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Abstract

Recent works show that the graph structure of
sentences, generated from dependency parsers,
has potential for improving event detection.
However, they often only leverage the edges
(dependencies) between words, and discard
the dependency labels (e.g., nominal-subject),
treating the underlying graph edges as homo-
geneous. In this work, we propose a novel
framework for incorporating both dependen-
cies and their labels using a recently proposed
technique called Graph Transformer Networks
(GTN). We integrate GTNs to leverage depen-
dency relations on two existing homogeneous-
graph-based models, and demonstrate an im-
provement in the F1 score on the ACE dataset.

1 Introduction

Event detection is an important task in natural lan-
guage processing, which encompasses predicting
important incidents in texts, e.g., news, tweets, mes-
sages, and manuscripts (Yang and Mitchell, 2016;
Nguyen et al., 2016; Feng et al., 2016; Zhang et al.,
2020; Du and Cardie, 2020; McClosky et al., 2011;
Ji and Grishman, 2008; Liao and Grishman, 2010;
Li et al., 2013; Yang et al., 2019). As an exam-
ple, consider the following sentence: The plane
arrived back to base safely. Here, the word ar-
rived is an event trigger that denotes an event of
the type “Movement:Transport,” while “The plane”
and “base” are its arguments. Given a sentence, the
objective of the event detection task is to predict
all such event triggers and their respective types.

Recent works on event detection (Nguyen and
Grishman, 2018; Liu et al., 2018; Yan et al., 2019;
Balali et al., 2020) employ graph based methods
(Graph Convolution Networks (Kipf and Welling,
2017)) using the dependency graph (shown in
Fig. 1) generated from syntactic dependency-
parsers. These methods are able to capture use-
ful non-local dependencies between words that are
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Figure 1: Examples of syntactic dependency parsing.

relevant for event detection. However, in most of
these works (with the notable exception of Cui et al.
(2020)), the graph is treated as a homogeneous
graph, and the dependency labels (i.e., edge-types
in the graph) are ignored.

Dependency labels can often better inform
whether a word is a trigger or not. Consider the two
sentences in Fig. 1. In both the sentences, there is
an edge between “police” and “fired”. A model that
does not take into account dependency labels will
only have access to the information that they are
connected. However, in the first sentence, “fired” is
an event trigger of type “Conflict:Attack,” whereas
in the second sentence, it is of type “Personnel:End
Position.” The fact that the edge label between “po-
lice” and “fired” is a nominal-subject or an object
relation serves as an indicator of the type of event
trigger. Hence, leveraging the dependency labels
can help improve the event detection performance.

In this work, we propose a simple method to
employ the dependency labels into existing models
inspired from a recently proposed technique called
Graph Transformer Networks (GTN) (Yun et al.,
2019). GTNs enable us to learn a soft selection of
edge-types and composite relations (e.g., multi-hop
connections, called meta-paths) among the words,
thus producing heterogeneous adjacency matrices.

We integrate GTNs into two homogeneous-
graph-based models (that previously ignored the de-
pendency relations), namely, a simple gated-graph-
convolution-based model inspired by Nguyen and
Grishman (2018); Liu et al. (2018); Balali et al.
(2020), and the near-state-of-the-art MOGANED
model (Yan et al., 2019), enabling them to now
leverage the dependency relations as well. Our
method demonstrates a relative improvement in the
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Figure 2: Embedding and BiLSTM Module.

Figure 3: Basic Gated-Graph-Convolution Network.

F1 score on the ACE dataset (Walker et al., 2006)
for both models, proving the value of leveraging de-
pendency relations for a graph-based model. While
the goal of this paper is not to establish a state-of-
the-art (SOTA) method, but rather to show the merit
of our approach, we do note that the improvements
with our method approach the current SOTA (Cui
et al., 2020) (which leverages dependency relations
using embeddings instead of GTNs).

To summarize, our main contribution is a method
of enabling existing homogeneous-graph-based
models to exploit dependency labels for event de-
tection, inspired from GTNs. Incorporating GTNs
in NLP tasks has received less attention (also see
recent related work Veyseh et al. (2020)).
Notations: We denote matrices and vectors in bold,
e.g., A (matrix) or a (vector). Note that, A(u, v)
denotes the element at index (u, v) in matrixA.

2 Proposed Method

In this work, we incorporate GTNs onto two
homogeneous-graph-based models: (i) Model I:
a gated-graph-convolution-based model inspired
by Nguyen and Grishman (2018); Liu et al. (2018);
Balali et al. (2020); and (ii) Model II: MOGANED
model (Yan et al., 2019). Both models have a sim-
ilar initial embedding and BiLSTM module, fol-
lowed by a graph-based module (where their differ-
ences lie), and finally a classification module.
Embedding and BiLSTM Module: Our initial
module (shown in Fig. 2) is similar to existing
works (e.g., Yan et al. (2019)). Each word of the
sentence is represented by a token which consists of
the word embedding, the POS tag embedding, the
Named-Entity type embedding, and its positional

Figure 4: (Left) Model I; (Right) Model II.

embedding. For a sentence of n words, we denote
this sequence of tokens as X = x0, x1, . . . , xn−1.
Next, we introduce a BiLSTM to encode X into
its context P = p0, p1, . . . , pn−1 where pi =

[
→

LSTM(xi)||
←

LSTM(xi)], and || denotes the con-
catenation operation. P is then fed to the graph-
based module, as discussed next.
Graph-Based Module: We first introduce the
basic unit of both Model I and II, i.e., gated-
graph-convolution network (see Fig. 3). Let
Hk = hk0, h

k
1, . . . , h

k
n−1 be the input and Hk+1 =

hk+1
0 , hk+1

1 , . . . , hk+1
n−1 be the output of the k-th

layer of this module with H0 = P . Given any
adjacency matrix A and input Hk, consider the
following operation at layer k:

fu(H
k,A) =

n−1∑
v=0

Gk
A(u, v)(W k

Ah
k
v + b

k
A). (1)

Here, W k
A and bkA are the weight matrix and

bias item for the adjacency matrix A at layer k,
and Gk

A(u, v) is the gated-importance, given by
Gk

A(u, v) = A(u, v)σ(wk
att,Ah

k
v + εkatt,A), where

σ(·) is an activation function, andwatt,A and εatt,A
are the attention weight vector and bias item.

A dependency parser, e.g., Stanford Core
NLP (Manning et al., 2014), generates a directed
heterogeneous graph G for each sentence (recall
Fig. 1). Existing works typically do not use the de-
pendency labels (e.g., nominal-subject); they only
derive three homogeneous adjacency matrices from
G as follows: (i) Afwd where Afwd(i, j) = 1 if
there is an edge from node i to j; (ii)Arev where
Arev(i, j) = 1 if there is an edge from node j to i;
and (iii)Aloop which is an identity matrix.

For Model I (see Fig. 4 (Left)), the output
of the k-th layer (input to k+1-th layer) is given by
hk+1
u =ReLu(

∑
A∈{Afwd,Arev ,Aloop} fu(H

k,A)).
The first layer of gated-graph-convolution network
captures dependencies between immediate neigh-
bors (1-hop). To capture K-hop dependencies,
Model I has K consecutive layers of such gated-
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Figure 5: GTN to obtain heterogeneous adjacency ma-
trix of meta-path length 1 (Recall Fig. 1 for the graph).

graph-convolution networks. The output of this
graph-based module is then fed to a multi-layer
perceptron (MLP) with attention weights for
classifying each word into its event-type (or “not
an event”).

In Model II, instead of passing the BiLSTM
output P through a series of K consecutive gated-
graph-convolution layers (to capture K-hop con-
nections), this model separately aggregates the
outputs of T parallel graph-convolution layers
with separate adjacency matrices representing hops
of length 1, 2, . . . , T (see Fig. 4 (Right)). Let
H0(= P ) be the input and H1 be the output
of the graph-based module of Model II (which
effectively has only one layer, i.e., k=0). In
Yan et al. (2019), the homogeneous adjacency
matrices Afwd, Arev, and Aloop are considered
with their corresponding t-hop adjacency matri-
ces At

fwd, At
rev, and At

loop (multiplied t times)
respectively. The output of the graph-based
module is given by: h1u=

∑T−1
t=0 watt,tvt where

vt =
∑

A∈{Afwd,Arev ,Aloop} σ(fu(H
0,At)).

Here,watt,t is an attention-weight (further details
in (Yan et al., 2019)) and σ(·) is the exponential lin-
ear unit1. Finally, these outputs are passed through
an MLP with attention weights for classification.
Remark. The reason for using only three matri-
ces instead of a separate adjacency matrix for each
edge-type is that it results in an explosion of pa-
rameters for the gated-graph-convolution network,
as individual weight matrices have to be learnt for
each type of edge (see also Nguyen and Grishman
(2018)). In this work, we replace the homogeneous
matrices Afwd and Arev with heterogeneous ad-
jacency matrices without a significant overhead in
the number of parameters, as discussed next.
Obtaining Heterogeneous Adjacency Matrices
With GTN: Consider a directed heterogeneous
graph G with each edge belonging to one ofL types.
This graph can be represented using a set of L adja-
cency matrices {Afwd,0,Afwd,1, . . . ,Afwd,L−1},

1The gated-importance Gk
A(u, v) has subtle differences

between Model I and II.

each corresponding to a different edge-type (depen-
dency label). Afwd,l(i, j) = 1 if there is a directed
edge from node i to j of type l. A GTN obtains a
heterogeneous adjacency matrix by learning a con-
vex combination Qfwd =

∑L−1
l=0 αlAfwd,l (see

Fig. 5) where α = softmax(w) and w is a weight
vector that the model learns. The matrixQfwd is a
heterogeneous adjacency matrix with an “appropri-
ately weighted” edge between any two nodes that
have an edge in any of the L original matrices.

For Model I, we first generate a set of L adja-
cency matrices (for L edge-types) corresponding
to the directed forward edges, and another set of
L adjacency matrices corresponding to the reverse
edges. Next, we learn heterogeneous adjacency ma-
trices, i.e.,Afwd = Qfwd andArev = Qrev. Our
technique enables baseline Model I to leverage de-
pendency relations by learning only 2Lmore scalar
parameters which is significantly less than learning
individual weight matrices for L edge-types.

For Model II, we not only aim to learn hetero-
geneous adjacency matrices to replace the homo-
geneous Afwd and Arev, but also learn heteroge-
neous adjacency matrices that have an “appropri-
ately weighted” edge between every two nodes that
are t-hops apart in the original graph G (called a
meta-path of length t) so as to replace At

fwd and
At

rev. Specifically, for the case of t = 2, GTN
first learns two convex combinations Qfwd,0 and
Qfwd,1 (each corresponds to meta-paths of length
1), and then computes the productQfwd,0Qfwd,1.
Similarly, one can compute a product of t such
adjacency matrices to learn meta-paths of length t.

We replace all t-hop adjacency matrices with het-
erogeneous adjacency matrices of meta-path length
t, learnt through GTNs, e.g.,At

fwd is replaced by
Qfwd,0Qfwd,1 . . .Qfwd,t−1, where eachQfwd,i is
a convex combination of L-adjacency matrices cor-
responding to the directed forward edges. Simi-
lar heterogeneous adjacency matrices of meta-path
length t are learnt for the reverse edges as well to
replaceAt

rev. This modification enables the base-
line Model II to leverage the dependency relations,
by only learning 2Lt more scalar parameters for
each t, which is practicable.

3 Results

Dataset and Evaluation Metrics: We use the
benchmark ACE2005 English dataset (Walker et al.,
2006) with the same data split as in prior works
(where the sentences from 529, 30, and 40 docu-
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K P R F1
1 72.0 75.5 73.7
2 70.7 75.7 73.1
3 72.8 70.7 71.7

K P R F1
1 72.9 76.4 74.6
2 72.1 75.9 74.0
3 73.8 73.6 73.7

Table 1: Performance of gated-graph-convolution-
based models (Model I) for varying number of consec-
utive convolution layers (K): (Left) Baseline models
with no GTNs; (Right) Proposed models with GTNs.

Method P R F1
Baseline (no GTNs) 79.5 72.3 75.7
Proposed (with GTNs) 80.9 73.2 76.8

Table 2: Performance of MOGANED (Model II).

ments are used as the training, validation, and test
set). We use the Stanford CoreNLP toolkit (Man-
ning et al., 2014) for sentence splitting, tokeniz-
ing, POS-tagging and dependency parsing. We
use word embeddings trained over the New York
Times corpus with Skip-gram algorithm following
existing works (Yan et al., 2019). We evaluate the
Precision (P), Recall (R) and F1 score.
Model Settings: For Model I, the number of
consecutive layers of gated-graph-convolution net-
works (K) is varied from 1 to 3. For Model II, we
use the code2 with same hyper parameter settings.
Performance: For both Models I and II, GTNs
demonstrate an improvement of about 1 point F1
score (see Tables 1 and 2). The 76.8 F1 score for
Model II with GTNs is also quite close to the SOTA
performance of 77.6 for this task (Cui et al., 2020).
Examining Specific Predictions For Insights:
To explain the role of GTNs, we examined all the
predictions on the validation set using the baseline
Model II (no GTNs) and the proposed Model II
(with GTNs). We include some specific instances
here that we found interesting and insightful.

We observe that using GTNs makes the predic-
tions more “precise,” by reducing the number of
false-positive event trigger detections. For instance,
He’s now national director of Win Without War, and
former Congressman Bob Dornan, Republican of
California. Here, “former” is the only event trigger
(type Personnel:End-Position), as is correctly iden-
tified by our model. However, the baseline model
also falsely identifies “War,” as an event trigger
of type Conflict:Attack. Another example is: In
a monstrous conflict of interest, [...]. Here, the
baseline falsely identifies “conflict,” as a trigger of

2https://github.com/ll0iecas/MOGANED

type Conflict:Attack. Our model is able to identify
“War,” and “conflict” as non-triggers based on their
context in the sentence, while the baseline seems
to be over-emphasizing on their literal meaning.

In some cases, the baseline model also leads to
misclassification. For instance, The Apache troop
opened its tank guns,[...]. Here, “opened,” is an
event trigger of type Conflict:Attack, as is correctly
identified by our model; however, the baseline mis-
classifies it as type Movement:Transport.

Another interesting example is: [...] Beatriz
walked into the USCF Offices in New Windsor and
immediately fired 17 staff members. Here, “walked”
is an event trigger of type Movement:Transport,
and “fired” is of type Personnel:End-Position.
The baseline model misclassifies “fired” as Con-
flict:Attack, while using GTNs help classify it cor-
rectly. However, using GTNs can sometimes miss
certain event triggers while attempting to be more
precise, e.g., “walked” is missed when using GTNs
while the baseline model identifies it correctly.

Lastly, there are examples where both the base-
line and proposed models make the same errors.
E.g., I visited all their families. or, I would have
shot the insurgent too. Here, both models mis-
classify “visited,” (type Contact:Meet) as Move-
ment:Transport, and “shot,” (type Life:Die) as Con-
flict:Attack. As future work, we are examining
alternate techniques that better inform the context
of the event trigger in such sentences. Another in-
teresting example is: “It is legal, and it is done.”
Both models miss “it,” (type Transaction:Transfer-
Money). For this example (and some other similar
examples of anaphora resolution), we believe that
it might be quite non-intuitive to classify the event
trigger from the sentence alone, and dependencies
among sentences from the same article might need
to be leveraged to better inform the context, as we
will examine in future work.

4 Conclusion

We developed a novel method of enabling existing
event extraction models to leverage dependency
relations without a significant rise in the number of
parameters to be learnt. Our method relies on GTN,
and demonstrates an improvement in F1 score over
two strong baseline models that do not leverage
dependency relations. The benefits of using GTN
in an NLP task suggests that other NLP tasks could
be improved in the future.

https://github.com/ll0iecas/MOGANED
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A More Details on the MOGANED model

There are some subtle differences in the graph-attention mechanisms of Model I and II. In par-
ticular, for Model II, the gated-importance G0

A(u, v) in equation (1) is redefined as follows:
G0

A(u, v)=softmax(E(u, v)),whereE(u, v)=A(u, v)γ(Wc,A[Watt,Ah
0
u||Watt,Ah

0
v]), γ is LeakyReLU

(with negative input slope α), andWc,A andWatt,A are weight matrices. Further details are provided in
Yan et al. (2019).

B Data Preprocessing

We use the same data split as several existing works (Nguyen et al., 2016; Nguyen and Grishman, 2018;
Liu et al., 2018; Balali et al., 2020; Yan et al., 2019; Cui et al., 2020; Ji and Grishman, 2008; Liao and
Grishman, 2010; Li et al., 2013), where the sentences from 529, 30, and 40 documents are used as the
training, validation, and test set. For preprocessing, we directly used the following code3 which uses the
Stanford Core NLP toolkit (Manning et al., 2014).

C Hyper Parameter Setting

For both the models, we select 100 as the dimension of the word embeddings, and 50 as the dimension
of all the other embeddings, i.e., POS-tag embedding, Named-Entity-type embedding, and positional
embedding. Following prior work, we restrict the length of each sentence to be 50 (truncating long
sentences if necessary). We select the hidden units of the BiLSTM network as 100. We choose a batch size
of 10, and Adam with initial learning rate of 0.0002. We select the dimension of the graph representation
to be 150. When using GTNs, the number of edge-types (L) is 35, which is determined by the number of
unique types of dependency relations, e.g., nsubj, case, etc., as obtained from the dependency parser.

3https://github.com/nlpcl-lab/ace2005-preprocessing
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