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Abstract

In this paper, we define an abstract task called
structural realization that generates words
given a prefix of words and a partial representa-
tion of a parse tree. We also present a method
for solving instances of this task using a Gated
Graph Neural Network (GGNN). We evaluate
it with standard accuracy measures, as well as
with respect to perplexity, in which its compar-
ison to previous work on language modelling
serves to quantify the information added to a
lexical selection task by the presence of syn-
tactic knowledge. That the addition of parse-
tree-internal nodes to this neural model should
improve the model, with respect both to accu-
racy and to more conventional measures such
as perplexity, may seem unsurprising, but pre-
vious attempts have not met with nearly as
much success. We have also learned that trans-
verse links through the parse tree compromise
the model’s accuracy at generating adjectival
and nominal parts of speech.

1 Introduction

We conjecture that this may be an opportune time
to reassess the extent to which syntax is capable
of contributing to a word prediction task. Struc-
tured realization is a generalization of language
modelling in which we receive n− j words as in-
put, together with a syntactic structure that has a
yield of n word positions and spans the input, plus
an “overhang” of j unrealized word positions. Our
task is to fill in the most likely missing j words.
Language modelling generally possesses only the
trivial annotation that consists of the words them-
selves and has historically assumed that j = 1,
constituting an n-gram. Notable exceptions date
back to the work of Chelba (2000) on structured
language modelling, in which the syntactic annota-
tion is partial, in that there is no overhang (j = 0),
but structurally non-trivial, although often sparing

relative to corpora that parsers are trained upon.1

The most thorough exploration of this direction
is probably that of Köhn and Baumann (2016),
who equip a variety of language models with a
pretrained dependency parser, which they use to
predict the part of speech (POS) of the next word
and some overarching syntactic structure, and then
predict the next word from its POS plus an n-gram
word history. They report a roughly 6% perplexity
reduction across the different models.

In the specific case where a complete, spanning,
syntactic representation is provided, but the model
is evaluated solely from a zero-prefix initialization
(i.e., n = j), this generalization can be viewed as
a simple purely syntactic surface-realization prob-
lem, as one would find in a generation task.

With no fanfare whatsoever in CL circles, the
machine learning community proposed an evalua-
tion task seven years ago called “MadLibs” Kiros
et al. (2014). In our terminology, the syntactic an-
notation provided is merely n− j words followed
by a string of j POS tags. While it may be difficult
to imagine that someone would be in possession
of this POS information without also knowing how
the POS tags connected together, the authors were
interested in testing a new multiplicative neural
language model, in which attributes (such as POS
tags) can be attached to input words.

In a neural setting, parse trees can be encoded
with a generalization of recurrent neural networks
(RNNs) called Graph Neural Networks (GNNs).
GNNs have been used as encoders to deal with
a variety of different NLP problems (see related
work section later). Gated GNNs (GGNNs) are an
improvement over GNNs that is analogous to that
of GRUs over RNNs. They train faster, and they
address problems with vanishing gradients.

1Chelba (2000) proposes that, in order to iteratively predict
one word at a time, a structured language model should predict
syntactic structure over every word that it has predicted, but in
his evaluation, it is very clear that he is more concerned with
the first stage of word prediction.
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We shall compare two modes of our model here
using GGNN-encoded parse trees: one with parse
trees from OntoNotes 5.0 (Hovy et al., 2006; Prad-
han et al., 2013; Weischedel et al., 2013), and one
with vestigial transitions between pre-terminal cat-
egories in sequence, which resembles the syntactic
annotation selected by Kiros et al. (2014), although
here the word prefix is also POS-annotated. We
also test the combination of the two: a syntactic
tree augmented by a linear pipeline of transitions
between pre-terminals. We compute sentence-level
accuracy by measuring how many words in the gen-
erated strings legitimately belong to their assigned
POS categories, and compute word-level accuracy
scores in three ways: accuracy at choosing a word
of the appropriate part of speech (this time with the
prefix of words corrected to what the corpus says,
as necessary), rank of the corpus sentences by data
likelihood, and word-guessing accuracy, relative to
what appears in the corpus.

2 Method

In this paper, we exploit a Gated Graph Neural
Network (GGNN) (Li et al., 2016) as a parse tree
encoder. GNN encoders have been shown to be
efficient for neural machine translation (Beck et al.,
2018; Bastings et al., 2017) whereas in our case,
we focus on structured realization. GGNNs define
a propagation model that extends RNNs to arbitrary
graphs and learn propagation rules between nodes.
We aim to encode syntactic trees by propagating
category labels throughout the tree’s structure.

2.1 Gated Graph Neural Networks

For completeness, we briefly summarize the
GGNN model (Li et al., 2016). A GGNN uses
a directed graph {V,E} where V and E are the sets
of nodes and edges. We represent the initial state
of a node v as sv and the hidden state of node v
at propagation time step t as htv. The adjacency
matrix A ∈ R|V |×N |V | determines how the nodes
in the graph propagate information to each other,
where N represents the number of different edge
types. Figure 1 is the visual representation of a
GGNN; it starts with h0v = sv, then follows a prop-
agation model which unrolls T steps and generates
hTv at the end. Each unroll step follows the same

rule to compute htv from h
(t−1)
v and A:

atv = A>v [ht−11
>
, ..., ht−1|V |

>
]> + b

rtv = σ(W ratv + U rh(t−1)v )

ztv = σ(W zatv + U zh(t−1)v )

h̃tv = tanh(Watv + U(rtv � h(t−1)v ))

htv = (1− ztv)� h(t−1)v + ztv � h̃tv.

(1)

b,W,W r,W z, U, U r, U z above are trainable pa-
rameters.

After information is propagated for T time steps,
each node’s hidden state collectively represents a
message about itself and its neighbourhood, which
is then passed to its neighbours. Finally there is
the output model. For example, Acuna et al. (2018)
implemented their output model by:

hv = tanh(FC1(h
T
v ))

outv = FC2(hv)
(2)

where FC1 and FC2 are two fully connected lay-
ers.

2.2 Gated Graph Neural Network Models
In this part, we will describe how we use GGNNs
and parse trees to build our three experimental mod-
els. Figure 2 depicts example trees for these models.

2.2.1 Input Tree Construction
Since we are using GGNNs, we first need to con-
struct the graph by giving the parse tree. We build
three different models:

Model 1: For a given parse tree, let N be the
number of nodes in the parse tree. Then the ad-
jacency matrix of the tree, denoted as A, is an N
× 2N matrix, concatenating two N × N matrices.
A[:N,:] is the forward adjacency matrix of the tree
and A[N:,:] is the backward adjacency matrix.

Model 2: The input does not consider interior
parse tree nodes, but instead works more like a
conventional language model. For each parse tree,
and given a sequence of words (w1, w2, ..., wn−1),
we retain all and only the pre-terminal parse tree
nodes, and then attempt to predict the next wordwn.
This is the model of Kiros et al. (2014). Note that,
while it is essentially a language model, the nodes
of this Model are a subset of the nodes of Model
1, although the edges are completely different, en-
coding only transitions between the pre-terminals
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Figure 1: An example GGNN. The GGNN generates output from a directed graph. It consists of a propagation
model and an output model. During the propagation step, there are two different edge types in this graph. Black
arrows are the OUT edges while red arrows are the IN edges.

(1) (2) (3)

Figure 2: Example of an input parse tree with a given input word prefix (w1 = Germany) and a completion
consisting of POS/pre-terminal categories. The number near each node represents its index within the adjacency
matrix of the tree (Figure 3). Red arrows are forward edges, green dashed arrows are backward edges and black
arrows represent a transverse edge between pre-terminals. The partial trees each contain 1 terminal("Germany"),
4 pre-terminals ("NP","MD","VB",".") and, in Models (1) and (3), 3 other interior categories ("S","N","V"). We
want to predict the word after Germany, which will be the child of pre-terminal "MD". The input of Model 1
considers tree nodes and forward/backward edges, but not transverse pre-terminal edges. The input of Model 2
does not include other parts of the tree except pre-terminals and the given terminals, yet it contains all three kinds
of edges. The input of Model 3 which contains all tree nodes and all edges.

in sequence. This time, the adjacency matrix A is
N × 3N which is a concatenation of three N × N
matrices: Aforward, Abackward and Apre−terminal.

Model 3: This one is the combination of the
above two. The number of nodes is the same as
for Model 1. The adjacency matrix is the addition
of each respective pair of Aforward, Abackward and
Apre−terminal, concatenated together.

Figure 2 depicts an example for each model. By
comparing the results for different models later,
we will understand how essential inner nodes and
edges between pre-terminals are for word predic-
tion. Also note that Model 1 and Model 3 have the
same number of nodes, but the number of nodes
in Model 2 is smaller. Nevertheless, in all three
models, the input may contain a prefix of n − j
words. As mentioned above, when this prefix is

zero-length, we have three classical surface realiza-
tion models. But we can also view all three models
as generalizations of language models, in which:

P (W ) = P (w1w2...wn)

=

n∏
i=1

P (wi|treei−1)
(3)

and treei−1 is the parse tree with the 1th, 2th...(i−
1)th word tokens in place.

2.2.2 Terminal, Pre-terminal and Interior
Tags

Once we have constructed the graph, we need to
construct input for the model. Let D = 100 be
the dimension of a set of word-embedding vectors
over a fixed lexicon. The input to each model is
an N × D matrix. All three types of nodes need
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Figure 3: The adjacency matrix of the above in-
put example (1) in Figure 2. Blank slots repre-
sent 0, meaning no edge between two nodes. A =
[Aforward,Abackward].

to be represented in same-dimensional vectors: 1)
terminals, i.e. words, 2) pre-terminals (nodes that
only appear as a parent of a leaf), and 3) interior
node tags (nodes that are neither leaves nor pre-
terminals). We then need to normalize all vectors.

We associate each terminal (word) with its
GloVe (Pennington et al., 2014) pre-trained word
vector (trained from Wikipedia 2014 + Gigaword
5, containing a 400K-word vocabulary).

For pre-terminals, we gather sequences (e.g.,
"NP MD VB ." in Figure 1) for each input sentence,
prepare a corpus consisting only of these tags, and
train embedding vectors directly on the POS tags
by using the GloVe algorithms (Pennington et al.,
2014). We then associate each pre-terminal with
its corresponding vector.

The number of interior tags is larger than D,
however, so one-hot is not appropriate in this case.
For each interior node, we randomly generate a
D-dimensional vector, sampling each entry of the
vector from a standard Gaussian distribution.

2.2.3 Predict Words
After the input presentation, the propagation step
and a fully connected layer, the model will gener-
ate an N × D output matrix. In other words, all
N nodes in the parse tree will have D-dimensional
output. In language modelling mode, we would
not care about any output except the one gen-
erated by the pre-terminal dominating the posi-
tion of wn−j+1. Let v̂ denote this normalized D-
dimensional output. The probability of wn−j+1

given the tree, P (wn−j+1 = i|treen−j) =:

exp(c2 × (v̂T · vi))∑V
j=0 exp(c

2 × (v̂T · vj)))
(4)

where V is the size of the pre-trained lexicon, vi
and vj are vector representations for the ith and
jth word types. We choose i with maximum con-
ditional probability. This is equivalent to choosing
the i for which vi is the closest word vector v̂.

When c = 1 and treen−j consists only of the
sequence of input words (w1, w2, ..., wn−j), Eq 4
would correspond to a standard language model.
The interval [e−1, e1] is too small as the range of the
numerator to distinguish between good predictions
and bad predictions. So instead of only normalizing
them, we also multiply by a constant c. Thus the
range of the numerator becomes [e−c

2
, ec

2
]. We

tuned c manually from 1 to 15 based on model 1.
Figure 4 shows that c = 6 is the best, as it has the
lowest cross entropy compared with other values.
We will assume c = 6 in Section 3.

Figure 4: Average cross entropy loss of validation set
using Model 1 with different magnitude of vectors.

3 Results

3.1 Datasets

We train and test all models on OntoNotes 5.0,
which contains 110,000+ English sentences from
print publications. We also train and evaluate the
perplexity of all models on the Penn Treebank
(Marcus et al., 1993), as this has become a standard
among syntax-driven language models. PTB $2-21
are used as training data, $24 is for validation, and
$23 is used for testing.
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We excluded those trees/sentences with words
that are not in GloVe’s (Pennington et al., 2014)
pre-trained vocabulary from both the training and
validation data. The test set and validation set were
excluded from our development cycle. Dataset
statistics are provided in Table 1.

3.2 Training Details

We used 100-dimensional pre-trained GloVe vec-
tors to represent different kinds of leaves in the
tree. As the loss function, we use cross entropy
loss which is calculated based on Equation 4. For
each complete parse tree in the training set, let n
be the number of leaves/terminals in this tree. So
this tree has n different possible prefixes of known
words(w1...wi, 0 ≤ i ≤ n− 1), each with a parse
tree as training input. In addition, since the num-
ber of nodes in different graphs is distinct, we use
stochastic gradient descent with a learning rate of
0.01 to train the model (i.e. batch size = 1).

Perplexity relates to cross-entropy loss:

PPL = e−
1
N

∑
i p(x) log y(x) (5)

This is corpus-level perplexity, where x is an arbi-
trary word and p(x) is the function we discussed
in Eq 4 and N is the number of predictions. The
magnitude c = 6 also has lowest perplexity.

3.3 Realization Accuracy

A simple way to evaluate the accuracy of the mod-
els as implementations of the structured realiza-
tion task is to consider their sentence output in
terms of POS accuracy. If we simply remove the
yields of corpus trees and attempt to regenerate
them from the trees, the resulting strings will often
differ from the original yields, but they may still
be grammatical in the sense of the first j tokens
having the appropriate POS tag sequence. Table 2
shows the sentence-level word and POS accura-
cies on the OntoNotes test set. Both OntoNotes
and PTB provide gold-standard (human labeled)
syntactic constituency parse trees. We trained our
model on these trees. These trees are expensive,
however, so we also evaluated on trees obtained
from the Berkeley neural parser (Kitaev and Klein,
2018) a state-of-the-art constituency parser with an
F1 = 95 score on the PTB.

3.4 Continuity of Latent Spaces

Some trees have the same unlabelled tree structure,
although they may have different nodes. We can

randomly pick two such isomorphic constituency
trees T1 and T2, delete their leaves then linearly
interpolate between their corresponding nodes and
generate. For an arbitrary node of the ith inter-
mediate tree, the vector representation would be:

node = (1− λ)× T1(node)
+ λ× T2(node),

(6)

for some value of λ ∈ [0, 1]. Table 3 demonstrates
sentences generated from trees for various values
of λ. This kind of “semantic continuity” has been
demonstrated before on vector encodings, but, to
our knowledge, not on structured spaces such as
parallel trees of vectors.

3.5 Perplexity

Perplexity is perhaps the most common evaluation
measure in the language modelling literature. The
formula of perplexity was shown in Eq 5.

We trained and evaluated our Models on the dif-
ferent datasets listed in Table 1. The perplexities
of the test data sets are listed in Table 4. RNNG
(Dyer et al., 2016) is a state-of-the-art syntax-aware
model. LSTM-256 LM is our self implemented
language model using 2-layer LSTM cell with se-
quence length 20 and hidden state size 256. Our
three models have lower perplexities across the
board compared with RNNG on both OntoNotes
and PTB. Model 3 on gold parse trees has the low-
est perplexity overall, although it is important to
remember that our models benefit from distribu-
tions from Wikipedia that are implicitly encoded
in the GloVe vectors. LSTMs that use GloVe per-
form worse than the LSTMs with trainable word
embeddings shown here.2

In addition, for comparion, we trained our mod-
els on PTB $2–21 excluding those trees that contain
words that are not in GloVe, but tested on the entire
PTB $23 with gold syntactic constituency parsing
trees. For those words not in GloVe, we followed
the method in RNNG (Dyer et al., 2016). First,
we replace them by <UNK-XXX>(e.g. <UNK-
DASH>,<UNK-NUM>). Then, for each UNK to-

2Kruskal-Wallis and post-hoc Mann-Whitney tests with
Bonferroni correction reveal that M1–3 with benepar trees are
statistically significantly different (p < 10−10) from RNNG
at the sentence level (H=56.84 PTB; 65.54 OntoNotes), and
from LSTM at the word level (H=1485.94 PTB; 2561.44
OntoNotes), on both corpora, except that there was no signifi-
cant difference found between M1 and RNNG with OntoNotes.
All effect sizes were small (df=3, V=0.05). With OntoNotes,
no significance was found between M1 and M2; with PTB,
none was found between M2 and M3.
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Dataset Train Test Valid Vocabulary Max_s Ave_s Max_t Ave_t
OntoNotes 102254 5430 5625 45408 210 19 570 54
PTB 31680 1945 1114 30924 116 23 308 68

Table 1: Statistics of the datasets used in this project. Max_s/Ave_s are the maximum/average lengths of sentences.
Max_t/Ave_t are the maximum/average numbers of nodes in trees.

Accuracy M1 M2 M3
word gold 32.34 32.09 34.64
word benepar 31.47 31.93 33.96
POS gold 94.39 89.47 92.3
POS benepar 93.6 89.19 91.9

Table 2: Sentence-level accuracies of the models on the
OntoNotes test set. "Benepar" is the Berkeley neural
parser (Kitaev and Klein, 2018).

T1 god was very good to me .
jesus was very happy for him .
god said accusatory ones while it .
i made my people talking alone .
he had their people talking again .

T2 he told their people coming again .

Table 3: Sentences generated between two random
trees that have the same unlabelled tree structure. T1
= "(S (NP (NNP)) (VP (VBD) (ADJP (ADJP (RB ) (JJ
)) (PP (IN ) (NP (PRP ))))) (. .))", T2 = "(S (NP (PRP
)) (VP (VBD ) (S (NP (PRP$ ) (NNS )) (VP (VBG )
(ADVP (RB ))))) (. .))."

ken, we use the average of the vector representa-
tions of words labelled as XXX in the training set
to obtain the vector representation of this token.
The perplexity of the entire PTB $23 is listed in Ta-
ble 5. RNNG, SO-RNNG, GA-RNNG and NVLM
are all syntax-aware models. Our Models achieve
very good perplexity. Note that while Transformer-
XL does perform better, it uses roughly 2.4× 107

parameters whereas ours uses 9× 105. We have a
larger vocabulary size because we retain words that
appear in GloVe regardless of frequency. Larger
vocabulary sizes generally increase perplexity.

Model OntoNotes PTB Tree type
LSTM-256 125.8 126.43

RNNG 116.7 119.66
Model 1 92.86 75.14 gold
Model 2 90.10 66.78 gold
Model 3 73.65 65.75 gold
Model 1 101.4 75.56 benepar
Model 2 95.13 69.02 benepar
Model 3 80.18 68.06 benepar

Table 4: Perplexities of the OntoNotes/PTB test trees
in which all words have GloVe vectors.

Model Test ppl
KN-5-gram (Kneser and Ney, 1995) 169.3
LSTM-128 (Zaremba et al., 2014) 113.4
GRU-256 112.3
RNNG (Dyer et al., 2016) 102.4
SO-RNNG (Kuncoro et al., 2017) 101.2
GA-RNNG (Kuncoro et al., 2017) 100.9
NVLM (Zhang and Song, 2019) 91.6

Model 1 (gold) 81.05
Model 2 (gold) 72.09
Model 3 (gold) 71.07 (benepar) 84.44

Transformer-XL 54.52

Table 5: Perplexities of the PTB test set (entire $23).
RNNG, SO-RNNG, GA-RNNG and NVLM use the
same method to preprocess data, keeping only vocab-
ulary that appear more than once in the training set.
For hapaxes in the training set and words in the vali-
dation/test sets that occur once in the training set, they
replace them with <UNK-POS> tokens. Their models
only contain 24 000 word types, whereas ours contain
31 000. In some other language modelling settings, the
vocabulary size can be as small as 10 000.

3.6 Word-prediction Accuracy and Rank

Given a parse along with the prefix w1, ...wn−j ,
we can remove the leaves (wn−j+1, wn+1, ..., wn)
from the parse tree, and predict wn−j+1, where
1 ≤ j ≤ n. Thus, for a tree with n word po-
sitions, we can perform word prediction up to n
times. Unlike the structured realization accuracies
above, conventional practice in language modelling
evaluation is to restore the integrity of wn−j ac-
cording to the corpus before predicting wn−j+1

when the previous prediction step was unsuccess-
ful. Word accuracies according to this regimen are
given in Table 8, along with accuracy at predicting
any word with the required part of speech.

To better evaluate the results, we also compute
the rank for each predicted word. Let v′ be the
vector representation of the true wn−j+1 and v̂ de-
note the output vector as discussed earlier. For each
vector representation of a word in the pre-trained
GloVe vocabulary set, compute the Euclidean dis-
tance between it and v̂. Rank r means ||v′ − v̂||
is the rth smallest distance in comparison to the
other words in the vocabulary set. If the rank is
small, then the model is capable of finding a close
prediction. Small rank also means the model is
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model ≤ 10 ≤ 100 ≤ 1000 ≤ 10000 >10000 Med Mean
Model 1 55.5% 11.9% 16.7% 13.1% 2.8% 5 1057
Model 2 55.2% 12.8% 17.1% 12.3% 2.6% 5 965
Model 3 57.8% 12.2% 15.8% 11.9% 2.4% 4 907

LSTM-256 LM 50.7% 23.7% 16.1% 8.2% 1.4% 10 564

Table 6: Rank distributions for models on the OntoNotes Test Set.

model ≤ 10 ≤ 100 ≤ 1000 ≤ 10000 >10000 Med Mean
Model 1 55.7% 13.8% 17.6% 11.3% 1.4% 4 678
Model 2 57.0% 14.5% 16.5% 10.7% 1.3% 4 614
Model 3 57.2% 13.9% 16.7% 10.8% 1.3% 4 624

LSTM-256 LM 50.9% 22.3% 17.1% 8.8% 0.9% 10 470

Table 7: Rank distributions for models on the PTB Test Set.

able to learn the relation between the next word
and the given partial parse tree.

Table 6 and Table 7 show the overall, median,
and mean rank distributions of the different models,
compared to LSTM-256 within the ranges 10φ to
10φ+1, 0 ≤ φ ≤ 4. Most of the ranks are ≤ 10
and the median ranks for all models are less than 5.
Our GGNN based models have more predictions
that rank less than or equal to 10 compared with
LSTM-256. Model 1 and Model 2 have similar
ranks; Model 3’s are slightly better. Model 3 has
the lowest median rank. Although LSTM-256 has
the lowest mean rank, LSTM-256’s vocabulary size
is much smaller than our GGNN based models.’

3.7 Generating words of a specific POS

Sometimes a model has an output vector located
very far from the vector representation of the true
word (i.e. its rank is very large), but the pre-
dicted word can at least be assigned the correct
pre-terminal POS. This means the prediction is in
some sense correct, because it is more likely to be
grammatically and semantically acceptable. For
example, given a sequence "within three days she
had," and a gold-standard next word of "worked,"
with parent "VBN," "turned" could be a good pre-
diction even though it is far from "worked", be-
cause "turned" also belongs to "VBN."

Since we train terminals and pre-terminals sepa-
rately, there is no prior connection defined between
them. For example, given a tag "NN," we do not
know which words belong to "NN" when training
the vectors for the words, or when choosing the
vector for “NN.” So this is a learned ability. Let
us denote the true ith word as t and the predicted
ith word as p. To evaluate this capability, every
time the model predicts a word p, we count it as
a correct prediction if: (1) p occurs somewhere in

the training data, dominated by a category c, and
(2) c also dominates this occurrence of t.

In Table 8, we present this accuracy rate in the
second column for each of the different models.
On the OntoNotes test data, Models 1 and 3 have
higher rates than Model 2, while Model 2 has the
highest POS accuracy on the PTB test data. Along-
side this, we also compute the overall accuracy
of selecting the correct word (i.e., when the true
word has rank 1), as well as the macro-averaged
and macro-median accuracy of selecting the correct
word, broken down by the pre-terminal dominating
the position to be predicted.

All three models have high POS accuracies in
general (medians: 99.90, 99.93 and 99.7, respec-
tively), but Models 2 and 3 have very bad accura-
cies for some POSs such as ’NN’ (60.68–67.45),
’NNS’ (32.32–68.31) and ’VBN’ (38.5–49.1).

4 Related Work

Graph Neural Networks as Graph Encoders
GNNs were first proposed by Scarselli et al. (2009).
Li et al. (2016) added gating mechanisms for re-
current networks on graphs. In parallel, (Bruna
et al., 2013) proposed Graph Convolutional Net-
works. GCNs differ from GGNNs in their graph
propagation model. GGNNs exploit recurrent neu-
ral networks to learn propagation weights through
time steps. Each step shares the same set of pa-
rameters. On the other hand, GCNs train unshared
CNN layers through time steps. In this paper, we
employed GGNNs as a design choice. Similar to
our model architecture, Bastings et al. (2017); Beck
et al. (2018) used graphs to incorporate syntax into
neural machine translation and Marcheggiani and
Titov (2017) used ERS graph convolutional net-
works as dependency tree encoders for semantic
role labelling. Even before graph neural networks
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OntoNotes PTB
Word acc Word acc

Model POS acc µavg macavg med POS acc µavg macavg med
Model 1 94.35 32.4 26.6 38.6 94.28 35.47 41.74 47.46
Model 2 89.4 32.0 37.39 43.52 97.66 37.12 43.74 49.22
Model 3 92.33 34.7 37.9 44.3 95.73 37.27 41.69 44.37

LSTM-256 LM 22.4 23.57

Table 8: Percentage POS prediction accuracies and word prediction accuracies, for each model.

become popular, there were attempts akin to graph
encoders. Dyer et al. (2015); Socher et al. (2013);
Tai et al. (2015); Zhu et al. (2015); Le and Zuidema
(2014) encoded tree structure with recursive neural
networks or Tree-LSTMs.

Surface Realization Song et al. (2018) intro-
duced a graph-to-sequence LSTM for AMR-to-
text generation that can encode AMR structures
directly. The model takes multiple recurrent transi-
tion steps in order to propagate information beyond
local neighbourhoods. But this method must main-
tain the entire graph state at each time step. Our
models also simultaneously update every node in
the tree at every time step. The encoder of Trisedya
et al. (2018) takes input RDF triples rendered as
a graph and builds a dynamic recurrent structure
that traverses the adjacency matrix of the graph one
node at a time. Marcheggiani and Perez-Beltrachini
(2018), again using a GCN, take only the nodes of
the RDF graph as input, using the edges directly as
a weight matrix. They, too, must update the entire
graph at every time step.

Language Modelling The task of language mod-
elling has a long and distinguished history. Al-
though the term itself was not coined until Jelinek
et al. (1975), the earliest work of Shannon (1948)
on entropy presents what are effectively character-
level language models as a motivating example. In
both cases, given a prefix of characters/words or
classes (Brown et al., 1992), the aim of the task is
to predict the next such event. n-gram language
models factor any dependency of the next event
on the prefix through its dependency on the final
n− 1 events in the prefix. This long remained the
dominant type of language model, but the advent of
neural language models (Bengio et al., 2003), and
particularly vector-space embeddings of certain
lexical-semantic relations, has drastically changed
that landscape. See, e.g., models using recurrent
networks (Mikolov et al., 2010), year (Mikolov
et al., 2011), LSTMs (Sundermeyer et al., 2012),
sequence-to-sequence LSTMs models (Sutskever

et al., 2014), and convolutional networks (Gehring
et al., 2017) and transformers (Devlin et al., 2019).

An earlier, but ultimately unsuccessful attempt
at dislodging n-gram language models was that of
Chelba (2000), who augmented this prefix with syn-
tactic information. Chelba (2000) did not use con-
ventional parse trees from any of the then-common
parse-annotated corpora, nor from linguistic the-
ory, because these degraded rather than enhanced
language modelling performance. Instead, he had
to remain very sparing in order to realize an em-
pirical improvement. The present model not only
shares information at the dimensional level, but
projects syntactic structure over the words to be
predicted. While this makes structured realization
a very different task from structured language mod-
elling, this not only appears to improve perplexity,
but does so without having to change the conven-
tional representation of trees found in syntactic cor-
pora. The present model could therefore be used to
evaluate competing syntactic representations in a
controlled way that quantifies their ability to assist
with word prediction, as we have here.

5 Conclusion

GGNNs have proved to be effective as encoders
of constituent parse trees from a variety of per-
spectives, including realization accuracy, perplex-
ity, word-level prediction accuracy, categorical co-
hesion of predictions, and novel lexical selection. A
limitation of this study is the comparatively modest
size of its corpora, which is due to the requirement
for properly curated parse-annotated data. Find-
ing ways to scale up to larger training and test sets
without the bias introduced by automated parsers
remains an important issue to investigate.
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