
Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15), pages 1–9
June 11, 2021. ©2021 Association for Computational Linguistics

1

Bootstrapping Large-Scale Fine-Grained Contextual Advertising
Classifier from Wikipedia

Yiping Jin1,2, Vishakha Kadam1, Dittaya Wanvarie2
1Knorex, 140 Robinson Road, 14-16 Crown @ Robinson, Singapore

2Department of Mathematics & Computer Science, Chulalongkorn University, Thailand
{jinyiping, vishakha.kadam@}@knorex.com

Dittaya.W@chula.ac.th

Abstract

Contextual advertising provides advertisers
with the opportunity to target the context
which is most relevant to their ads. The large
variety of potential topics makes it very chal-
lenging to collect training documents to build
a supervised classification model or compose
expert-written rules in a rule-based classifica-
tion system. Besides, in fine-grained classifi-
cation, different categories often overlap or co-
occur, making it harder to classify accurately.

In this work, we propose wiki2cat, a method
to tackle large-scaled fine-grained text classi-
fication by tapping on the Wikipedia category
graph. The categories in the IAB taxonomy
are first mapped to category nodes in the graph.
Then the label is propagated across the graph
to obtain a list of labeled Wikipedia documents
to induce text classifiers. The method is ideal
for large-scale classification problems since it
does not require any manually-labeled docu-
ment or hand-curated rules or keywords. The
proposed method is benchmarked with various
learning-based and keyword-based baselines
and yields competitive performance on pub-
licly available datasets and a new dataset con-
taining more than 300 fine-grained categories.

1 Introduction

Despite the fast advancement of text classification
technologies, most text classification models are
trained and applied to a relatively small number
of categories. Popular benchmark datasets con-
tain from two up to tens of categories, such as
SST2 dataset for sentiment classification (2 cate-
gories) (Socher et al., 2013), AG news dataset (4
categories) (Zhang et al., 2015) and 20 Newsgroups
dataset (Lang, 1995) for topic classification.

In the meantime, industrial applications often in-
volve fine-grained classification with a large num-
ber of categories. For example, Walmart built a
hybrid classifier to categorize products into 5000+
product categories (Sun et al., 2014), and Yahoo

built a contextual advertising classifier with a tax-
onomy of around 6000 categories (Broder et al.,
2007). Unfortunately, both systems require a huge
human effort in composing and maintaining rules
and keywords. Readers can neither reproduce their
system nor is the system or data available for com-
parison.

In this work, we focus on the application of
contextual advertising (Jin et al., 2017), which al-
lows advertisers to target the context most relevant
to their ads. However, we cannot fully utilize its
power unless we can target the page content using
fine-grained categories, e.g., “coupé”’ vs. “hatch-
back” instead of “automotive” vs. “sport”. This
motivates a classification taxonomy with both high
coverage and high granularity. The commonly used
contextual taxonomy introduced by Interactive Ad-
vertising Bureau (IAB) contains 23 coarse-grained
categories and 355 fine-grained categories 1. Fig-
ure 1 shows a snippet of the taxonomy.

Figure 1: Snippet of IAB Content Categorization Tax-
onomy.

Large online encyclopedias, such as Wikipedia,
contain an updated account of almost all topics.
Therefore, we ask an essential question: can we
bootstrap a text classifier with hundreds of cat-
egories from Wikipedia without any manual la-
beling?

We tap on and extend previous work on
Wikipedia content analysis (Kittur et al., 2009) to
automatically label Wikipedia articles related to

1https://www.iab.com/guidelines/
taxonomy/

https://www.iab.com/guidelines/taxonomy/
https://www.iab.com/guidelines/taxonomy/


2

each category in our taxonomy by Wikipedia cat-
egory graph traversal. We then train classification
models with the labeled Wikipedia articles. We
compare our method with various learning-based
and keyword-based baselines and obtain a compet-
itive performance.

2 Related Work

2.1 Text Classification Using Knowledge Base

Large knowledge bases like Wikipedia or DMOZ
content directory cover a wide range of topics.
They also have a category hierarchy in either tree or
graph structure, which provides a useful resource
for building text classification models. Text clas-
sification using knowledge bases can be broadly
categorized into two main approaches: vector space
model and semantic model.

Vector space model aims to learn a category vec-
tor by aggregating the descendant pages and per-
form nearest neighbor search during classification.
A pruning is usually performed first based on the
depth from the root node or the number of child
pages to reduce the number of categories. Subse-
quently, each document forms a document vector,
which is aggregated to form the category vector.
Lee et al. (2013) used tf-idf representation of the
document, while Kim et al. (2018) combined word
embeddings and tf-idf representations to obtain a
better performance.

In semantic models, the input document is
mapped explicitly to concepts in the knowledge
base. The concepts are used either in conjunction
with bag-of-words representation (Gabrilovich and
Markovitch, 2006) or stand-alone (Chang et al.,
2008) to assign categories to the document.

Gabrilovich and Markovitch (2006) used a
feature generator to predict relevant Wikipedia
concepts (articles) related to the input document.
These concepts are orthogonal to the labels in spe-
cific text classification tasks and are used to en-
rich the representation of the input document. Ex-
periments on multiple datasets demonstrated that
the additional concepts helped improve the perfor-
mance. Similarly, Zhang et al. (2013) enriched the
document representation with both concepts and
categories from Wikipedia.

Chang et al. (2008) proposed Dataless clas-
sification that maps both input documents and
category names into Wikipedia concepts using
Explicit Semantic Analysis (Gabrilovich et al.,
2007). The idea is similar to Gabrilovich and

Markovitch (2006), except (1) the input is mapped
to a real-valued concept vector instead of a discrete
list of related categories, and (2) the category name
is mapped into the same semantic space, which
removes the need for labeled documents.

Most recently, Chu et al. (2020) improved text
classification by utilizing naturally labeled docu-
ments such as Wikipedia, Stack Exchange subareas,
and Reddit subreddits. Instead of training a tradi-
tional supervised classifier, they concatenate the
category name and the document and train a bi-
nary classifier, determining whether the document
is related to the category. They benchmarked their
proposed method extensively on 11 datasets cover-
ing topical and sentiment classification.

Our work is most similar to Lee et al. (2013).
However, they only evaluated on random-split
Wikipedia documents, while we apply the model to
a real-world large-scale text classification problem.
We also employed a graph traversal algorithm to
label the documents instead of labeling all descen-
dant documents.

2.2 Wikipedia Content Analysis

Some previous work tried to understand the dis-
tribution of topics in Wikipedia for data analysis
and visualization (Mesgari et al., 2015). Kittur
et al. (2009) calculated the distance between each
page to top-level category nodes. They then as-
signed the category with the shortest distance to
the page. With this approach, they provided the first
quantitative analysis of the distribution of topics in
Wikipedia.

Farina et al. (2011) extended the method by al-
lowing traversing upward in the category graph
and assigning categories proportional to the dis-
tance instead of assigning the category with the
shortest-path only. More recently, Bekkerman and
Donin (2017) visualized Wikipedia by building a
two-level coarse-grained/fine-grained graph repre-
sentation. The edges between categories capture
the co-occurrence of categories on the same page.
They further pruned edges between categories that
rarely appear together. The resulting graph contains
441 largest categories and 4815 edges connecting
them.

3 Method

We propose wiki2cat, a simple framework using
Wikipedia to bootstrap text categorizers. We
first map the target taxonomy to correspond-



3

Figure 2: Overview of wiki2cat, a framework to bootstrap large-scale text classifiers from Wikipedia. We first map
user-defined categories to category nodes in the Wikipedia category graph. Then, we traverse the category graph
to label documents automatically. Lastly, we use the labeled documents to train a supervised classifier.

ing Wikipedia categories (briefed in Section 3.1).
We then traverse the Wikipedia category graph
to automatically label Wikipedia articles (Sec-
tion 3.2). Finally, we induce a classifier from the
labeled Wikipedia articles (Section 3.3). Figure 2
overviews the end-to-end process of building clas-
sifiers under the wiki2cat framework.

3.1 Mapping the Target Taxonomy to
Wikipedia Categories

Wikipedia contains 2 million categories, which
is 4 orders of magnitude larger than IAB taxon-
omy. We index all Wikipedia category names in
Apache Lucene 2 and use the IAB category names
to query the closest matches. We perform the
following: 1) lemmatize the category names in
both taxonomies, 2) index both Wikipedia cate-
gory names and their alternative names from redi-
rect links (e.g., “A.D.D.” and “Attention deficit
disorder”), 3) split conjunction category names
and query separately (e.g., “Arts & Entertainment”
→ “Arts”, “Entertainment”), and 4) capture small
spelling variations with string similarity 3.

Out of all 23 coarse-grained and 355 fine-grained
categories in IAB taxonomy, 311 categories (82%)
can be mapped trivially. Their category names
either match exactly or contain only small varia-
tions. E.g., the IAB category “Pagan/Wiccan” is
matched to three Wikipedia categories “Paganism”,
“Pagans”, and “Wiccans”. One author of this paper
took roughly 2 hours to curate the remaining 67
categories manually and provided the mapping to
Wikipedia categories. Out of the 67 categories, 23

2https://lucene.apache.org
3We use Jaro-Winkler string similarity with a threshold of

0.9 to automatically map IAB categories to Wikipedia cate-
gories.

are categories that cannot be matched automatically
because the category names look very different,
e.g., “Road-Side Assistance” and “Emergency road
services”. The rest are categories where the system
can find a match, but the string similarity is below
the threshold (e.g., correct: “Chronic Pain” and
“Chronic Pain Syndromes”; incorrect: “College Ad-
ministration” and “Court Administration”). We use
the curated mapping in subsequent sections.

3.2 Labeling Wikipedia Articles by Category
Graph Traversal

With the mapping between IAB and Wikipedia cat-
egories, we can anchor each IAB category as nodes
in the Wikipedia category graph 4, referred to as
the root category nodes. Our task then becomes
to obtain a set of labeled Wikipedia articles by
performing graph traversal from the root category
nodes. From each root category node, the cate-
gory graph can be traversed using the breadth-first
search algorithm to obtain a list of all descendant
categories and pages.

One may argue that we can take all descendant
pages of a Wikipedia category to form the labeled
set. However, in Wikipedia page A belongs to
category B does not imply a hypernym relation.
In fact, some pages have a long list of categories,
most of which are at their best remotely related
to the main content of the page. E.g., the page
“Truck Stop Women” 5 is a descendant page of the
category “Trucks”. However, it is a 1974 film, and

4We construct the category graph using the “subcat” (sub-
category) relation in the Wikipedia dump. The graph contains
both category nodes and page nodes. Pages all appear as
leaf nodes while category nodes can be either internal or leaf
nodes.

5https://en.wikipedia.org/wiki/Truck_
Stop_Women

https://lucene.apache.org
https://en.wikipedia.org/wiki/Truck_Stop_Women
https://en.wikipedia.org/wiki/Truck_Stop_Women


4

Figure 3: Intuition of the pruning for the category “Trucks”. The page “Ford F-Max” belongs to four categories.
Three of which can be traversed from “Trucks” and one cannot (marked in red and italic).

the main content of the page is about the plot and
the cast.

We label Wikipedia pages using a competition-
based algorithm following Kittur et al. (2009) and
Farina et al. (2011). We treat each category node
from which a page can be traversed as a candidate
category and evaluate across all candidate cate-
gories to determine the final category(s) for the
page.

Firstly, all pages are pruned based on the per-
centage of their parent categories that can be tra-
versed from the root category. Figure 3 shows two
Wikipedia pages with a snippet of their ancestor
categories. Both pages have a shortest distance of 2
to the category “Trucks”. However, the page “Ford
F-Max” is likely more related to “Trucks” than the
page “Camping and Caravanning Club” because
most of its parent categories can be traversed from
“Trucks”. We empirically set the threshold that we
will prune a page with respect to a root category
if less than 30% of its parent categories can be
traversed from the root category.

While the categories in IAB taxonomy occur in
parallel, the corresponding categories in Wikipedia
may occur in a hierarchy. For example, the cate-
gory “SUVs” and “Trucks” are in parallel in IAB
taxonomy but “SUVs” is a descendant category
of “Trucks” in Wikipedia (Trucks ›Trucks by type
›Light trucks ›Sport utility vehicles). While travers-
ing from the root category node, we prune all the
branches corresponding to a competing category.

Pruning alone will not altogether remove the
irrelevant content, because the degree of seman-
tic relatedness is not considered. We measure the

semantic relatedness between a page and a cate-
gory based on two factors, namely the shortest path
distance and the number of unique paths between
them. Previous work depends only on the short-
est path distance (Kittur et al., 2009; Farina et al.,
2011). We observe that if a page is densely con-
nected to a category via many unique paths, it is
often an indication of a strong association. We
calculate the weight w of a page with respect to a
category as follows:

w =
k∑

i=0

1

2di
(1)

where k is the number of unique paths between
the page and the category node, and di is the dis-
tance between the two in the ith path. To calculate
the final list of categories, the weights for all com-
peting categories are normalized to 1 by summing
over each candidate category j and the categories
which have a weight higher than 0.3 are returned
as the final assigned categories.

wj =

kj∑
i=0

1

2dij
/(
∑
j

kj∑
i=0

1

2dij
) (2)

The labeling process labeled in total 1.16 million
Wikipedia articles. The blue scattered plot in Fig-
ure 4 plots the number of labeled training articles
per fine-grained category in log-10 scale. We can
see that the majority of the categories have between
100 to 10k articles.



5

Figure 4: Blue: # of automatically labeled Wikipedia articles per fine-grained category in log-10 scale. (mean=2.95,
std=0.86). Orange: # of articles per fine-grained category in the full test set in log-10 scale (mean=1.94, std=0.78).

3.3 Training Contextual Classifiers

The output of the algorithm described in Sec-
tion 3.2 is a set of labeled Wikipedia pages. In the-
ory, we can apply any supervised learning method
to induce classifiers from the labeled dataset. The
focus of this work is not to introduce a novel model
architecture, but to demonstrate the effectiveness
of the framework to bootstrap classifiers without
manual labeling. We experiment with three simple
and representative classification models. The first
model is a linear SVM with tf-idf features, which is
a competitive baseline for many NLP tasks (Wang
and Manning, 2012). The second model is a cen-
troid classifier, which is commonly used in large-
scale text classification (Lee et al., 2013). It aver-
ages the tf-idf vectors of all documents belonging
to each category and classifies by searching for
the nearest category vector. The third model uses
BERT (Devlin et al., 2019) to generate the semantic
representation from the text and uses a single-layer
feed-forward classification head on top. We freeze
the pre-trained BERT model and train only the clas-
sification head for efficient training.

The number of labeled Wikipedia documents for
each category is highly imbalanced. Minority cate-
gories contain only a handful of pages, while some
categories have hundreds of thousands of pages.
We perform random over- and downsampling to
keep 1k documents for each fine-grained category
and 20k documents for each coarse-grained cate-
gory to form the training set. 6

6We use the original dataset without sampling for the cen-
troid classifier since it is not affected by label imbalance.

4 Experiments

4.1 Evaluation Datasets

We evaluated our method using three contextual
classification datasets. The first two are coarse-
grained evaluation datasets published by Jin et al.
(2020) covering all IAB tier-1 categories except for
“News” (totaling 22 categories). The datasets are
collected using different methods (news-crawl-v2
dataset (nc-v2) by mapping from news categories;
browsing dataset by manual labelling) and contain
2,127 and 1,501 documents separately 7.

We compiled another dataset for fine-grained
classification comprising of documents labeled
with one of the IAB tier-2 categories. The full
dataset consists of 134k documents and took an ef-
fort of multiple person-year to collect. The sources
of the dataset are news websites, URLs occurring
in the online advertising traffic and URLs crawled
with keywords using Google Custom Search 8.

The number of documents per category can be
overviewed in Figure 4 (the orange scatter plot). 23
out of 355 IAB tier-2 categories are not included
in the dataset because they are too rare and are not
present in our data source. So there are in total
332 fine-grained categories in the datasets. Due
to company policy, we can publish only a random
sample of the dataset with ten documents per cate-
gory 9. We report the performance on both datasets

7https://github.com/YipingNUS/
nle-supplementary-dataset

8https://developers.google.com/
custom-search/

9https://github.com/YipingNUS/

https://github.com/YipingNUS/nle-supplementary-dataset
https://github.com/YipingNUS/nle-supplementary-dataset
https://developers.google.com/custom-search/
https://developers.google.com/custom-search/
https://github.com/YipingNUS/contextual-eval-dataset


6

for future work to reproduce our result. To our
best knowledge, this dataset will be the only pub-
licly available dataset for fine-grained contextual
classification.

We focus on classifying among fine-grained cat-
egories under the same parent category. Figure 5
shows the number of fine-grained categories under
each coarse category. While the median number
of categories is 10, the classification is challenging
because categories are similar to each other.

Figure 5: Number of fine-grained categories per coarse-
grained category in our fine-grained contextual classifi-
cation evaluation dataset.

4.2 Experimental Settings

Throughout this paper, we use the Wikipedia dump
downloaded on 10 December 2019. After removing
hidden categories and list pages, the final category
graph contains 14.9 million articles, 1.9 million
categories and 37.9 million links. The graph is
stored in Neo4J database 10 and occupies 4.7GB
disk space (not including the page content).

We use the SGD classifier implementation in
scikit-learn 11 with default hyperparameters for lin-
ear SVM. Words are weighted using tf-idf with a
minimum term frequency cutoff of 3. We imple-
ment the centroid classifier using TfidfVectorizer
in scikit-learn and use numpy to implement the
nearest neighbor classification.

For BERT, we use DistilBERT implementation
by HuggingFace 12, a model which is both smaller
and faster than the original BERT-base model. We
use a single hidden layer with 256 units for the
feed-forward classification head. The model is im-
plemented in PyTorch and optimized with Adam
optimizer with a learning rate of 0.01.

contextual-eval-dataset
10https://neo4j.com
11https://scikit-learn.org
12https://huggingface.co/transformers/

model_doc/distilbert.html

We compare wiki2cat with the following base-
lines:
• Keyword voting (kw voting): predicts the

category whose name occurs most frequently
in the input document. If none of the category
names is present, the model predicts a random
label.
• Dataless (Chang et al., 2008): maps the in-

put document and the category name into the
same semantic space representing Wikipedia
concepts using Explicit Semantic Analysis
(ESA) (Gabrilovich et al., 2007).
• Doc2vec (Le and Mikolov, 2014): similar to

the Dataless model. Instead of using ESA, it
uses doc2vec to generate the document and
category vector.
• STM (Li et al., 2018): seed-guided topic

model. The state-of-the-art model on coarse-
grained contextual classification. Underlying,
STM calculates each word’s co-occurrence
and uses it to “expand” the knowledge be-
yond the given seed words. For coarse-grained
classification, STM used hand-curated seed
words while STM,Slabel used category names
as seed words. Both were trained by Jin
et al. (2020) on a private in-domain dataset.
We also trained STM using our Wikipedia
dataset, referred to as STM,Dwiki. For fine-
grained classification, we report only the re-
sult of STM,Slabel since no previously pub-
lished seed words are available.

Keyword voting and Dataless do not require any
training document. Both Doc2vec and STM require
unlabeled training corpus. We copy the coarse-
grained classification result for Doc2vec, STM, and
STM,Slabel from Jin et al. (2020). For fine-grained
classification, we train Doc2vec and STM,Slabel

using the same set of Wikipedia documents as in
wiki2cat.

4.3 Result of Coarse-Grained Contextual
Classification

We present the performance of various models on
nc-v2 and browsing dataset in Table 1.

We can observe that wiki2cat using SVM as
the learning algorithm outperformed Dataless and
Doc2vec baseline. However, it did not perform
as well as STM. The STM model was trained us-
ing a list of around 30 carefully chosen keywords
for each category. It also used in-domain unla-
beled documents during training, which we do not

https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://github.com/YipingNUS/contextual-eval-dataset
https://neo4j.com
https://scikit-learn.org
 https://huggingface.co/transformers/model_doc/distilbert.html
 https://huggingface.co/transformers/model_doc/distilbert.html


7

Model
nc-v2 browsing
acc maF1 acc+ maF1

kw voting .196 .180 .251 .189
Dataless .412 .377 .536 .392
Doc2vec .480 .461 .557 .424
STM .623 .607 .794 .625
STM,Slabel .332 .259 .405 .340
STM,Dwiki .556 .533 .780 .595
w2csvm .563 .539 .659 .523
w2ccentroid .471 .426 .675 .523
w2cbert .440 .403 .621 .482

Table 1: Performance of various models on IAB coarse-
grained classification datasets. The best performance is
highlighted in bold.

use. Jin et al. (2020) demonstrated that the choice
of seed keywords has a significant impact on the
model’s accuracy. STM,Slabel is the result of STM
using only unigrams in the category name as seed
keywords. Despite using the same learning algo-
rithm as STM, its performance was much worse
than using hand-picked seed words.

To investigate the contribution of the in-domain
unlabeled document to STM’s superior perfor-
mance, we trained an STM model with the
manually-curated keywords in Jin et al. (2020) and
the Wikipedia dataset we used to train wiki2cat
(denoted as STM,Dwiki). There is a noticeable
decrease in performance in STM,Dwiki without in-
domain unlabeled documents. It underperformed
w2csvm on nc-v2 dataset and outperformed it on
browsing dataset.

w2ccentroid performed slightly better than
w2csvm on the browsing dataset but worse on the
nc-v2 dataset. Surprisingly, BERT did not perform
as well as the other two much simpler models. We
conjecture there are two possible causes. Firstly,
BERT has a limitation of sequence length (max-
imum 512 words). The average sequence length
of news-crawl-v2 and browsing datasets are 1,470
and 350 words. Incidentally, there was a more
substantial performance gap between BERT and
SVM on the news-crawl-v2 dataset. Secondly, our
training corpus consists of only Wikipedia articles,
while the model was applied to another domain.
Therefore, the contextual information that BERT
captured may be irrelevant or even counterproduc-
tive. We leave a more in-depth analysis to future
work and adhere to the SVM and Centroid model
hereafter.

4.4 Impact of Graph Labeling Algorithms

Model
nc-v2 browsing
acc maF1 acc+ maF1

w2c .563 .539 .659 .523
w2cchild .325 .289 .340 .322
w2cdescendant .539 .503 .607 .481
w2cmin−dist .533 .498 .612 .489
w2cno−pruning .488 .466 .608 .491

Table 2: Performance of the SVM model trained with
datasets labeled using different labeling algorithms.

We now turn our attention to the impact of dif-
ferent graph labeling algorithms on the final clas-
sification accuracy. We compare our graph label-
ing method introduced in Section 3.2 with three
methods mentioned in previous work, namely la-
beling only immediate child pages (child), labeling
all descendant pages (descendant), assigning the
label with shortest distance (min-dist) as well as
another baseline removing the pruning step from
our method (no-pruning). We use an SVM model
with the same hyperparameters as w2csvm. Their
performance is shown in Table 2.

Using only the immediate child pages led to poor
performance. Firstly, it limited the number of train-
ing documents. Some categories have only a dozen
of immediate child pages. Secondly, the authors of
Wikipedia often prefer to assign pages to specific
categories instead of general categories. They as-
sign a page to a general category only when it is
ambiguous. Despite previous work in Wikipedia
content analysis advocated using shortest distance
to assign the topic to articles (Kittur et al., 2009;
Farina et al., 2011), we did not observe a substan-
tial improvement using shortest distance over using
all descendant pages. Our graph labeling method
outperformed all baselines, including its modified
version without pruning.

4.5 Result of Fine-Grained Contextual
Classification

Table 3 presents the result on fine-grained classi-
fication. We notice a performance difference on
the full and sample dataset. However, the relative
performance of various models on the two datasets
remains consistent.

A first observation is that the keyword voting
baseline performed very poorly, having 7.5-10.8%
accuracy. It shows that the category name itself
is not enough to capture the semantics. E.g., the



8

Model
Full dataset Sample dataset
acc maF1 acc maF1

kw voting .108 .018 .075 .025
Dataless .428 .376 .477 .462
Doc2vec .246 .152 .253 .211
STM,Slabel .493 .370 .533 .464
w2csvm .542∗ .464∗ .646∗ .627∗
w2ccentroid .548∗ .451∗ .595∗ .566∗

Table 3: Performance of various models on IAB fine-
grained classification datasets. * indicates a statisti-
cally significant improvement from baselines with p-
value<0.05 using single-sided sample T-test.

category “Travel > South America” does not match
a document about traveling in Rio de Janeiro or
Buenos Aires but will falsely match content about
“South Korea” or “United States of America”.

Dataless and STM outperformed the keyword
voting baseline by a large margin. However,
wiki2cat is clearly the winner, outperforming these
baselines by 5-10%. It demonstrated that the au-
tomatically labeled documents are helpful for the
more challenging fine-grained classification task
where categories are more semantically similar and
harder to be specified with a handful of keywords.

5 Conclusions and Future Work

We introduced wiki2cat, a simple framework to
bootstrap large-scale fine-grained text classifiers
from Wikipedia without having to label any docu-
ment manually. The method was benchmarked on
both coarse-grained and fine-grained contextual ad-
vertising datasets and achieved competitive perfor-
mance against various baselines. It performed es-
pecially well on fine-grained classification, which
both is more challenging and requires more man-
ual labeling in a fully-supervised setting. As an
ongoing effort, we are exploring using unlabeled
in-domain documents for domain adaptation to
achieve better accuracy.

Acknowledgement

YJ was supported by the scholarship from ‘The
100th Anniversary Chulalongkorn University Fund
for Doctoral Scholarship’. We thank anonymous
reviewers for their valuable feedback.

References
Ron Bekkerman and Olga Donin. 2017. Visualizing

wikipedia for interactive exploration. In Proceed-

ings of KDD 2017 Workshop on Interactive Data
Exploration and Analytics (IDEA17), Halifax, Nova
Scotia, Canada.

Andrei Broder, Marcus Fontoura, Vanja Josifovski, and
Lance Riedel. 2007. A semantic approach to contex-
tual advertising. In Proceedings of the 30th Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pages 559–566.

Ming-Wei Chang, Lev-Arie Ratinov, Dan Roth, and
Vivek Srikumar. 2008. Importance of semantic rep-
resentation: Dataless classification. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 2, pages 830–835.

Zewei Chu, Karl Stratos, and Kevin Gimpel. 2020.
Natcat: Weakly supervised text classification with
naturally annotated datasets. arXiv preprint
arXiv:2009.14335.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 4171–4186, Minneapolis, Minnesota.

Jacopo Farina, Riccardo Tasso, and David Laniado.
2011. Automatically assigning wikipedia articles to
macrocategories. In Proceedings of Hypertext.

Evgeniy Gabrilovich and Shaul Markovitch. 2006.
Overcoming the brittleness bottleneck using
wikipedia: Enhancing text categorization with en-
cyclopedic knowledge. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 6,
pages 1301–1306.

Evgeniy Gabrilovich, Shaul Markovitch, et al. 2007.
Computing semantic relatedness using wikipedia-
based explicit semantic analysis. In Proceedings of
the Twentieth International Joint Conference on Ar-
tificial Intelligence, volume 7, pages 1606–1611.

Yiping Jin, Dittaya Wanvarie, and Phu Le. 2017. Com-
bining lightly-supervised text classification models
for accurate contextual advertising. In Proceedings
of the Eighth International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 545–554.

Yiping Jin, Dittaya Wanvarie, and Phu T. V. Le. 2020.
Learning from noisy out-of-domain corpus using
dataless classification. Natural Language Engineer-
ing.

Kang-Min Kim, Aliyeva Dinara, Byung-Ju Choi, and
SangKeun Lee. 2018. Incorporating word embed-
dings into open directory project based large-scale
classification. In Proceedings of the Pacific-Asia
Conference on Knowledge Discovery and Data Min-
ing, pages 376–388. Springer.



9

Aniket Kittur, Ed H Chi, and Bongwon Suh. 2009.
What’s in wikipedia? mapping topics and conflict
using socially annotated category structure. In Pro-
ceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, pages 1509–1512.

Ken Lang. 1995. Newsweeder: Learning to filter net-
news. In Proceedings of the Twelfth International
Conference on Machine Learning, pages 331–339.
Elsevier.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Proceed-
ings of the International Conference on Machine
Learning, pages 1188–1196.

Jung-Hyun Lee, Jongwoo Ha, Jin-Yong Jung, and
Sangkeun Lee. 2013. Semantic contextual advertis-
ing based on the open directory project. ACM Trans-
actions on the Web (TWEB), 7(4):1–22.

Chenliang Li, Shiqian Chen, Jian Xing, Aixin Sun, and
Zongyang Ma. 2018. Seed-guided topic model for
document filtering and classification. ACM Transac-
tions on Information Systems, 37(1):1–37.

Mostafa Mesgari, Chitu Okoli, Mohamad Mehdi,
Finn Årup Nielsen, and Arto Lanamäki. 2015. The
sum of all human knowledge: A systematic review
of scholarly research on the content of wikipedia.
Journal of the Association for Information Science
and Technology, 66(2):219–245.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642.

Chong Sun, Narasimhan Rampalli, Frank Yang, and
AnHai Doan. 2014. Chimera: Large-scale classi-
fication using machine learning, rules, and crowd-
sourcing. Proceedings of the VLDB Endowment,
7(13):1529–1540.

Sida Wang and Christopher D Manning. 2012. Base-
lines and bigrams: Simple, good sentiment and topic
classification. In Proceedings of the 50th Annual
Meeting of the Association for Computational Lin-
guistics: Short Papers-Volume 2, pages 90–94. As-
sociation for Computational Linguistics.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Proceedings of Advances in Neural In-
formation Processing Systems, pages 649–657.

Zhilin Zhang, Huaizhong Lin, Pengfei Li, Huazhong
Wang, and Dongming Lu. 2013. Improving semi-
supervised text classification by using wikipedia
knowledge. In Proceedings of the International
Conference on Web-Age Information Management,
pages 25–36. Springer.


