000 questions and answers, as well as detailed
explanations that link them. The ‘gold’ explanation
paths require combining an average of 6 and up to
16 facts in order to generate an full explanation for
complex science questions.

The WorldTree dataset was recently sup-
plemented with approximately 250,000 expert-
annotated relevancy ratings for facts that were
highly ranked by models in previous Shared Task

∗ Work done in conjunction with Red Dragon AI
† Corresponding author

iterations, based on the same consistent set of ques-
tion and answers.

In previous years, the emphasis of the Shared
Task has been on creating ‘connected explanations’
as completely as possible, which is difficult be-
cause of the large branching factor along an ex-
planation path, in conjunction with semantic drift
(Fried et al., 2015). In contrast, the scoring func-
tion for the 2021 Shared Task required participants
to rank explanation statements according to their
relevance to explaining the science situation, rather
than whether they are in the single gold explana-
tion path. Specifically, participants were required
to provide ordered lists of explanation statements
for each question, and the Normalized Discounted
Cumulative Gain measure (‘NDCG’ - Burges et al.,
2005) was used as a scoring function.

The main contributions of this work are:

1. We show that conventional information
retrieval-based methods are still a strong base-
line and use a hyperparameter-optimised ver-
sion of I-BM25, an iterative retrieval method
that improves inference speed and recall by
emulating multi-hop retrieval.

2. We propose a simple BERT-based architecture
that predicts the expert rating of each expla-
nation statement in the context of the current
question (and correct answer).

3. We ensemble language model rankings in or-
der to increase our leaderboard score.

2 Models

Neural information retrieval models such as DPR
(Karpukhin et al., 2020), RAG (Lewis et al., 2020),
and ColBERT (Khattab and Zaharia, 2020) that
assume query-document independence use a lan-
guage model to generate sentence representations
for the query and document separately. The advan-
tage of this late-interaction approach is efficient
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Figure 1: Recall by Rating for different numbers of statements retrieved by I-BM25 stage

inference as the sentence representations can be
computed beforehand and optimized lookup meth-
ods such as FAISS (Johnson et al., 2017) exist for
this purpose. However, the late-interaction com-
promises on deeper semantic understanding pos-
sible with language models. Early-interaction ap-
proaches such as TFR-BERT (Han et al., 2020)
instead concatenate the query and document before
generating a unified sentence representation. This
approach is more computationally expensive but is
attractive for re-ranking over a limited number of
documents. To reduce this computational burden,
we have a front-end to our system that retrieves
a limited number of facts for later re-ranking by
language models.

Overall, our final system comprised 3 distinct
stages, each of which were tailored to the Shared
Task : Initial retrieval, Language Models and final
ensembling.

2.1 Iterative BM25 Retrieval

Chia et al (2019) and Chia et al (2020) showed that
conventional information retrieval methods can be
a strong baseline when modified to suit the multi-
hop inference objective.

We adapted the iterative retrieval method (de-
noted ‘I-BM25’) from Chia et al (2020) that was
shown to perform inference quickly and reduce
the impact of semantic drift, resulting in a strong
retrieval method for subsequent re-ranking. For pre-

processing, we use spaCy (Honnibal and Montani,
2017) for tokenization, lemmatization and stop-
word removal.

The I-BM25 algorithm is as follows:

1. Sparse document vectors are pre-computed
for all questions and explanation candidates.

2. For each question, the closest n explanation
candidates by cosine proximity are selected
and their vectors are aggregated by a max
operation. The aggregated vector is down-
scaled and used to update the query vector
through a max operation.

3. The previous step is repeated for increasing
values of n until there are no candidate expla-
nations remaining.

Included within the algorithm above are a num-
ber of hyperparameters (such as the rate of increase
of n, and parameters of the BM25 search frame-
work) which were previously optimised for their
performance on the 2020 TextGraphs Shared Task.
These were re-optimised for the 2021 version, with
the goal of maximising the average recall over each
category of expert score, for a given number of
retrieved explanation statements. Using Figure 1,
the number of retrieved statements was chosen to
be 200 in the interests of balancing overall recall
(93.78% of statements with scores higher than zero)
with the later processing cost imposed by the length
of the list of candidate statements.
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Model Dev NDCG Test NDCG
Baseline TF-IDF 0.5130 0.5010
I-BM25-base 0.6669 n/a
I-BM25 0.6785 0.6583
I-BM25 + BERT 0.7679 0.7580
I-BM25 + BERT ensemble 0.7801 0.7675
I-BM25 + BERT + SciBERT ensemble 0.7836 0.7705

Table 1: NDCG score comparison as evaluated locally and on the leaderboard

2.2 Language Models for Rating
Classification/Regression

Pre-trained versions of BERT (Devlin et al., 2019)
are widely adapted and fine-tuned for many down-
stream NLP tasks. For the Shared Task, we fine-
tuned this language model to predict the Expert
Rating from text sequences, where each sequence
is a question (including the correct answer) and
explanation pair separated by the [SEP] token, and
the prediction task is a regression against the gold
Expert Rating (using a Mean Square Error loss
minimisation objective).

During inference, we use the 200 explanations
returned by the earlier I-BM25 phase for each ques-
tion, fed into BERT as a question and explanation
pair. We then used the (floating point) score output
by the trained BERT as a sortable value by which
to rank the explanations in terms of relevancy.

2.3 Ensembling of Rankings

In the later stages of the competition, we decided to
employ an ensemble of different models - 4 BERT
models (each fine-tuned with a different seed) and
a similarly fine-tuned model based on a pretrained
SciBERT (Beltagy et al., 2019).

We ensembled the ranked output of each model
together by simply linearly combining each rank
into an aggregate.1 More sophisticated combina-
tions were considered, but these suffered from over-
fitting on the Dev set.

3 Experiments

Our system comprised three stages, and we present
results of the experiments used to validate our
choices at each stage, with the overall results being
compiled in Table 1.

1This method was simplified since each of the re-rankings
was sourced from the same I-BM25 output list

3.1 Retrieval

As an initial step, we focused on ensuring our re-
trieval model found as many relevant explanations
as possible in its output list (regardless of the or-
der), while keeping the list as short as possible.
So as to measure this, we computed an “Oracle
NDCG” score, the score the retrieval model would
have received if it had access to an oracle and thus
could return the perfect rank ordering.

Retrieval Model Oracle NDCG
TF-IDF 0.7547
I-BM25-base 0.8941
I-BM25 0.9378

Table 2: Oracle NDCG score on WorldTree V2 dataset

In addition to measuring the performance of the
initial retrieval stage, the Oracle NDCG score also
gave us the ceiling for performance of our second
stage models.

3.2 Language Models

Language Model Dev NDCG
DistilBERT 0.7353
BERT 0.7679
SciBERT 0.7541

Table 3: Language model comparison

While we initially tried DistilBERT (Sanh et al.,
2020) - a lean version of BERT with fewer param-
eters - we found that BERT outperformed Distil-
BERT by a significant enough margin to suggest
that the efficiency of DistilBERT was not a net win.

We also attempted to fine-tune RoBERTa (Liu
et al., 2019) on the regression task, but were unable
to achieve satisfactory results quickly enough to
incorporate it into our ensembling regime.
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3.3 Ensembling

While SciBERT performed slightly worse than
other models on an individual basis, ensembling
it with regular BERT models resulted in a much
higher score - which suggests that its represen-
tations are well differentiated by its pretraining
regime.

4 Negative Results

4.1 Two-stage representation

In addition to the straight regression models used
in our final submissions, we also investigated an
architecture that modelled the explanation ratings
for each question/answer via a two-stage process.

The first stage was a binary indicator of whether
the explanation was relevant or not (1 if it had a
higher-than-zero rating, 0 if zero-rated or missing).
The second stage (used during inference if the first
stage signalled ‘relevant’), was modelled as a dis-
tribution over the possible scores. The intuition be-
ing that some statements are ‘broad, powerful con-
cepts’ (likely to score highly if relevant) whereas
others are ‘tiny lexical adjustments’ (likely to be
low-scoring if considered relevant).

Despite the intuitive appeal of modelling the
statement rating process in this way, and the appar-
ently reasonable distributions learned, this architec-
ture did not lead to higher scores overall - though
that may be due to other factors (such as running
out of time to finesse the training and/or inference
process).

4.2 Negative Sampling

While examining the types of prediction errors our
initial models were making during inference, we
noticed that quite a number of the incorrectly cho-
sen explanations (from the I-BM25 stage) were lex-
ically close to highly-rated explanation statements.
This showed that there was a mismatch between
frequency of zero-rated Expert Ratings in the Train
set, and what would be experienced during infer-
ence. Therefore, we hypothesised that adding more
negative samples would help the model discern
between these similar explanations.

Two methods were tried : (i) Randomly sam-
pling from the explanations database; and (ii) Using
the retrieval model to propose other close negatives
during training. Unfortunately, neither resulted in
any significant improvement in scores.

5 Discussion

In previous versions of the Textgraphs Shared Task,
the goal was essentially to obtain the single ‘gold
explanation’ that perfectly matched an expertly
crafted graph of explanation statements, with the
scoring being based on a ranking metric that re-
warded participants for finding these gold expla-
nation statements. This task was challenging due
to the semantic drift issue previously mentioned,
and the sensitivity of the scoring to choosing the
same explanation path as the original annotators.2

Paradoxically, instead of tackling the problem with
logic-oriented graph planning methods, the dom-
inant techniques tended to rely on large language
models which could maximise the ranking scores
without ‘understanding the bigger picture’.

The change of scoring metric in this current
Shared Task, to incorporate all statements that are
relevant to the question and answer, appears to
target the capturing of ‘bigger picture’ ideas. How-
ever, this seems to have once again promoted the
use of large language models, since they provide
a system component that can bring the most ‘com-
mon sense’ into the multi-step reasoning domain,
without getting tangled in the logical weeds that go
into producing the gold explanations.

While the addition of the expert ratings on the ex-
planation statements is undoubtedly positive for the
Shared Task dataset, it is not clear to what extent
it helps address the multi-hop nature of the chal-
lenge - on which significant progress had already
been made (and will hopefully continue based on
other promising directions have been identified by
previous iterations of the Shared Task.)

6 Conclusion

Our Shared Task submissions showed that ensem-
bles of language models trained on a regression
basis to predict Expert Ratings obtain highly com-
petitive results.

We look forward to achieving further progress
on the multi-hop reasoning task in the future.

2In terms of extra data, supposing that a Worldtree Ex-
planation Corpus continues to be the basis of the Textgraphs
Shared Task in the future, it would be very helpful to have
the structured information that resulted in the output of the
Worldtree Explanation Corpus v2.1 Desk Reference, since
that would allow a cleaner interpretation of the structured ta-
ble data - without participants having to each independently
reinvent the wheel
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