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Abstract

Recent work on aspect-level sentiment classifi-
cation has employed Graph Convolutional Net-
works (GCN) over dependency trees to learn
interactions between aspect terms and opinion
words. In some cases, the corresponding opin-
ion words for an aspect term cannot be reached
within two hops on dependency trees, which
requires more GCN layers to model. However,
GCNs often achieve the best performance with
two layers, and deeper GCNs do not bring any
additional gain. Therefore, we design a novel
selective attention based GCN model. On one
hand, the proposed model enables the direct
interaction between aspect terms and context
words via the self-attention operation without
the distance limitation on dependency trees.
On the other hand, a top-k selection procedure
is designed to locate opinion words by select-
ing k context words with the highest attention
scores. We conduct experiments on several
commonly used benchmark datasets and the re-
sults show that our proposed SA-GCN outper-
forms strong baseline models.

1 Introduction

Aspect-level sentiment classification is a fine-
grained sentiment analysis task, which aims to iden-
tify the sentiment polarity (e.g., positive, negative
or neutral) of a specific aspect term (also called
target) appearing in a sentence. For example, “De-
spite a slightly limited menu, everything prepared
is done to perfection, ultra fresh and a work of
food art.”, the sentiment polarity of aspect terms
“menu” and “food” are negative and positive, re-
spectively. The opinion words “limited” and “done
to perfection” provide evidences for sentiment po-
larity predictions. This task has many applications,
such as restaurant recommendation and purchase
recommendation on e-commerce websites.

To solve this problem, recent studies have shown
that the interactions between an aspect term and its
context (which include opinion words) are crucial

in identifying the sentiment polarity towards the
given term. Most approaches consider the seman-
tic information from the context words and utilize
the attention mechanism to learn such interactions.
However, it has been shown that syntactic infor-
mation obtained from dependency parsing is very
effective in capturing long-range syntactic relations
that are obscure from the surface form (Zhang et al.,
2018). A recent popular approach to learn syntax-
aware representations is employing graph convolu-
tional networks (GCN) (Kipf and Welling, 2017)
model over dependency trees (Huang and Carley,
2019; Zhang et al., 2019; Sun et al., 2019; Wang
et al., 2020; Tang et al., 2020), which introduces
syntactic inductive biases into the message passing.

In some cases, the most important context words,
i.e. opinion words, are more than two-hops away
from the aspect term words on the dependency tree.
As indicated by Figure 1, there are four hops be-
tween the target “Mac OS” and the opinion words
“easily picked up” on the dependency tree. This
type of cases requires more than two layers of GCN
to learn interactions between them. However, previ-
ous works show that GCN models with two layers
often achieve the best performance (Zhang et al.,
2018; Xu et al., 2018), deeper GCNs do not bring
additional gain due to the over-smoothing prob-
lem (Li et al., 2018b), which makes different nodes
have similar representations and lose the distinction
among nodes.

In order to solve the above problem, we propose
a novel selective attention based GCN (SA-GCN)
model, which combines the GCN model over de-
pendency trees with a self-attention based sequence
model over the sentence. On one hand, the self-
attention sequence model enables the direct interac-
tion between an aspect term and its context so that
it can take care of the situation where the term is far
away from the opinion words on the dependency
tree. On the other hand, a top-k attention selection
module is applied after the self-attention opera-
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I thought learning the Mac OS would be hard, but it is easily 
picked up if you are familiar with a PC.

Figure 1: Example of dependency tree with multi-hop
between aspect term and determined context words.

tion, which is designed to locate opinion words
contained in the context for the aspect term. As
shown in Figure 1, if the opinion words “easily
picked up” are detected correctly through the top-k
selection module, it definitely could help the model
to classify the sentiment as positive. To provide
supervision information for the top-k selection pro-
cedure, we introduce the opinion words extraction
task and jointly train the task with the sentiment
classification task.

Specifically, the base model is the GCN model
over dependency trees. The model uses the pre-
trained BERT to obtain representations of the as-
pect term and its context words as the initial node
features on the dependency tree.

Next, the GCN outputs are fed into a multi-head
top-k attention selection module. For each head,
the self-attention operation is applied over the sen-
tence to get a dense attention score matrix, where i-
th row corresponds the attention scores of all words
to the i-th word in the sentence. Then for each
word, context words with top-k attention scores
are selected and others are ignored, which sparsi-
fies the attention score matrix and forms a sparse
graph. We design two strategies to get the sparse
graph: i) applying top-k selection over the atten-
tion matrix obtained by summing attention score
matrices of all heads, and thus different heads share
the same sparse graph; ii) applying top-k selection
on individual attention score matrix of each head,
and thus different heads have its own sparse graph.
Finally, we apply a GCN layer again to integrate in-
formation from such sparse graph(s) for each head,
and concatenate the GCN outputs w.r.t. different
heads as the final word representation for sentiment
analysis.

The main contributions of this work are summa-
rized as the following:

• We propose a selective attention based GCN (SA-

GCN) module, which takes the benefit of GCN
over the dependency trees and enables the as-
pect term directly obtaining information from the
opinion words according to most relevant context
words. This helps the model handle cases when
the aspect term and opinion words are located far
away from each other on the dependency tree.

• We propose to jointly train the sentiment classi-
fication and opinion extraction tasks. The joint
training further improves the performance of the
classification task and provides explanation for
sentiment prediction.

2 Related Work

Capturing the interaction between the aspect term
and opinion words is essential for predicting the
sentiment polarity towards the aspect term. In re-
cent work, various attention mechanisms, such as
co-attention, self-attention and hierarchical atten-
tion, were utilized to learn this interaction (Tang
et al., 2016; Liu and Zhang, 2017; Li et al., 2018c;
Wang et al., 2018; Fan et al., 2018; Chen et al.,
2017; Zheng and Xia, 2018; Wang and Lu, 2018;
Li et al., 2018a,c). Specifically, they first encoded
the context and the aspect term by recurrent neural
networks (RNNs), and then stacked several atten-
tion layers to learn the aspect term representations
from important context words.

After the success of the pre-trained BERT
model (Devlin et al., 2018), Song et al. (2019) uti-
lized the pre-trained BERT as the encoder. In the
study by (Xu et al., 2019), the task was considered
as a review reading comprehension (RRC) problem.
RRC datasets were post trained on BERT and then
fine-tuned to the aspect-level sentiment classifica-
tion. Rietzler et al. (2019) utilized millions of extra
data based on BERT to help sentiment analysis.

The above approaches mainly considered the
semantic information. Recent approaches at-
tempted to incorporate the syntactic knowledge to
learn the syntax-aware representation of the aspect
term. Dong et al. (2014) proposed AdaRNN, which
adaptively propagated the sentiments of words to
target along the dependency tree in a bottom-up
manner. Nguyen and Shirai (2015) extended RNN
to obtain the representation of the target aspect by
aggregating the syntactic information from the de-
pendency and constituent tree of the sentence. He
et al. (2018) proposed to use the distance between
the context word and the aspect term along the
dependency tree as the attention weight. Some re-
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searchers (Huang and Carley, 2019; Zhang et al.,
2019; Sun et al., 2019) employed GNNs over de-
pendency trees to aggregate information from syn-
tactic neighbors. Most recent work in Wang et al.
(2020) proposed to reconstruct the dependency tree
to an aspect-oriented tree. The reshaped tree only
kept the dependency structure around the aspect
term and got rid of all other dependency connec-
tions, which made the learned node representations
not fully syntax-aware. Tang et al. (2020) designed
a mutual biaffine module between Transformer en-
coder and the GCN encoder to enhance the repre-
sentation learning.

The downside of applying GCN over depen-
dency trees is that it cannot elegantly handle the
long distance between aspect terms and opinion
words. Our proposed SA-GCN model effectively
integrates the benefit of a GCN model over depen-
dency trees and a self-attention sequence model to
directly aggregate information from opinion words.
The top-k self-attention sequence model selects
the most important context words, which effec-
tively sparsifies the fully-connected graph from
self-attention. Then we apply another GCN layer
on top of this new sparsified graph, such that each
of those important context words is directly reach-
able by the aspect term and the interaction between
them could be learned.

3 Proposed Model

3.1 Overview of the Model

The goal of our proposed SA-GCN model is to
predict the sentiment polarity of an aspect term in
a given sentence. To improve the sentiment clas-
sification performance and provide explanations
about the polarity prediction, we also introduce the
opinion extraction task for joint training. The opin-
ion extraction task aims to predict a tag sequence
yo = [y1, y2, · · · , yn] (yi ∈ {B, I,O}) denotes
the beginning of, inside of, and outside of opinion
words. Figure 2 illustrates the overall architecture
of the SA-GCN model. For each instance compos-
ing of a sentence-term pair, all the words in the
sentence except for the aspect term are defined as
context words.

3.2 Encoder for Aspect Term and Context

BERT Encoder. We use the pre-trained BERT
base model as the encoder to obtain embeddings of
sentence words. Suppose a sentence consists of
n words {w1, w2, ..., wτ , wτ+1..., wτ+m, ..., wn}

where {wτ , wτ+1..., wτ+m−1} stand for the aspect
term containing m words. First, we construct the
input as “[CLS] + sentence + [SEP] + term + [SEP]”
and feed it into BERT. This input format enables
explicit interactions between the whole sentence
and the term such that the obtained word represen-
tations are term-attended. Then, we use average
pooling to summarize the information carried by
sub-words from BERT and obtain final embeddings
of words X ∈ Rn×dB , dB refers to the dimension-
ality of BERT output.

3.3 GCN over Dependency Trees
With words representations X as node features and
dependency tree as the graph, we employ a GCN to
capture syntactic relations between the term node
and its neighboring nodes.

GCNs have shown to be effective for many NLP
applications, such as relation extraction (Guo et al.,
2019; Zhang et al., 2018), reading comprehen-
sion (Kundu et al., 2019; Tu et al., 2019), and
aspect-level sentiment analysis (Huang and Car-
ley, 2019; Zhang et al., 2019; Sun et al., 2019). In
each GCN layer, a node aggregates the information
from its one-hop neighbors and update its represen-
tation. In our case, the graph is represented by the
dependency tree, where each word is treated as a
single node and its representation is denoted as the
node feature. The message passing on the graph
can be formulated as follows:

H(l) = σ(AH(l−1)W (l−1)) (1)

where H(l) ∈ Rn×dh is the output l-th GCN layer,
H(0) ∈ Rn×dB is the input of the first GCN layer,
and H(0) = X ∈ Rn×dB . A ∈ Rn×n denotes the
adjacency matrix obtained from the dependency
tree, note that we add a self-loop on each node.W
represents the learnable weights, where W (0) ∈
RdB×dh and W (l−1) ∈ Rdh×dh . σ refers to ReLU
activation function.

The node features are passed through the GCN
layer, the representation of each node is now fur-
ther enriched by syntax information from the de-
pendency tree.

3.4 SA-GCN: Selective Attention based GCN
Although performing GCNs over dependency trees
brings syntax information to the representation of
each word, it could still limit interactions between
aspect terms and long-distance opinion words that
are essential for determining the sentiment polar-
ity. In order to alleviate the problem, we apply a
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Figure 2: The SA-GCN model architecture: the left part is the overview of the framework, the right part shows
details of a SA-GCN block.

Selective Attention based GCN (SA-GCN) block
to identify the most important context words and
integrate their information into the representation
of the aspect term. Multiple SA-GCN blocks can
be stacked to form a deep model. Each SA-GCN
block is composed of three parts: a multi-head self-
attention layer, top-k selection and a GCN layer.
Self-Attention. We apply the multi-head self-
attention first to get the attention score matrices
Ai
score ∈ Rn×n(1 ≤ i ≤ L), L is the number of

heads. It can be formulated as:

Ai
score =

(Hk,iWk)(Hq,iWq)
T

√
dhead

(2)

dhead =
dh
L

(3)

where H∗,i = H∗[:, :, i], ∗ ∈ {k: key, q: query},
Hk ∈ Rn×dhead×L and Hq ∈ Rn×dhead×L are the
node representations from the previous GCN layer,
Wk ∈ Rdhead×dhead and Wq ∈ Rdhead×dhead are
learnable weight matrices, dh is the dimension of
the input node feature, and dhead is the dimension
of each head.

The obtained attention score matrices can be
considered as L fully-connected (complete) graphs,
where each word is connected to all the other con-
text words with different attention weights. This
kind of attention score matrix has been used in
attention-guided GCNs for relation extraction (Guo
et al., 2019). Although the attention weight is help-

ful to differentiate different words, the fully con-
nected graph still results in the aspect node fusing
all the other words information directly, and the
noise is often introduced during feature aggrega-
tion in GCNs, which further hurts the sentiment
prediction. Therefore, we propose a top-k attention
selection mechanism to sparsify the fully connected
graph, and obtain a new sparse graph for feature ag-
gregation for GCN. This is different from attention-
guided GCNs (Guo et al., 2019) which performed
feature aggregation over the fully-connected graph.
Moreover, our experimental study (see Table 5 in
Section 4) also confirms that the top-k selection
is quite important and definitely beneficial to the
aspect-term classification task.

Top-k Selection. For each attention score matrix
Ai
score, we find the top-k important context words

for each word, which effectively remove some
edges in Ai

score. The reason why we choose the
top-k context words is that only a few words are
sufficient to determine the sentiment polarity to-
wards an aspect term. Therefore, we discard other
words with low attention scores to get rid of irrele-
vant noisy words.

We design two strategies for top-k selection,
head-independent and head-dependent. Head-
independent selection determines k context words
by aggregating the decisions made by all heads and
reaches to an agreement among heads, while head-
dependent policy enables each head to keep its own



87

selected k words.
Head-independent selection is defined as follow-

ing: we first sum the attention score matrix of each
head element-wise, and then find top-k context
words using the mask generated by the function
topk. For example, topk([0.3, 0.2, 0.5]) returns
[1, 0, 1] if k is set to 2. Finally, we apply a softmax
operation on the updated attention score matrix.
The process could be formulated as follows:

Asum =
L∑
i=1

Ai
score (4)

Amind
= topk(Asum) (5)

Ai
hind

= softmax(Amind
◦Ai

score) (6)

where Ai
score is the attention score matrix of i-th

head, ◦ denotes the element-wise multiplication.
Head-dependent selection finds top-k context

words according to the attention score matrix of
each head individually. We apply the softmax oper-
ation on each top-k attention matrix. This step can
be formulated as:

Ai
mdep

= topk(Ai
score) (7)

Ai
hdep

= softmax(Ai
mdep

◦Ai
score) (8)

Compared to head-independent selection with ex-
actly k words selected, head-dependent usually se-
lects a larger number (than k) of important context
words. Because each head might choose different k
words thus more than k words are selected in total.

From top-k selection we obtain L graphs based
on the new attention scores and pass them to the
next GCN layer. For simplicity, we will omit the
head-ind and head-dep subscript in the later sec-
tion. The obtained top-k score matrix A could be
treated as an adjacency matrix, where A(p, q) de-
notes as the weight of the edge connecting word p
and word q. Note that A does not contain self-loop,
and we add a self-loop for each node.
GCN Layer. After top-k selection on each atten-
tion score matrix Ai

score (Ai
score is not fully con-

nected anymore), we apply a one-layer GCN and
get updated node features as follows:

Ĥ(l,i) = σ(AiĤ(l−1)W i) + Ĥ(l−1)W i (9)

Ĥ(l) = ‖Li=1Ĥ
(l,i) (10)

where Ĥ(l) ∈ Rn×dh is the output of the l-th SA-
GCN block and composed by the concatenation of
Ĥ(l,i) ∈ Rn×dhead of i-th head, Ĥ(0) ∈ Rn×dh is

the input of the first SA-GCN block and comes from
the GCN layer operating on the dependency tree,
Ai is the top-k score matrix of i-th head, W i ∈
Rdh×dhead denotes as the learnable weight matrix,
and σ refers to ReLU activation function. The SA-
GCN block can be applied multi times if needed.

3.5 Classifier
Based on the output Ĥo of the last SA-GCN block,
we extract the aspect term node features from Ĥo,
and conduct average pooling to obtain the aspect
term 1 representation ĥt ∈ R1×dh . Then we feed it
into a two-layer MLP to calculate the final classifi-
cation scores ŷs:

ŷs = softmax(W2σ(W1ĥ
T
t )) (11)

where W2 ∈ RC×dout and W1 ∈ Rdout×dh denote
the learnable weight matrix, C is the sentiment
class number, and σ refers to ReLU activation
function. We use cross entropy as the sentiment
classification loss function:

Ls = −
C∑
c=1

ys,c log ŷs,c + λ‖θ‖2 (12)

where λ is the coefficient for L2-regularization, θ
denotes the parameters that need to be regularized,
ys is the true sentiment label.

3.6 Opinion Extractor
The opinion extraction shares the same input en-
coder, i.e. the SA-GCN as sentiment classification.
Therefore we feed the output of SA-GCN to a linear-
chain Conditional Random Field (CRF) (Lafferty
et al., 2001), which is the opinion extractor. Specif-
ically, based on the SA-GCN output Ĥo, the output
sequence yo = [y1, y2, · · · , yn] (yi ∈ {B, I,O})
is predicted as:

p(yo|Ĥo) =
exp(s(Ĥo,yo))∑

y′o∈Y exp(s(Ĥo,y′o))
(13)

s(Ĥo,yo) =
n∑
i

(Tyi−1,yi + Pi,yi) (14)

Pi = WoĤo[i] + bo (15)

where Y denotes the set of all possible tag se-
quences, Tyi−1,yi is the transition score matrix, Wo

and bo are learnable parameters. We apply Viterbi
1The aspect term might be composed of multiple term

nodes in the graph.



88

Dataset
Positive Neutral Negative

Train Test Train Test Train Test
14Lap 991 341 462 169 867 128
14Rest 2164 728 633 196 805 196
15Rest 963 353 36 37 280 207
16Rest 1324 483 71 32 489 135

Table 1: Statistics of Datasets.

algorithm in the decoding phase. And the loss for
opinion extraction task is defined as:

Lo = −log(p(yo|Ĥo)) (16)

Finally, the total training loss is:

L = Ls + αLo (17)

where α ≥ 0 represents the weight of opinion
extraction task.

4 Experiments

Data Sets. We evaluate our SA-GCN model on four
datasets: Laptop reviews from SemEval 2014 Task
4 (14Lap), Restaurant reviews from SemEval 2014
Task 4 (Pontiki et al., 2014), SemEval 2015 Task
12 (Pontiki et al., 2015) and SemEval 2016 Task
5 (Pontiki et al., 2016) (14Rest, 15Rest and 16Rest).
We remove several examples with “conflict” labels.
The statistics of these datasets are listed in Table 1.
The opinion words labeling for these four datasets
come from (Fan et al., 2019).
Baselines. Since BERT(Devlin et al., 2018) model
shows significant improvements over many NLP
tasks, we directly implement SA-GCN based on
BERT and compare with following BERT-based
baseline models:

1. BERT-SPC (Song et al., 2019) feeds the sen-
tence and term pair into the BERT model and the
BERT outputs are used for prediction.

2. AEN-BERT (Song et al., 2019) uses BERT as
the encoder and employs several attention layers.

3. TD-GAT-BERT (Huang and Carley, 2019) uti-
lizes GAT on the dependency tree to propagate
features from the syntactic context.

4. DGEDT-BERT (Tang et al., 2020) proposes a
mutual biaffine module to jointly consider the
flat representations learnt from Transformer and
graph-based representations learnt from the cor-
responding dependency graph in an iterative
manner.

5. R-GAT+BERT (Wang et al., 2020) reshapes and
prunes the dependency parsing tree to an aspect-
oriented tree rooted at the aspect term, and then
employs relational GAT to encode the new tree
for sentiment predictions.

In our experiments, we present results of the
average and standard deviation numbers from seven
runs of different random initialization. We use
BERT-base model to compare with other published
numbers. We implement our own BERT-baseline
by directly applying a classifier on top of BERT-
base encoder, BERT+2-layer GCN and BERT+4-
layer GCN are models with 2-layer and 4-layer
GCN respectively on dependency trees with the
BERT encoder. BERT+SA-GCN is our proposed
SA-GCN model with BERT encoder. Joint SA-GCN
refers to joint training of sentiment classification
and opinion extraction tasks.
Evaluation metrics. We train the model on train-
ing set, and evaluate the performance on test set in
terms of accuracy and macro-F1 scores which are
commonly-used in sentiment analysis (Sun et al.,
2019; Tang et al., 2016; Wang et al., 2020).
Parameter Setting. During training, we set the
learning rate to 10−5. The batch size is 4. We
train the model up to 5 epochs with Adam op-
timizer. We obtain dependency trees using the
Stanford Stanza (Qi et al., 2020). The dimension
of BERT output dB is 768. The hidden dimen-
sions are selected from {128, 256, 512}. We apply
dropout (Srivastava et al., 2014) and the dropout
rate range is [0.1, 0.4]. The L2 regularization is set
to 10−6. We use 1 or 2 SA-GCN blocks in our ex-
periments. We choose k in top-k selection module
from {2, 3} to achieve the best performance. For
joint training, the weight range of opinion extrac-
tion loss is [0.05, 0.15].2

4.1 Experimental Results

We present results of the SA-GCN model in two
aspects: classification performance and qualitative
case study.
Classification. Table 2 shows comparisons of SA-
GCN with other baselines in terms of classifica-
tion accuracy and Macro-F1. From this table, we
observe that: SA-GCN achieves the best average
results on 14Lap, 15Rest and 16Rest datasets, and
obtains competitive results on 14Rest dataset. The
joint training of sentiment classification and opin-

2Our code will be released at the time of publication.
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Category Model
14Rest 14Lap 15Rest 16Rest

Acc Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc Macro-F1

BERT
BERT-SPC 84.46 76.98 78.99 75.03 - - - -
AEN-BERT 83.12 73.76 79.93 76.31 - - - -

BERT+DT?
TD-GAT-BERT 83.0 - 80.1 - - - - -
DGEDT-BERT 86.3 80.0 79.8 75.6 84.0 71.0 91.9 79.0

BERT+RDT� R-GAT+BERT 86.60 81.35 78.21 74.07 - - - -

Ours

BERT-baseline 85.56 ± 0.30 79.21 ± 0.45 79.57 ± 0.15 76.18 ± 0.31 83.45 ± 1.13 69.29 ± 1.78 91.06 ± 0.44 78.58 ± 1.62
BERT+2-layer GCN 85.78 ± 0.59 80.55 ± 0.90 79.72 ± 0.31 76.31 ± 0.35 83.71 ± 0.42 69.26 ± 1.63 91.23 ± 0.25 79.29 ± 0.51
BERT+4-layer GCN 85.03 ± 0.64 78.90 ± 0.75 79.57 ± 0.15 76.23 ± 0.49 83.48 ± 0.33 68.72 ± 1.08 91.02 ± 0.26 78.68 ± 0.50

BERT+SA-GCN† 86.16 ± 0.23 80.54 ± 0.38 80.31 ± 0.47 76.99 ± 0.59 84.18 ± 0.29 69.42 ± 0.81 91.41 ± 0.39 80.39 ± 0.93
Joint SA-GCN 86.57 ± 0.81 81.14 ± 0.69 80.61 ± 0.32 77.12 ± 0.51 84.63 ± 0.33 69.1 ± 0.78 91.54 ± 0.26 80.68 ± 0.92

Joint SA-GCN (Best�) 87.68 82.45 81.03 77.71 85.26 69.71 92.0 81.86

? DT: Dependency Tree; � RDT: Reshaped Dependency Tree.
†: Head-independent based top-k Selection.
� The “best” denotes as the best performances of our SA-GCN model from the seven runs. Row “Joint-SA-GCN” reports the average and std of these seven runs.

Table 2: Comparison of SA-GCN with various baselines.

Sentence Label GCN SA-GCN
Satay is one of those favorite haunts on Washington where the service and food is always on the money. positive neutral positive
And the fact that it comes with an i5 processor definitely speeds things up positive neutral positive
I know real Indian food and this was n’t it. negative neutral negative

Table 3: Top-k visualization: the darker the shade, the larger attention weight.

ion extraction tasks further boosts the performances
on all datasets.

Specifically, BERT+2-layer GCN outperforms
BERT-baseline, which proves the benefit of using
syntax information. BERT+4-layer GCN is actu-
ally worse than BERT+2-layer GCN, which shows
that more GCN layers do not bring additional gain.

Our BERT+SA-GCN model further outperforms
the BERT+2-layer GCN model. Because the SA-
GCN block allows aspect terms to directly absorb
the information from the most important context
words that are not reachable within two hops in the
dependency tree.

Besides, introducing the opinion extraction task
provides more supervision signals for the top-k se-
lection module, which benefits the sentiment clas-
sification task.
Qualitative Case Study. To show the efficacy of
the SA-GCN model on dealing long-hops between
aspect term and its opinion words, we demonstrate
three examples as shown in Table 3. These sen-
tences are selected from test sets of 14Lap and
14Rest datasets and predicted correctly by the SA-
GCN model but wrongly by BERT+2-layer GCN.
The important thing to note here, our SA-GCN
model could provide explanation about the pre-
diction according to the learned attention weights,
while the GCN based model (BERT+2-layer GCN
denoted as “GCN” in Table 3) cannot. Aspect terms
are colored red. Top-3 words with the largest at-
tention weights towards the aspect term are shaded.
The darker the shade, the larger attention weight.

In all three examples the aspect terms are more
than three hops away from essential opinion words

Model
14Rest 14Lap 15Rest 16Rest

F1 F1 F1 F1
IOG 80.24 71.39 73.51 81.84
ASTE 83.15 76.03 78.02 83.73
Joint SA-GCN 83.72 ± 0.51 76.79 ± 0.33 80.99 ± 0.43 83.83 ± 0.50

Table 4: Opinion extraction results.

(Please refer to Fig. 3), thus BERT+2-layer GCN
model cannot learn the interactions between them
within two layers, while SA-GCN model overcomes
the distance limitation and locates right opinion
words.
Opinion Extraction. Table 4 shows the results of
the opinion extraction task under the joint training
setting. The reported numbers are obtained by av-
eraging F1 of seven runs. In each run, the selected
opinion F1 is generated from the best sentiment
classification checkpoint. We compare our model
with two baselines: IOG (Fan et al., 2019) encodes
the aspect term information into context by an
Inward-Outward LSTM to find the corresponding
opinion words. ASTE (Peng et al., 2020) utilizes a
GCN module to learn the mutual dependency rela-
tions between different words and to guide opinion
term extraction. As shown in this table, the joint SA-
GCN model outperforms two baseline models on
all datasets, which demonstrates that the sentiment
classification task is helpful for opinion extraction
task as well.

4.2 Model Analysis

We further analyze our SA-GCN model from two
perspectives: ablation study and sentence length
analysis.
Ablation Study. To demonstrate effectiveness of
different modules in SA-GCN, we conduct ablation
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(a) case 1

(b) case 2

(c) case 3

Figure 3: Dependency trees of case study. Case 1: the aspect term “food” is four hops away from the opinion
words “favorite” and “on the money”. In cases 2 and 3, there are also three-hops distance between aspect terms
and opinion words.

Model
14Rest 14Lap 15Rest 16Rest

Acc Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc Macro-F1
SA-GCN (head-ind) 86.16 ± 0.23 80.54 ± 0.38 80.31 ± 0.47 76.99 ± 0.59 84.18 ± 0.29 69.42 ± 0.81 91.41± 0.39 80.39 ± 0.93
SA-GCN w/o top-k 85.06 ± 0.68 78.88 ± 0.83 79.96 ± 0.14 76.64 ± 0.58 83.15 ± 0.41 68.74 ± 1.48 90.92 ± 0.45 78.18 ± 0.71
SA-GCN (head-dep)� 85.41 ± 0.21 79.19 ± 0.68 80.17 ± 0.55 76.83 ± 0.59 83.68 ± 0.54 68.81 ± 1.39 91.01 ± 0.40 78.88 ± 1.04
� head-dep: head-dependent based top-k selection.

Table 5: Ablation study of SA-GCN.

studies in Table 5. From this table, we observe that:

1. Effect of Top-k Selection. To examine the im-
pact the top-k selection, we present the result
of SA-GCN w/o top-k in Table 5. We can see
that without top-k selection, both accuracy and
macro-F1 decrease on all datasets. This obser-
vation proves that the top-k selection helps to
reduce the noisy context and locate top impor-
tant opinion words. We also conduct the effect
of the hyper-parameter k and the block num-
ber N on SA-GCN under head-independent and
head-dependent selection respectively (see the
supplemental material).

2. Effect of Head-independent and Head-
dependent Selection. As shown in the last
row in Table 5, head-independent selection
achieves better results than head-dependent
selection. This is because the mechanism of
head-independent selection is similar to voting.
By summing up the weight scores from each
head, context words with higher scores in most
heads get emphasized, and words that only show
importance in few heads are filtered out. Thus
all heads reach to an agreement and the top-k
context words are decided. However for head-

dependent selection, each head selects different
top-k context words, which is more likely to
choose certain unimportant context words and
introduce noise to the model prediction.

Sentence Length Analysis. To quantify the ability
of our SA-GCN model dealing with long-distance
problem, we conduct sentence length analysis on
14Lap and 14Rest datasets. The assumption is that
the longer the sentence, the more likely the long-
distance problem occurs. The results are showed in
Figure 4. We measure the sentiment classification
accuracy of BERT+2-layer GCN (denotes as GCN
in Figure 4) and BERT+SA-GCN models under
different sentence lengths. We observe that SA-
GCN achieves better accuracy than GCN across
all length ranges and is more advantageous when
sentences are longer. To some extent, the results
prove effectiveness of SA-GCN in dealing with
long-distance problem.
Hyper-parameter Analysis. We examine the ef-
fect of the hype-parameter k and the block number
N on our proposed model under head-independent
and head-dependent selection respectively. Figure
5 shows the results on 14Rest dataset.

1. Effect of Hyper-parameter k. From Figure
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(a) Length analysis on 14Lap.
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(b) Length analysis on 14Rest.

Figure 4: Sentence length analysis on 14Lap and
14Rest.

5a, we observe that: 1) the highest accuracy
appears when k is equal to 3. As k becomes
bigger, the accuracy goes down. The reason is
that integrating information from too many con-
text words could introduce distractions and con-
fuse the representation of the current word. 2)
Head-independent selection performs better than
head-dependent selection as k increases. As men-
tioned before, compared with head-independent,
head-dependent selection might have more than
k context words contribute to the aggregation
and introduce some noise.

2. Effect of Block Number. Figure 5b shows the
effect of different number of SA-GCN blocks.
As the block number increases, the accuracy
decreases for both head-independent and head-
dependent selection. A single SA-GCN block
is sufficient for selecting top-k important con-
text words. Stacking multiple blocks introduces
more parameters and thus would lead to over-
fitting with such a small amount of training data.
This might be the reason why stacking multiple
blocks is not helpful. For our future work we
plan to look into suitable deeper GNN models
that are good for this task.
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k: number of context words
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Figure 5: Impact of k and block numbers on SA-GCN
over Restaurant dataset.

5 Conclusions

We propose a selective attention based GCN model
for the aspect-level sentiment classification task.
We first encode the aspect term and context words
by pre-trained BERT to capture the interaction be-
tween them, then build a GCN on the dependency
tree to incorporate syntax information. In order to
handle the long distance between aspect terms and
opinion words, we use the selective attention based
GCN block, to select the top-k important context
words and employ the GCN to integrate their infor-
mation for the aspect term representation learning.
Further, we adopt opinion extraction problem as an
auxiliary task to jointly train with sentiment classi-
fication task. We conduct experiments on several
SemEval datasets. The results show that SA-GCN
achieve better performances than previous strong
baselines.

References
Peng Chen, Zhongqian Sun, Lidong Bing, and Wei

Yang. 2017. Recurrent attention network on mem-
ory for aspect sentiment analysis. In Proceedings of



92

the 2017 conference on empirical methods in natural
language processing, pages 452–461.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. Proceedings of NAACL-HLT 2019, page pages
4171–4186.

Li Dong, Furu Wei, Chuanqi Tan, Duyu Tang, Ming
Zhou, and Ke Xu. 2014. Adaptive recursive neural
network for target-dependent twitter sentiment clas-
sification. In Proceedings of the 52nd annual meet-
ing of the association for computational linguistics
(volume 2: Short papers), pages 49–54.

Feifan Fan, Yansong Feng, and Dongyan Zhao. 2018.
Multi-grained attention network for aspect-level sen-
timent classification. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3433–3442.

Zhifang Fan, Zhen Wu, Xinyu Dai, Shujian Huang, and
Jiajun Chen. 2019. Target-oriented opinion words
extraction with target-fused neural sequence label-
ing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2509–2518.

Zhijiang Guo, Yan Zhang, and Wei Lu. 2019. Attention
guided graph convolutional networks for relation ex-
traction. 57th Annual Meeting of the Association for
Computational Linguistics, page 241–251.

Ruidan He, Wee Sun Lee, Hwee Tou Ng, and Daniel
Dahlmeier. 2018. Effective attention modeling for
aspect-level sentiment classification. In Proceed-
ings of the 27th International Conference on Com-
putational Linguistics, pages 1121–1131.

Binxuan Huang and Kathleen M Carley. 2019. Syntax-
aware aspect level sentiment classification with
graph attention networks. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5472–5480.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In International Conference on Learning
Representations (ICLR).

Souvik Kundu, Tushar Khot, Ashish Sabharwal, and
Peter Clark. 2019. Exploiting explicit paths for
multi-hop reading comprehension. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 2737–2747. Asso-
ciation for Computational Linguistics.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data.

Lishuang Li, Yang Liu, and AnQiao Zhou. 2018a. Hier-
archical attention based position-aware network for
aspect-level sentiment analysis. In Proceedings of
the 22nd Conference on Computational Natural Lan-
guage Learning, pages 181–189.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018b.
Deeper insights into graph convolutional networks
for semi-supervised learning. In Thirty-Second
AAAI Conference on Artificial Intelligence.

Xin Li, Lidong Bing, Wai Lam, and Bei Shi. 2018c.
Transformation networks for target-oriented senti-
ment classification. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 946–
956, Melbourne, Australia. Association for Compu-
tational Linguistics.

Jiangming Liu and Yue Zhang. 2017. Attention mod-
eling for targeted sentiment. In Proceedings of the
15th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Volume 2,
Short Papers, pages 572–577.

Thien Hai Nguyen and Kiyoaki Shirai. 2015.
Phrasernn: Phrase recursive neural network for
aspect-based sentiment analysis. In Proceedings
of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 2509–2514.

Haiyun Peng, Lu Xu, Lidong Bing, Fei Huang, Wei Lu,
and Luo Si. 2020. Knowing what, how and why:
A near complete solution for aspect-based sentiment
analysis. In AAAI, pages 8600–8607.

Maria Pontiki, Dimitris Galanis, Haris Papageorgiou,
Ion Androutsopoulos, Suresh Manandhar, Moham-
mad AL-Smadi, Mahmoud Al-Ayyoub, Yanyan
Zhao, Bing Qin, Orphée De Clercq, Véronique
Hoste, Marianna Apidianaki, Xavier Tannier, Na-
talia Loukachevitch, Evgeniy Kotelnikov, Nuria Bel,
Salud María Jiménez-Zafra, and Gülşen Eryiğit.
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