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Abstract

Readability or difficulty estimation of words
and documents has been investigated indepen-
dently in the literature, often assuming the ex-
istence of extensive annotated resources for
the other. Motivated by our analysis showing
that there is a recursive relationship between
word and document difficulty, we propose to
jointly estimate word and document difficulty
through a graph convolutional network (GCN)
in a semi-supervised fashion. Our experimen-
tal results reveal that the GCN-based method
can achieve higher accuracy than strong base-
lines, and stays robust even with a smaller
amount of labeled data.1

1 Introduction

Accurately estimating the readability or difficulty
of words and text has been an important funda-
mental task in NLP and education, with a wide
range of applications including reading resource
suggestion (Heilman et al., 2008), text simplifica-
tion (Yimam et al., 2018), and automated essay
scoring (Vajjala and Rama, 2018).

A number of linguistic resources have been cre-
ated either manually or semi-automatically for non-
native learners of languages such as English (Capel,
2010, 2012), French (François et al., 2014), and
Swedish (François et al., 2016; Alfter and Volodina,
2018), often referencing the Common European
Framework of Reference (Council of Europe, 2001,
CEFR). However, few linguistic resources exist
outside these major European languages and manu-
ally constructing such resources demands linguistic
expertise and efforts.

This led to the proliferation of NLP-based read-
ability or difficulty assessment methods to automati-
cally estimate the difficulty of words and texts (Vaj-
jala and Meurers, 2012; Wang and Andersen, 2016;
Alfter and Volodina, 2018; Vajjala and Rama, 2018;

1Our code is at https://github.com/akkikiki/
diff_joint_estimate
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Figure 1: Overview of the proposed GCN architecture
which recursively connects word wi and document dj
to exploit the recursive relationship of their difficulty.

Settles et al., 2020). However, bootstrapping lexi-
cal resources with difficulty information often as-
sumes the existence of textual datasets (e.g., digi-
tized coursebooks) annotated with difficulty. Sim-
ilarly, many text readability estimation methods
(Wang and Andersen, 2016; Xia et al., 2016) as-
sume the existence of abundant lexical or grammat-
ical resources annotated with difficulty information.
Individual research studies focus only on one side,
either words or texts, although in reality they are
closely intertwined—there is a recursive relation-
ship between word and text difficulty, where the
difficulty of a word is correlated to the minimum
difficulty of the document where that word appears,
and the difficulty of a document is correlated to
the maximum difficulty of a word in that document
(Figure 2).

We propose a method to jointly estimate word
and text readability in a semi-supervised fashion
from a smaller number of labeled data by leverag-
ing the recursive relationship between words and
documents. Specifically, we leverage recent devel-
opments in graph convolutional networks (Kipf and
Welling, 2017, GCNs) and predict the difficulty of

https://github.com/akkikiki/diff_joint_estimate
https://github.com/akkikiki/diff_joint_estimate
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words and documents simultaneously by modeling
those as nodes in a graph structure and recursively
inferring their embeddings using the convolutional
layers (Figure 1). Our model leverages not only the
supervision signals but also the recursive nature of
word-document relationship. The contributions of
this paper are two fold:

• We reframe the word and document readabil-
ity estimation task as a semi-supervised, joint
estimation problem motivated by their recur-
sive relationship of difficulty.

• We show that GCNs are effective for solving
this by exploiting unlabeled data effectively,
even when less labeled data is available.

2 Task Definition

Given a set of words W and documents D, the
goal of the joint readability estimation task is
to find a function f that maps both words and
documents to their difficulty label f : W ∪
D → Y . Documents here can be text of an
arbitrary length, although we use paragraphs as
the basic unit of prediction. This task can be
solved as a classification problem or a regres-
sion problem where Y ∈ R. We use six CEFR-
labels representing six levels of difficulty, such as
Y ∈ {A1 (lowest), A2, B1, B2, C1, C2 (highest)}
for classification, and a real-valued readability es-
timate β ∈ R inspired by the item response the-
ory (Lord, 1980, IRT) for regression2. The β for
each six CEFR level are A1= −1.38, A2= −0.67,
B1= −0.21, B2= 0.21, C1= 0.67, and C2= 1.38.

Words and documents consist of mutually ex-
clusive unlabeled subsetsWU and DU and labeled
subsets WL and DL. The function f is inferred
using the supervision signal fromWL and DL, and
potentially other signals from WU and DU (e.g.,
relationship between words and documents).

3 Exploiting Recursive Relationship by
Graph Convolutional Networks

We first show how the readability of words and doc-
uments are recursively related to each other. We
then introduce a method based on graph convolu-
tional networks (GCN) to capture such relationship.
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Figure 2: Recursive relationship of word/document dif-
ficulty. Word difficulty is correlated to the minimum dif-
ficulty of the document where that word appears, and
document difficulty is correlated to the maximum diffi-
culty of a word in that document.

3.1 Recursive Relationship of Word and
Document Difficulty

The motivation of using a graph-based method for
difficulty classification is the recursive relationship
of word and document difficulty. Figure 2 shows
such recursive relationship using the difficulty-
labeled datasets explained in Section 5. One insight
here is the strong correlation between the difficulty
of a document and the maximum difficulty of a word
in that document. This is intuitive and shares mo-
tivation with a method which exploits hierarchical
structure of a document (Yang et al., 2016). How-
ever, the key insight here is the strong correlation
between the difficulty of a word and the minimum
difficulty of a document where that word appears,
indicating that the readability of words informs that
of documents, and vise versa.

3.2 Graph Convolutional Networks on
Word-Document Graph

To capture the recursive, potentially nonlinear re-
lationship between word and document readabil-
ity while leveraging supervision signals and fea-
tures, we propose to use graph convolutional net-
works (Kipf and Welling, 2017, GCNs) specifically
built for text classification (Yao et al., 2019), which
treats words and documents as nodes. Intuitively,
the hidden layers in GCN, which recursively con-
nects word and document nodes, encourage exploit-
ing the recursive word-document relationship.

Given a heterogeneous word-document graph
G = (V,E) and its adjacency matrix A ∈
R|V |×|V |, the hidden states for each layer Hn ∈
R|V |×hn in a GCN with N hidden layers is com-

2We assumed the difficulty estimate β is normally dis-
tributed and used the mid-point of six equal portions of
N(0, 1) when mapping CEFR levels to β.
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puted using the previous layer Hn−1 as:

Hn = σ(ÃHn−1Wn) (1)

where σ is the ReLU function3, Ã = D−
1
2AD−

1
2

i.e., a symmetrically normalized matrix of A with
its degree matrix D, and Wn ∈ Rhn−1×hn is the
weight matrix for the nth layer. The input to the
first layer H1 is H0 = X where X ∈ R|V |×h0

is the feature matrix with h0 dimensions for each
node in V . We use three different edge weights
following Yao et al. (2019): (1) Aij = tfidfij if i
is a document and j is a word, (2) the normalized
point-wise mutual information (PMI) i.e., Aij =
PMI(i, j) if both i and j are words, and (3) self-
loops, i.e., Aii = 1 for all i.

We now describe the components which differs
from Yao et al. (2019). We use separate final linear
layers for words and documents4:

Zw = HNWw + bw (2)

Zd = HNWd + bd (3)

where W and b are the weight and bias of the layer,
and used a linear combination of word and docu-
ment losses weighted by α (Figure 1)

L = αL(Zw) + (1− α)L(Zd) (4)

For regression, we used Z (Zw for words and
Zd for documents) as the prediction of node v and
used the mean squared error (MSE):

L(Z) = 1

|VL|
∑
v∈VL

(Zv − Yv)2 (5)

where VL =WL ∪ DL is the set of labeled nodes.
For classification, we use a softmax layer followed
by a cross-entropy (CE) loss:

L(Z) = −
∑
v∈VL

log
exp(Zv,Yv)∑
i exp(Zv,i)

. (6)

Since GCN is transductive, node set V also in-
cludes the unlabeled nodes from the evaluation sets
and have predicted difficulty labels assigned when
training is finished.

3A simplified version of GCN with linear layers (Wu et al.,
2019) in preliminary experiments shows that hidden layers
with ReLU performed better.

4A model variant with a common linear layer (i.e., original
GCN) for both words and documents did not perform as well.

Dataset Train Dev Test

Words (CEFR-J + C1/C2) 2,043 447 389
Documents (Cambridge + A1) 482 103 98

Table 1: Dataset size for words and documents

4 Experiments

Datasets We use publicly available English
CEFR-annotated resources for second language
learners, such as CEFR-J (Negishi et al., 2013)
Vocabulary Profile as words and Cambridge En-
glish Readability Dataset (Xia et al., 2016) as doc-
uments (Table 1). Since these two datasets lack
C1/C2-level words and A1 documents, we hired a
linguistic PhD to write these missing portions5.

Baselines We compare our method against meth-
ods used in previous work (Feng et al., 2010;
Vajjala and Meurers, 2012; Martinc et al., 2019;
Deutsch et al., 2020): (1) logistic regression for
classification (LR cls), (2) linear regression for re-
gression (LR regr), (3) Gradient Boosted Decision
Tree (GBDT), and (4) Hierarchical Attention Net-
work (Yang et al., 2016, HAN), which is reported
as one of the state-of-the-art methods in readability
assessment for documents (Martinc et al., 2019;
Deutsch et al., 2020).

Features For all methods except for HAN, we
use both surface or “traditional” (Vajjala and Meur-
ers, 2012) and embedding features on words and
documents which are shown to be effective for read-
ability estimation (Culligan, 2015; Settles et al.,
2020; Deutsch et al., 2020). For words, we use
their length (in characters), the log frequency in
Wikipedia (Ginter et al., 2017), and GloVe (Pen-
nington et al., 2014). For documents, we use the
number of NLTK (Loper and Bird, 2002)-tokenized
words in a document, and the output of embeddings
from BERT-base model (Devlin et al., 2019) which
are averaged over all tokens in a given sentence.

Hyperparameters We conduct random hyperpa-
rameter search with 200 samples, separately se-
lecting two different sets of hyperparameters, one
optimized for word difficulty and the other for doc-
ument. We set the number of hidden layers N = 2
with hn = 512 for documents and N = 1 with
hn = 64 for words. See Appendix A for the details
on other hyperparameters.

5The dataset is available at https://github.com/
openlanguageprofiles/olp-en-cefrj.

https://github.com/openlanguageprofiles/olp-en-cefrj
https://github.com/openlanguageprofiles/olp-en-cefrj
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Word Document
Method Acc Corr Acc Corr

HAN - - 0.367 0.498
LR (regr) 0.409 0.534 0.480 0.657
LR (cls+m) 0.440 0.514 0.765 0.723
LR (cls+w) 0.440 0.540 0.765 0.880
GBDT 0.432 0.376 0.765 0.833
GCN (regr) 0.434 0.579 0.643 0.849
GCN (cls+m) 0.476 0.536 0.796 0.878
GCN (cls+w) 0.476 0.592 0.796 0.891

Table 2: Difficulty estimation results in accuracy (Acc)
and correlation (Corr) on classification outputs con-
verted to continuous values by taking the max (cls+m)
or weighted sum (cls+w) and regression (regr) variants
for the logistic regression (LR) and GCN.

Evaluation We use accuracy and Spearman’s
rank correlation as the metrics. When calculat-
ing the correlation for a classification model, we
convert the discrete outputs into continuous values
in two ways: (1) convert the CEFR label with the
maximum probability into corresponding β in Sec-
tion 2, (cls+m), or (2) take a sum of all β in six
labels weighted by their probabilities (cls+w).

4.1 Results

Table 2 shows the test accuracy and correlation
results. GCNs show increase in both document ac-
curacy and word accuracy compared to the baseline.
We infer that this is because GCN is good at captur-
ing the relationship between words and documents.
For example, the labeled training documents in-
clude an A1 document and that contains the word
“bicycle,” and the difficulty label of the document
is explicitly propagated to the “bicycle” word node,
whereas the logistic regression baseline mistakenly
predicts as A2-level, since it relies solely on the
input features to capture its similarities.

4.2 Ablation Study on Features

Table 3 shows the ablation study on the features
explained in Section 4. By comparing Table 2
and Table 3, which are experimented on the same
datasets, GCN without using any traditional or em-
bedding features (“None”) shows comparative re-
sults to some baselines, especially on word-level
accuracy. Therefore, the structure of the word-
document graph provides effective and complemen-
tary signal for readability estimation.

Overall, the BERT embedding is a powerful fea-

Word Document
Features Acc Corr Acc Corr

All 0.476 0.592 0.796 0.891
−word freq. 0.476 0.591 0.796 0.899
−doc length 0.481 0.601 0.796 0.890
−GloVe 0.463 0.545 0.714 0.878
−BERT 0.450 0.547 0.684 0.830
None 0.440 0.436 0.520 0.669

Table 3: Ablation study on the features used. “None”
is when applying GCN without any features (X = I
i.e., one-hot encoding per node), which solely relies on
the word-document structure of the graph.

ture for predicting document readability on Cam-
bridge Readabilty Dataset. Ablating the BERT em-
beddings (Table 3) significantly decreases the doc-
ument accuracy (−0.112) which is consistent with
the previous work (Martinc et al., 2019; Deutsch
et al., 2020) that BERT being one of the best-
performing method for predicting document read-
ability on one of the datasets they used, and HAN
performing relatively low due to not using the
BERT embeddings.

4.3 Training on Less Labeled Data

To analyze whether GCN is robust when training
dataset is small, we compare the baseline and GCN
by varying the amount of labeled training data. In
Figure 3, we observe consistent improvement in
GCN over the baseline especially in word accu-
racy. This outcome suggests that the performance
of GCN stays robust even with smaller training
data by exploiting the signals gained from the re-
cursive word-document relationship and their struc-
ture. Another trend observed in Figure 3 is the
larger gap in word accuracy compared to document
accuracy when the training data is small likely due
to GCN explicitly using context given by word-
document edges.

5 Conclusion

In this paper, we proposed a GCN-based method
to jointly estimate the readability on both words
and documents. We experimentally showed that
GCN achieves higher accuracy by capturing the
recursive difficulty relationship between words and
documents, even when using a smaller amount of
labeled data. GCNs are a versatile framework that
allows inclusion of diverse types of nodes, such as
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Figure 3: Word and document accuracy with different
amount of training data used.

subwords, paragraphs, and even grammatical con-
cepts. We leave this investigation as future work.
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A Hyperparameter Details

We conduct random hyperparameter search
with 200 samples in the following ranges:
α ∈ {0.1, 0.2, ..., 0.9}, the learning rate from
{1, 2, 5, 10, 20, 50, 100}× 10−4, dropout probabil-
ity from {0.1, 0.2, ..., 0.5}, the number of epochs
from {250, 500, 1000, 1500, 2000}, the number of
hidden units hn ∈ {32, 64, 128, 256, 512, 1024},
the number of hidden layers from {1, 2, 3}, and the
PMI window width from {disabled, 5, 10, 15, 20}.

We now describe the selected best combination
of hyperparameters for each setting. For GCN in
the classification setting, the selected hyperparame-
ters for document difficulty estimation are:

• α: 0.3
• Learning rate: 5 · 10−4
• Dropout probability: 0.5
• The number of epochs: 500
• The number of hidden units hn: 512
• The number of hidden layers N : 2
• PMI window width: 5

and for word difficulty estimation, the selected hy-
perparameters are:

• α: 0.2
• Learning rate: 5 · 10−3
• Dropout probability: 0.2
• The number of epochs: 250
• The number of hidden units hn: 64
• The number of hidden layers N : 1
• PMI window width: disabled

For GCN in the regression setting, the selected
hyperparameters for document difficulty estimation
are:

• α: 0.4
• Learning rate: 2 · 10−4
• Dropout probability: 0.3
• The number of epochs: 1500
• The number of hidden units hn: 128
• The number of hidden layers N : 2
• PMI window width: 5

and for word difficulty estimation, the selected hy-
perparameters are:

• α: 0.2
• Learning rate: 1 · 10−3
• Dropout probability: 0.1
• The number of epochs: 500
• The number of hidden units hn: 512
• The number of hidden layers N : 2
• PMI window width: disabled
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