
Proceedings of the Fifth Workshop on Teaching NLP, pages 108–111
June 10–11, 2021. ©2021 Association for Computational Linguistics

108

Learning about Word Vector Representations and Deep Learning through
Implementing Word2vec

David Jurgens
School of Information
University of Michigan
jurgens@umich.edu

Abstract

Word vector representations are an essential
part of an NLP curriculum. Here, we de-
scribe a homework that has students imple-
ment a popular method for learning word vec-
tors, word2vec. Students implement the core
parts of the method, including text preprocess-
ing, negative sampling, and gradient descent.
Starter code provides guidance and handles ba-
sic operations, which allows students to focus
on the conceptually challenging aspects. Af-
ter generating their vectors, students evaluate
them using qualitative and quantitative tests.

1 Introduction

NLP curricula typically include content on word
semantics, how semantics can be learned computa-
tionally through word vectors, and what are the vec-
tors’ uses. This document describes an assignment
for having students implement word2vec (Mikolov
et al., 2013a,b), a popular method that relies on
a single-layer neural network. This homework is
designed to introduce students to word vectors and
simple neural networks by having them implement
the network from scratch, without the use of deep-
learning libraries. The assignment is appropriate
for upper-division undergraduates or graduate stu-
dents who are familiar with python programming,
have some experience with the numpy library (Har-
ris et al., 2020), and have been exposed to concepts
around gradients and neural networks. Through
implementing major portions of the word2vec soft-
ware and using the learned vectors, students will
gain a deeper understanding of how networks are
trained, how to learn word vectors, and their uses
in downstream tasks.

2 Design and Learning Goals

This homework is designed to take place just be-
fore the middle stretch of the class, after lexical se-
mantics and machine learning concepts have been

introduced. The content is designed at the level of
an NLP student who (1) has some technical back-
ground and at least one advanced course in statistics
and (2) will implement or adapt new NLP meth-
ods. This level is deeper than what is needed for a
purely Applied NLP setting but too shallow for a
more Machine Learning focused NLP class, which
would likely benefit from additional derivations
and proofs around the gradient descent to solidify
understanding. The homework has typically been
assigned over a three to four week period; many
students complete the homework in the course of a
week, but the longer time frame enables students
with less background or programming experience
to work through the steps. The material prepares
students for advanced NLP concepts around deep
learning and pre-trained language models, as well
as provides intuition for what steps modern deep
learning libraries perform.

The homework has three broad learning goals.
First, the training portion of the homework helps
deepen students’ understanding of machine learn-
ing concepts, gradient descent, and develop com-
plex NLP software. Central to this design is hav-
ing students turn the equations in the homework
and formal descriptions of word2vec into software
operations. This step helps students understand
how to ground equations found in some papers into
the more-familiar language of programming, while
also building a more intuition for how gradient
descent and backpropagation work in practice.

Second, the process of software development
aids students in developing larger NLP software
methods that involve end-to-end development. This
goal includes seeing how different algorithmic soft-
ware designs work and are implemented. The speed
of training requires that students be moderately ef-
ficient in how they implement their software. For
example, the use of for loops instead of vector-
ized numpy operations will lead to a significant
slow down in performance. In class instruction and



109

tutorials detail how to write the relevant efficient
numerical operations, which help guide students
to identify where and how to selectively optimize.
However, slow code will still finish correctly al-
lowing students to debug for their initial implemen-
tations for correctness. This need for performant
code creates opportunities for students to practice
their performance optimizing skills.

Third, the lexical semantics portion of the home-
work exposes students to the uses and limitations
of word vectors. Through training the vectors, stu-
dents understand how statistical regularities in co-
occurrence can be used to learn meaning. Quali-
tative and quantitative evaluations show students
what their model has learned (e.g., using vector
analogies) and introduce them to concepts of poly-
semy, fostering a larger discussion on what can be
captured in a vector representation.

3 Homework Description

The homework has students implement two core as-
pects of the word2vec algorithm using numpy for
the numeric portions, and then evaluate with two
downstream tasks. The first aspect has students per-
form the commonly-used text preprocessing steps
that turn a raw text corpus into self-supervised train-
ing examples. This step includes removing low-
frequency tokens and subsampling tokens based on
their frequency. The second aspect focuses on the
core training procedure, including (i) negative sam-
pling for generating negative examples of context
words, (ii) performing gradient descent to update
the two word vector matrices, and (iii) computing
the negative log-likelihood. These tasks are bro-
ken into eight discrete steps that guide students in
how to do each aspect. The assignment document
includes links to more in-depth descriptions of the
method including the extensive description of Rong
(2014) and the recent chapter of Jurafsky and Mar-
tin (2021, ch. 6) to help students understand the
math behind the training procedure.

In the second part of the homework, students
evaluate the learned vectors in two downstream
tasks. The first task has students load these vec-
tors using the Gensim package (Rehurek and So-
jka, 2010) and perform vector arithmetic opera-
tions to find word-pair analogies and examine the
nearest-neighbors of words; this qualitative evalua-
tion exposes students to what is or is not learned by
the model. The second task is quantitative evalua-
tion that has students generate word-pair similarity

scores for the subset of the SimLex-999 (Hill et al.,
2015) present in their training corpus, which is up-
loaded to Kaggle InClass1 to see how their vectors
compare with others; this leaderboard helps stu-
dents identify a bug in their code (via a low-scoring
submission) and occasionally prompts students to
think about how to improve/extend their code to
attain a higher score.

Potential Extensions The word2vec method has
been extended in numerous ways in NLP to im-
prove its vectors (e.g., Ling et al., 2015; Yu and
Dredze, 2014; Tissier et al., 2017). This assignment
includes descriptions of other possible extensions
that students can explore, such as implementing
dropout, adding learning rate decay, or making use
of external knowledge during training. Typically, a
single extension to word2vec is included as a part
of the homework to help ground the concept in
code but without increasing the difficulty of the as-
signment. Students who are interested in deepening
their understanding can use these as starting points
to see how to develop their own NLP methods as a
part of a course project.

This assignment also provides multiple possibili-
ties for examining the latent biases learned in word
vectors. Prior work has established that pretrained
vectors often encode gender and racial biases based
on the corpora they are trained on (e.g., Caliskan
et al., 2017; Manzini et al., 2019). In a future ex-
tension, this assignment could be adapted to use
Wikipedia biographies as a base corpus and have
students identify how occupations become more as-
sociated with gendered words during training (Garg
et al., 2018). Once this bias is discovered, students
can discuss various methods for mitigating it (e.g.,
Bolukbasi et al., 2016; Zhao et al., 2017) and how
their method might be adapted to avoid other forms
of bias. This extension can help students critically
think about what is and is not being captured in
pretrained vectors and models.

4 Reflection on Student Experiences

Student experiences on this homework have been
very positive, with multiple students expressing a
strong sense of satisfaction at completing the home-
work and being able to understand the algorithm
and software backing word2vec. Several students
reported feeling like completing this assignment
was a great confidence boost and that they were

1https://www.kaggle.com/c/about/
inclass

https://www.kaggle.com/c/about/inclass
https://www.kaggle.com/c/about/inclass


110

now more confident in their ability to understand
NLP papers and connect algorithms, equations, and
code. The majority of student difficulties happen in
two sources. First, the vast majority of bugs happen
when implementing the gradient descent and cal-
culating the negative log-likelihood (NLL). While
only a few lines of code in total, this step requires
translating the loss function for word2vec (in the
negative sampling case) into numpy code. This
translation task appeared daunting at first for many
students, though they found creating the eventual
solution rewarding for being able to ground similar
equations in NLP papers. Two key components
for mitigating early frustration were (1) including
built-in periodic reports of the NLL, which help
students quickly spot whether there are numeric
errors that lead to infinity or NaN values and (2)
adding early-stopping and printing nearest neigh-
bors of instructor-provided words (e.g., “January”)
which should be thematically coherent after only
a few minutes of training. These components help
students quickly identify the presence of a bug in
the gradient descent.

The second student difficulty comes from the
text preprocessing steps. The removal of low-
frequency words and frequency-based subsampling
steps require students to have a solid distinction
of type versus token in practice in order to sub-
sample tokens (versus types). I suspect that be-
cause many of these routine preprocessing steps are
done for the student by common libraries (e.g., the
CountVectorizer of Scikit Learn (Pedregosa
et al., 2011)), these steps feel unfamiliar. Com-
mon errors in this theme were subsampling types
or producing a sequence of word types (rather than
tokens) to use for training.

References

Tolga Bolukbasi, Kai-Wei Chang, James Zou,
Venkatesh Saligrama, and Adam Kalai. 2016.
Man is to computer programmer as woman is to
homemaker? debiasing word embeddings. In
Proceedings of the 30th Conference on Neural
Information Processing Systems (NeurIPS).

Aylin Caliskan, Joanna J Bryson, and Arvind
Narayanan. 2017. Semantics derived automatically
from language corpora contain human-like biases.
Science, 356(6334):183–186.

Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and
James Zou. 2018. Word embeddings quantify
100 years of gender and ethnic stereotypes. Pro-

ceedings of the National Academy of Sciences,
115(16):E3635–E3644.

Charles R Harris, K Jarrod Millman, Stéfan J van der
Walt, Ralf Gommers, Pauli Virtanen, David Cour-
napeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J Smith, et al. 2020. Array programming
with numpy. Nature, 585(7825):357–362.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4):665–695.

Dan Jurafsky and James H. Martin. 2021. Speech &
Language Processing, 3rd edition. Prentice Hall.

Wang Ling, Chris Dyer, Alan W Black, and Isabel
Trancoso. 2015. Two/too simple adaptations of
word2vec for syntax problems. In Proceedings of
the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1299–1304.

Thomas Manzini, Lim Yao Chong, Alan W Black, and
Yulia Tsvetkov. 2019. Black is to criminal as cau-
casian is to police: Detecting and removing multi-
class bias in word embeddings. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 615–621.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013b. Distributed repre-
sentations of words and phrases and their composi-
tionality. arXiv preprint arXiv:1310.4546.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. the Journal of machine
Learning research, 12:2825–2830.

Radim Rehurek and Petr Sojka. 2010. Software frame-
work for topic modelling with large corpora. In In
Proceedings of the LREC 2010 workshop on new
challenges for NLP frameworks. Citeseer.

Xin Rong. 2014. word2vec parameter learning ex-
plained. arXiv preprint arXiv:1411.2738.

Julien Tissier, Christophe Gravier, and Amaury
Habrard. 2017. Dict2vec: Learning word embed-
dings using lexical dictionaries. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 254–263.



111

Mo Yu and Mark Dredze. 2014. Improving lexical
embeddings with semantic knowledge. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 545–550.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2017. Men also like
shopping: Reducing gender bias amplification using
corpus-level constraints. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2979–2989.


