Interactive Assignments for Teaching Structured Neural NLP

David Gaddy, Daniel Fried, Nikita Kitaev, Mitchell Stern, Rodolfo Corona,
John DeNero and Dan Klein
University of California, Berkeley
{dgaddy, denero, klein}@berkeley.edu

Abstract

We present a set of assignments for a graduate-
level NLP course. Assignments are designed
to be interactive, easily gradable, and to give
students hands-on experience with several key
types of structure (sequences, tags, parse trees,
and logical forms), modern neural architec-
tures (LSTMs and Transformers), inference
algorithms (dynamic programs and approxi-
mate search) and training methods (full and
weak supervision). We designed assignments
to build incrementally both within each assign-
ment and across assignments, with the goal of
enabling students to undertake graduate-level
research in NLP by the end of the course.

1 Overview

Our course contains five implementation projects
focusing on neural methods for structured predic-
tion tasks in NLP. Over a range of tasks from lan-
guage modeling to machine translation to syntac-
tic and semantic parsing, the projects cover meth-
ods such as LSTMs and Transformers, dynamic
programming, beam search, and weak supervision
(learning from denotations). Our aim was to let stu-
dents incrementally and interactively develop mod-
els and see their effectiveness on real NLP datasets.
Section 2 describes the tasks and objectives of the
projects in more detail. Links to assignments are
available at https://sites.google.com/
view/nlp-assignments.

1.1 Target Audience

Our course is designed for early-stage graduate stu-
dents in computer science. We expect students to
have a good background in machine learning, in-
cluding prior experience with implementing neural
networks. Many of our students will go on to con-
duct research in NLP or related machine learning
disciplines. Some advanced undergraduates may
also join the course if they have sufficient back-
ground and an interest in NLP research.

1.2 Course Structure

Our course is 14 weeks long. The projects fill
nearly the entire semester, with roughly 2 weeks
given to complete each project. We used lectures to
cover the projects’ problems and methods at a high
level; however, the projects require students to be
relatively skilled at independent implementation.

1.3 Design Strategy

The content of our projects was chosen to cover key
topics along three primary dimensions: application
tasks, neural components, and inference mecha-
nisms. Our projects introduce students to some
of the core tasks in NLP, including language mod-
eling, machine translation, syntactic parsing, and
semantic parsing. Key neural network models for
NLP are also introduced, covering recurrent net-
works, attention mechanisms, and the Transformer
architecture (Vaswani et al., 2017). Finally, the
projects cover inference mechanisms for NLP, in-
cluding beam search and dynamic programming
methods like CKY.

All projects are implemented as interactive
Python notebooks designed for use on Google’s
Colab infrastructure.! This setup allows students
to use GPUs for free and with minimal setup. The
notebooks consist of instructions interleaved with
code blocks for students to fill in. We provide
scaffolding code with less pedagogically-central
components like data loading already filled in, so
that students can focus on the learning objectives
for the projects. Students implement neural net-
work components using the PyTorch framework
(Paszke et al., 2019).

Each project is broken down into a series of
modules that can be verified for correctness be-
fore moving on. For example, when implement-
ing a neural machine translation system, the stu-
dents first implement and verify a basic sequence-

lcolab.research. google.com

104

Proceedings of the Fifth Workshop on Teaching NLP, pages 104—-107
June 10-11, 2021. ©2021 Association for Computational Linguistics

https://sites.google.com/view/nlp-assignments
https://sites.google.com/view/nlp-assignments
colab.research.google.com

to-sequence model, then attention, and finally beam
search. This setup allows students to debug each
component individually and allows instructors to
give partial credit for each module. The modules
are designed to validate student code without wait-
ing for long training runs, with a total model train-
ing time of less than one hour per project.

Our projects are graded primarily with scripted
autograders hosted on Gradescope,’ allowing a
class of hundreds of students to be administered by
a small course staff. Grades are generally based on
accuracy on a held-out test set, where students are
given inputs for this set and submit their model’s
predictions to the grader. While students cannot
see their results on the held-out set until after the
due date, the assignments include specific targets
for validation set accuracies that can be used by
students to verify the correctness of their solutions.

Each project concludes with an open-ended sec-
tion where the students experiment with modifica-
tions or ablations to the models implemented and
submit a 1-page report describing the motivation
behind their contribution and an analysis of their re-
sults. This section gives students more of a chance
to explore their own ideas and can also help distin-
guish students who are putting in extra effort on
the projects.

2 Assignments

2.1 Project 0: Intro to PyTorch Mini-Project

This project serves primarily as an introduction to
the project infrastructure and to the PyTorch frame-
work. Students implement a classifier to predict the
most common part-of-speech tag for English word
types from the words’ characters. Students first
implement a simple neural model based on pooling
character embeddings, then a slightly more com-
plex model with character n-gram representations.
This project provides much more detailed instruc-
tions than later projects to help students who are
less familiar with deep learning implementation,
walking them through each step of the training and
modeling code.

2.2 Project 1: Language Modeling

This project introduces students to sequential out-
put prediction, using classical statistical methods
and auto-regressive neural modeling. Students im-
plement a series of language models of increasing
complexity and train them on English text. First

Zwww . gradescope.com

they implement a basic n-gram model, then add
backoff and Kneser-Ney smoothing (Ney et al.,
1994). Next, they implement a feed-forward neu-
ral n-gram model, and an LSTM language model
(Hochreiter and Schmidhuber, 1997). The last sec-
tion of this project is an open-ended exploration
where students can try any method to further im-
prove results, either from a list of ideas we provided
or an idea of their own.

2.3 Project 2: Neural Machine Translation

This project covers conditional language modeling,
using neural sequence-to-sequence models with at-
tention. Students incrementally implement a neural
machine translation model to translate from Ger-
man to English on the Multi30K dataset (Elliott
et al., 2016). This dataset is simpler than stan-
dard translation benchmarks and affords training
and evaluating an effective model in a matter of
minutes rather than days, allowing students to in-
teractively develop and debug models. Students
first implement a baseline LSTM-based sequence-
to-sequence model (Sutskever et al., 2014) without
attention, view the model’s predictions, and eval-
uate performance using greedy decoding. Then,
students incrementally add an attention mechanism
(Bahdanau et al., 2015) and beam search decoding.
Finally, students visualize the model’s attention
distributions.

2.4 Project 3: Constituency Parsing and
Transformers

This project covers constituency parsing, the Trans-
former neural network architecture (Vaswani et al.,
2017), and structured decoding via dynamic pro-
gramming. Students first implement a Transformer
encoder and validate it using a part-of-speech tag-
ging task on the English Penn Treebank (Marcus
et al., 1993). Then, students incrementally build
a Transformer-based parser by first constructing a
model that makes constituency and labeling deci-
sions for each span in a sentence, then implement-
ing CKY decoding (Cocke, 1970; Kasami, 1966;
Younger, 1967) to ensure the resulting output is a
tree. The resulting model, which is a small version
of the parser of Kitaev and Klein (2018), achieves
reasonable performance on the English Penn Tree-
bank in under half an hour of training.

2.5 Project 4: Semantic Parsing

This project introduces students to predicting ex-
ecutable logical forms and to training with weak

105

www.gradescope.com

supervision. Students implement a neural seman-
tic parser for the GEOQA geographical question
answering dataset of Krishnamurthy and Kollar
(2013). This dataset contains English questions
about simple relational databases. To familiarize
themselves with the syntax and semantics of the
dataset, students first implement a simple execu-
tion method which evaluates a logical form on a
database to produce an answer. To produce logi-
cal forms from questions, students then implement
a sequence-to-sequence architecture with a con-
strained decoder and a copy mechanism (Jia and
Liang, 2016). Students verify their model by train-
ing first in a supervised setting with known logi-
cal forms, then finally train it only from question-
answer pairs by searching over latent logical forms.

3 Findings in Initial Course Offerings

An initial iteration of the course was taught to 60
students, and an offering for over 100 students is
in progress. Overall, we have found the projects to
be a great success.

In the first iteration of the course, 81% of stu-
dents completed the course and submitted all five
projects. From a mid-semester survey, students re-
ported taking 19.88 hours on average to complete
Project 1. We observed that students with no prior
experience programming with deep learning frame-
works took significantly longer on the projects and
required more assistance. In future semesters, we
intend to strengthen the deep learning prerequisites
required for the course to ensure adequate back-
ground for success.

The online project infrastructure worked with
minimal issues. While the Colab platform does
have the downside of timeouts due to inactivity, we
believe the use of free GPU resources outweighed
this cost. By encouraging students to download
checkpoints after training runs, they were able to
avoid re-training after each timeout. A handful of
students who spent very long stretches of time on
the projects in a single day reported having tem-
porary limits placed on GPU usage (e.g. after 8+
hours of continuous use), but these limits could
be circumvented by logging in with a separate ac-
count.

Most students were able to successfully com-
plete the majority of each assignment, but there
remained some point spread to distinguish perfor-
mance for grading (mean 94%, standard deviation
12%). Due to the use of autograding, instructor

code grading effort totaled less than several hours
per project. One aspect of grading that we are con-
tinuing to improve is the open-ended exploration re-
port, and we plan to better define and communicate
expectations in future semesters by introducing a
clear rubric for the report section.

Overall, these projects proved a valuable re-
source for the success of our course and for prepar-
ing students for NLP research. At the end of last
year’s course, one student submitted an extension
of their exploration work on one project to EMNLP
and presented at the conference.

References

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by
jointly learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015.

John Cocke. 1970. Programming languages and their
compilers: Preliminary notes.

Desmond Elliott, Stella Frank, Khalil Sima’an, and Lu-
cia Specia. 2016. Multi30K: Multilingual English-
German image descriptions. In Proceedings of the
Sth Workshop on Vision and Language, pages 70—
74, Berlin, Germany. Association for Computational
Linguistics.

Sepp Hochreiter and Jirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12-22, Berlin, Germany. Association for Computa-
tional Linguistics.

Tadao Kasami. 1966. An efficient recognition
and syntax-analysis algorithm for context-free lan-
guages. Coordinated Science Laboratory Report no.
R-257.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2676-2686.

Jayant Krishnamurthy and Thomas Kollar. 2013.
Jointly learning to parse and perceive: Connecting
natural language to the physical world. Transac-
tions of the Association for Computational Linguis-
tics, 1:193-206.

Mitch Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313-330.

106

https://doi.org/10.18653/v1/W16-3210
https://doi.org/10.18653/v1/W16-3210
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.1162/tacl_a_00220
https://doi.org/10.1162/tacl_a_00220

Hermann Ney, Ute Essen, and Reinhard Kneser. 1994.
On structuring probabilistic dependences in stochas-
tic language modelling. Computer Speech & Lan-
guage, 8(1):1-38.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. PyTorch: An imperative style,
high-performance deep learning library. Advances
in Neural Information Processing Systems, 32:8026—
8037.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.

Advances in Neural Information Processing Systems,
27:3104-3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Process-
ing Systems, 30:5998-6008.

Daniel H. Younger. 1967. Recognition and parsing of

context-free languages in time n®. Information and
control, 10(2):189-208.

107

