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ABSTRACT. The Natural Language Processing research community is increasingly interested in
less-resourced languages and linguistic diversity through technology. Translation to and from
low-resource polysynthetic languages has, in particular, always faced numerous challenges,
such as morphological complexity, dialectal variations, noisy data due to different spellings and
low-resource scenarios. Moreover, the morphological segmentation for indigenous polysyn-
thetic languages is particularly challenging with multiple individual morphemes by word and
several meanings per morpheme. The present research focuses on Inuktitut and Inuinnaqtun, in-
digenous polysynthetic languages spoken in Northern Canada. We then build a morphological
segmenter and a NMT system for these indigenous languages. Our proposed NMT model out-
performed the state-of-the-art in the context of low-resource Inuktitut-English Neural Machine
Translation.

RESUME. La communauté de recherche sur le traitement des langues naturelles porte un intérét
croissant aux langues peu dotées et a la diversité linguistique grdce a la technologie. La tra-
duction vers et depuis les langues polysynthétiques s’est régulierement heurtée a de nombreux
défis comme la complexité morphologique, les variants dialectiques, les données bruitées, les
différentes orthographes, et les scénarios d’entrainement avec peu de données. Par ailleurs, la
segmentation morphologique des langues polysynthétiques autochtones est rendue particulie-
rement difficile en raison de multiple morphemes par mot et de plusieurs sens par morpheme.
La présente recherche se concentre sur ’inuktitut et I’inuinnaqtun, langues polysynthétiques
autochtones parlées dans le nord du Canada. Nous construisons un segmenteur et un systéme
de traduction automatique neuronale pour langues autochtones du Canada. Notre modéle de
traduction automatique a surpassé l’état de I’art dans le contexte de la traduction automatique
neuronale inuktitut-anglais.

KEYWORDS: Polysynthetic languages, Inuktitut, Inuinnaqtun, NMT, Low-resource.

MOTS-CLES : Langues polysynthétiques, Inuktitut, Inuinnagtun, TAN, peu dotée.

TAL. Volume 62 — n°3/2021, pages 39 a 63



40 TAL. Volume 62 — n°3/2021

1. Introduction

According to Mager et al. (2018), the Americas have a diverse range of linguis-
tic families, with approximately 900 different indigenous languages spoken. More
specifically, Canada’s wide range of indigenous languages, grouped into 12 language
families, has played an important role in the history of First Nations, Métis, and Inuit,
and continues to do so today (Rice, 2011). Due to a variety of factors, there has been
very little research on indigenous languages in recent years. Natural Language Pro-
cessing (NLP) researchers working with indigenous languages encounter numerous
obstacles, including polysynthesis, with a high rate of morphemes per word, lack of
orthographic normalization, dialectal variances, and a lack of linguistic resources and
tools (Littell ez al., 2018; Schwartz et al., 2020).

This study focuses on two indigenous polysynthetic languages spoken in North-
ern Canada, particularly Inuktitut and Inuinnaqtun, as well as the development of an
Inuktitut-English Neural Machine Translation (NMT).

In the Northwest Territories, Inuktitut and Inuinnaqtun (a related dialect group) are
recognized as official indigenous languages. They belong to the language family of
Esquimo-Aleut, including the Inuit language. The Inuit language, or Inuktut, is a con-
tinuum of dialects that are spoken in the North American Arctic: in northern Alaska,
in the Northwest Territories, in Nunavut, in Nunavik (northern Quebec), Nunatsiavut
(in Labrador), and Greenland. Inuktitut[ﬂ is an indigenous North American language
spoken in the Canadian Arctic. Inuktitut is part of the vast Inuit language continuum
(set of dialects) stretching from Alaska to Greenland. Inuktitut has official language
status in Nunavut, like English and French. According to the 2016 censusﬂ it has
approximately 39,770 speakers, 65% of whom live in Nunavut and 30.8% in Quebec.
Inuinnaqtun belongs to the Western Canadian Inuktun family of languages, including
two other dialects, Siglitun and Natsilingmiutut. According to Statistics Canada, in
2016, Inuinnaqtun is the mother tongue of 675 people in Canada and 1,310 people can
speak this language.

This first step towards a multilingual NMT framework, which will include several
endangered indigenous languages of Canada, is critical, the Nunavut-English Hansard
corpus being the only parallel corpus freely available for research (Joanis et al., 2020).
Haddow et al. (2021) considered many features between high- (e.g. 280M parallel
sentences), medium- (e.g. 0.7M parallel sentences), and low-resource (e.g. 0.035M
parallel sentences) language pairs based on the number of native speakers and the
quantity of parallel sentences. Joshi ef al. (2020) presented the relationships between
the types of languages, resources, and their representation in NLP conferences to un-
derstand the trajectory that different languages have followed over time. They high-
lighted, via a quantitative investigation, the disparity between languages, especially

1. Source: Compton, Richard . "Inuktitut". L’Encyclopédie Canadienne, 20 novembre 2019,
Historica Canada. www.thecanadianencyclopedia.ca/fr/article/inuktitut|

2. Source: https://wwwl2.statcan.gc.ca/census-recensement/2016/as-sa/
98-200-x/2016022/98-200-%x2016022-fra.cfm.
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in terms of their resources. Although there is a correlation between them, there are
many outliers where either widely spoken languages have a minimal parallel corpus,
or languages with a limited number of speakers are resource-rich in terms of corpora.
We also observed that the concept of low-resource might change over time. We could
crawl additional parallel data, or use related language data or monolingual data. Sev-
eral language pairings are no longer considered low-resource. Thanks to the crawled
parallel sentences size, Inuktitut is currently rated a medium-resource level. However,
with only a few comparable phrases, such as the Bible, Inuinnaqtun remains highly
under-resourced.

The primary goal and motivation for this research project aim to revitalize and
to preserve Canadian indigenous languages and cultural heritage through major NLP
tasks. Our research is divided into two stages: (1) building a morphological segmenter
for indigenous languages, to be integrated into (2) the framework of a Neural Machine
Translation system for indigenous languages.

Inspired by the work of Farley (2012), related to the creation of the first Inuk-
titut finite-state transducer-based morphological analyzer, we propose a novel tech-
nique based on deep neural networks to create a word segmenter for indigenous lan-
guages. First, we investigate several methods empirically, including supervised, semi-
supervised and non-supervised approaches to word segmentation task. In the super-
vised approach, the task is considered as a sequence labelling task. We apply the
sequence-to-sequence architecture (Sutskever et al., 2014) with the encoder-decoder
layers (see Section 3.I). In the semi-supervised and non-supervised approaches,
we adopt an Adaptor Grammars (Johnson, 2008), fine-tuning the word segmentation
model using a deep learning-based architecture for indigenous languages (see Section
@]). Second, we construct a framework for a low-resource Neural Machine Trans-
lation system by incorporating our word segmenter, during the source-side language
preprocessing step (see Section [3.5).

Our contributions to the current research are as follows:

(1) to perform empirical research on several word segmentation approaches to in-
digenous languages, particularly Inuktitut and Inuinnaqtun;

(2) to propose a neural network-based word segmenter for indigenous languages;
(3) to enhance low-resource NMT via extensive morphological word segmentation;

(4) to empirically compare our proposed NMT technique with different designs such
as Sequence-to-Sequence (Sutskever et al., 2014), Transformer (Vaswani et al., 2017),
and multilingual NMT architecture.

The following is a description of the article’s structure: The section[2]highlights the
most recent advances in morphological analyzers and Machine Translation concerning
indigenous languages. Our technique is described in Section[3} Section[d]provides our
experiments and results. Finally, Section [5] offers our conclusion as well as potential
future research directions.
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2. Related work
2.1. Morphological complexity of indigenous languages

Most of the indigenous languages, particularly in the Americas, belong to either
the polysynthetic language group or the agglutinative language group. They have
a complex, rich morphology that plays an important role in human learning versus
machine learning (Gasser, 2011; Littell ef al., 2018). Much of the research on their
morphological analysis has focused only on linguistic aspects.

From a linguistic point of view, a word is formed from a word base, followed by
multiple suffixing morphemes, to become a long sentence word. The suffixing mor-
phology phenomenon makes a word very long and potentially unique (Mithun, 2015).
Moreover, the composition of verbs and the incorporation of noun in indigenous
languages are much more complex than in European languages, such as English or
French. Indigenous languages of North America are highly inflected.

Our current research investigates Inuktitut and Inuinnaqtun, polysynthetic lan-
guages in the Inuit language family spoken in Northern Canada. Inuinnaqtun is en-
dangered and has been estimated to disappear in less than two generations[ﬂ

Comparing word composition in English, the word structure in Inuit languages is
variable in its surface form. Words can be very short, composed of three formative
features such as word base, lexical suffixes, and grammatical ending suffixes. They
can be very long up to ten or even fifteen formative morphemes as features depending
on the regional dialect (Lowe, 1985; Kudlak and Compton, 2018).

Composition of Inuit word = Word base + Lexical suffixes + Grammatical end-
ing suffixes

For instance, in the Inuktitut language of Nunavutﬂ Canada, a sentence word
example is given below:

— (Inuktitut script) DNPLPTQ OO

— (Romanized script) tusaa-tsia-runna-nngit-tu-alu-u-junga

— (Meaning) hear-well-be.able-NEG-DOER-very-BE-PART.1.S, where NEG-
DOER means the negation, and PART.1.S means participle first singular.

— (English) I can’t hear very well

In this example, this long word is composed of the morpheme as a root word tusaa
(meaning: to hear), followed by seven morphemes: six lexical suffixes (tsia, runna,
nngit, tu, alu, u) and one grammatical ending suffix (junga) that are separated by
hyphens. All segmented morphemes are synthetically composed in only one unit.

3. Source: https://www.kitikmeotheritage.ca/language.
4. Source: https://en.wikipedia.org/wiki/Inuit_grammar.
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In Inuinnaqtun, another sentence word example is depicted from the grammar book
of Lowe (1985), illustrating the same phenomenon of word composition of an Inuin-
naqtun sentence word umingmakhiuriaqtuqatigitqgilimaigtara that can be segmented
into a word base and several suffixes as follows:

— (Inuinnaqtun script) umingmakhiuriaqtuqatigitqilimaiqtara

— (Morpheme segmentation) umingmak-hiu-riaqtu-qati-gi-tqi-limaiq-fa-ra

— (Meaning) muskox - hunt - go in order to - partner - have as - again - will no
more - [-him

— (English) I will no more again have him as a partner to go hunting muskox

In this example, the first morpheme as a root word umingmak (meaning: muskox)
is followed by six morphemes as lexical suffixes (hiu, riaqtu, qati, gi, tqi, limaiq)
and two grammatical ending suffixes (ta, ra).

A single word can be used to express what would be a whole sentence in English.
We note that the word composition tends generally to augment the lexical constituents
with multiple formative suffixing morphemes added to a word base. Full sentences are
commonly made up of only one word. Moreover, the morphology is highly inflected
with a variety of lexical suffixes and grammatical ending suffixes. All these linguistic
aspects make the morphological segmentation task for polysynthetic languages more
challenging. One of the challenges consists in determining the word that is the basic
unit, then the sub-word units (Arppe et al., 2017).

2.2. Morphological segmentation of indigenous languages

The development of a morphological segmenter for indigenous languages was not
well supported due to several challenges, as indicated above. Unsurprisingly, ow-
ing to the lack of annotated data, we used an unsupervised approach, as well as the
rule-based approach used numerous works. Creutz and Lagus (2007) proposed the
statistical morphological segmentation method, named Morfessor, based on the Hid-
den Markov Model for learning unsupervised morphology, and using a hierarchical
morpheme structure.

Another method shown to be successful for unsupervised morphological segmen-
tation is the Adaptor Grammars (AG) approach, based on non-parametric Bayesian
models generalizing probabilistic context-free grammar (PCFG) (Johnson, 2008). By
defining a set of morphological grammar patterns, including zero or more prefixes,
stems, and suffixes, the AG models are able to induce segmentation at the morpheme
level. Several studies have been conducted based on extending this approach, such as
those of Botha and Blunsom (2013) for learning non-concatenative morphology, Sirts
and Goldwater (2013) for minimally supervised morphological segmentation, and Es-
kander et al. (2018) for unseen languages. Godard et al. (2018) used this approach to
experiment with the word segmentation task in very low-resource African languages.
Eskander et al. (2019) also used this approach to deal with Mexican low-resource
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polysynthetic languages such as Mexicanero, Nahuatl, Yorem Nokki and Wixarika.
In the current work, we also examine the efficiency of the AG-based approach on
the Inuktitut language, a polysynthetic low-resource language without annotated seg-
mented resources.

In terms of the Inuktitut language, we noted only a few studies on morphological
segmentation task. Johnson and Martin (2003) proposed an unsupervised technique,
with the hubs concept in a finite-state automaton. The hubs mark the boundary be-
tween root and suffix. Concretely, Inuktitut words are segmented into morphemes and
merged hubs in a finite-state automaton. They reported good performance for En-
glish morphological analysis, using the text of Tom Sawyer, for which they obtained
92.15% in terms of precision. However, for Inuktitut morphological analysis, they re-
ported 31.80% precision and a low recall of 8.10%. They argued the poor performance
for Inuktitut roots was due to the difficulty of identifying word-internal hubs. Farley
(2012) proposed hand-crafted grammar rules and a finite-state transducer to build a
morphological analysis for Inuktitut, called Uqailaut (pronounced Uqa-Ila-Ut). This
Uqailaut project is a rule-based system based on regular morphological variations of
about 3,200 head (or prefix), 350 lexical, and 1,500 grammatical morphemes, with
heuristics for ranking the various readings. Nicholson et al. (2012) used a word align-
ment error rate with the dataset of English-Inuktitut Nunavut parallel corpora to eval-
uate the morphological analyzer for Inuktitut. They reported their best experimental
results, in terms of the head (or prefix) approach, which, in Inuktitut, corresponds
to the first one or two syllables of a token, with 79.70% precision and 92.20% re-
call. They reported that the analyzer was able to provide at least a single analysis
for approximately 218k Inuktitut types (65%) from the Nunavut Hansard corpus. In
addition, Micher (2017), inspired by Farley (2012) Uqailaut project, used a segmental
recurrent neural network approach based on the output of this morphological analyzer
for Inuktitut. The models were trained with approximately 23k types having a single
analysis from the Uqailaut analyzer, with 85.07% in terms of F-measure.

2.3. Machine translation for indigenous languages

Machine translation (MT) is well known in language technologies. Building a reli-
able, high quality MT system is still a significant challenge for indigenous languages.
Mager et al. (2018) reported an interesting and ongoing research problem in the MT
task of low-resource languages, especially indigenous languages. We reviewed the
development of MT systems for indigenous languages based on the following funda-
mental approaches: (1) rule-based, (2) statistics-based, and (3) neural network-based
approaches.

(1) Rule-Based Machine Translation (RBMT) approaches are usually applied in
the low-resource languages scenario. The RBMT systems do not require aligned par-
allel corpora. However, they require language-dependent knowledge. They have sev-
eral drawbacks, mostly pertaining to translating complex structures and to building
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complex rules. ApertiumE] is a free and open-source platform for developing rule-
based machine translation systems. Recently, research on data-driven approaches has
improved to deal with data scarcity and data sparsity (Mager et al., 2018).

(2) In Statistical-based Machine Translation (SMT) approaches, for translating to
and from morphologically complex languages, researchers have proposed treating
words as sentences or subword units. The performance of SMT systems is highly
dependent on the quantity of training data, which represents a challenge when dealing
with low-resource conditions. In the case of the native languages of the Americas,
the SMT systems were challenged by the rich and complex morphology and the data
sparseness (Micher, 2017) of the languages. We examined a variety of applications of
this research and its foundation in the SMT line of research. Sennrich et al. (2016)
proposed using byte pair encoding (BPE) to segment words into subword units and
showed improvement in machine translation on an English to German and English to
Russian task of up to 1.1 and 1.3 BLEU, respectively. Micher (2018) reported 30.04
BLEU in the English to Inuktitut direction, and 30.35 BLEU in the Inuktitut to English
direction, using the BPE-preprocessed the Nunavut Hansard Inuktitut-English parallel
corpora.

(3) Neural network-based Machine Translation (NMT) approaches use neural net-
works architectures trained with vast amounts of parallel texts. In this approach, the
NMT systems are applied in several neural networks architectures such as Seq2Seq
(Sutskever et al., 2014), Transformer with Encoder-Decoder and Attention (Vaswani
etal.,2017). These systems work well when dealing with resource-rich language pairs
because the training requires a significant quantity of parallel texts.

In Machine Translation task for indigenous languages, several NMT systems
were presented at the WMT 2020 workshopE]for multiple languages pairs, including
Inuktitut-English. We compare our NMT model against some of them in the sub-
Section 431

Building an MT system for indigenous languages is considered a low-resourced
scenario (Schwartz et al., 2020). For many low-resourced language pairs, the corpora
are derived from religious sources (e.g. the Bible or Koran) or technical documents
(e.g. Opus (Tiedemann, 2012)), or from IT data localization (e.g. from open-source
projects such as GNOME or Kubuntu) (Haddow et al., 2021). Recently, Nicolai et al.
(2021) built the JHU Bible corpus for MT of the indigenous languages of North Amer-
ica, with 26k verses in the Inuktitut family language, and it achieved only 11.8 in terms
of BLEU score. Joanis et al. (2020) constructed 1.29M bilingual sentences in the
Nunavut Hansard for Inuktitut-English (third edition), available for research purposes.
Research on NMT with low-resource language pairs still face multiple compounding
major challenges, such as lack of NLP tools, lack of parallel corpora, out-of-domain
data, and noisy data (Littell ez al., 2018; Mager et al., 2018; Joanis et al., 2020; Le and
Sadat, 2020; Mager et al., 2021). Aside from data problems, indigenous languages are

5. Apertium: https://wiki.apertium.org/wiki/Main_Page.
6. Source: http://wuw.statmt.org/wmt20/translation-task.html,
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frequently understudied languages, in which access to local speakers and specialists is
difficult, and even fundamental toolkits such as language identifiers or morphological
analyzers do not exist or are not trustworthy (Haddow et al., 2021).

3. Proposed methodology
3.1. Supervised approach for the morphological segmentation

The neural network-based approach can be efficiently applied on word segmenta-
tion using pretrained embeddings and several deep learning techniques. Furthermore,
using additional linguistic factors helps the neural model perform better, especially
when dealing with data sparseness or language ambiguity in the context of indigenous
languages (Kann et al., 2018).

Outputs
List of segmente
morphemes

DECODER

f

ENCODER

Word-based Character-based
Embedding W Embedding C

Source Input!
List of sentence words

Figure 1. Architecture of our framework: Morphological segmentation for
indigenous language based on the encoder-decoder architecture.

The goal of morphological segmentation is to divide words into morphemes. This
task may be thought of as a structured classification problem, with each character
being allocated to one of many predefined classes. These classes are denoted as
follows: (B) represents the beginning of a multi-character morpheme, (M) the mid-
dle of a multi-character morpheme, and (E) the end of a multi-character morpheme,
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and (S) denotes a single character morpheme. Other schemes are also conceivable
such as IOB format (short for inside, outside, beginning) or IO or BMEO or BM
(Carpenter, 2009; Ruokolainen et al., 2013; Wang et al., 2016).

For instance, for the Inuktitut word “tusaattialaurit” (meaning: to listen), the cor-
responding morphological segmentation should be:

tusaa+tti+ala+u+rit

By adding the two extra symbols <w> and </w> to indicate the start and the end
of a word, respectively, the above segmentation form is represented as follow:

<w> tusaa tti ala u rit </w>
START BMMME BME BME S BME STOP

In this research, the morphological segmentation task is considered as a sequence
labeling task, with the goal of classifying each character in a word into the appropriate
class. Given an input sequence, W = [wg, w1, ..., Wy, ] and C' = [cg, ¢1, ..., ¢,] contain
all the input words and the input characters. The architecture is based on Sequence-
to-Sequence model (Sutskever et al., 2014) with the encoder-decoder layers as shown
in Figure [T The encoder layer contains the input word sequence transformation by
concatenating pretrained character-based and word-based embeddings, with the state
S = (W, C). We apply the attention mechanism that allows the model to focus, in
the context, on a set of characters and to learn the important letters to better predict
whether a character forms a boundary. We introduce an attention vector, a;, used
to measure the weight of the sentence words in the context. The resulting context
embedding, v;, jointly learned during the training phase, helps to capture the relevant
information from the context.

h, h
o exp(score(hy, h,y) (1]

Zf,:l exp(score(hg, h,y)

Ct = Zaths [2]

ar = f(er, hi) = tanh(Weles; hi) 3]

where «; is the attention weight of the target words in the context, hs and h; are the
weight of the hidden layer for source and target words, respectively, c; is the context
vector and a; is the attention vector.

The decoder layer P(y|s;) calculates the activation function # as an output function
and displays the output hypothesis, where y is the output prediction, s; is a word
sentence, and b; is a bias.

P(y|si) = 0(Wh - a; + b;) (4]
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3.2. Unsupervised approach for the morphological segmentation

Inspired by the work of Eskander et al. (2019), we adapted an unsupervised
approach in learning all possible morphological patterns using Adaptor Grammars
(Johnson, 2008) and fine-tuned the outputs of the first stage by building a recurrent
neural network-based architecture for Inuktitut. This approach is, basically, based on
the grammar containing production rules, non-terminal and terminal symbols, and a
lexicon. The deep learning can successfully handle data sparsity or language ambigui-
ties thanks to additional linguistic factors related to a set of rich, high-quality features,
such as semantic distribution information, and contextual meanings that are extracted
from pretrained embeddings at character level and at word level, learned from mono-
lingual large-scale raw corpora (Kann et al., 2018).

The first phase in Adaptor Grammars-based learning consists of defining the gram-
mar, including non-terminals, terminals, and production rules. As explained in Eskan-
der et al. (2019), the grammar construction relies on three main dimensions: word
modeling, abstraction level, and segmentation boundaries. The grammar patterns
specify the word structures where a word is considered a sequence of prefixes, a stem,
and a sequence of suffixes. Moreover, each production rule has two parameters to con-
figure, a and b, in the Pitman-Yor process (Pitman and Yor, 1997). Setting a = 1 and
b = 1 indicates to the running learner that the current non-terminals are not adapted
and sampled by the general Pitman-Yor process. Otherwise, the current non-terminals
are adapted and expanded as in a regular probabilistic context-free grammar. The
standard grammar setting (Table |1)) is language-independent, and contains all possi-
ble generic patterns, whereas the scholar-seeded grammar setting (Table[2) combines
all standard grammar patterns and additional language-dependent knowledge, in this
case a list of affixes. By using the list of affixes and roots, called Scholar-seeded
setting, we inject linguistic knowledge into the training phase. Then, we still apply
the probabilistic context-free grammar (PCFG). The model is, therefore, able to learn
more patterns, with non-concatenative morphology, and to induce segmentation at the
morpheme level.

We fine-tuned the outputs of the first stage through a Recurrent Neural Network-
based (RNN) architecture. These outputs are fed into a bidirectional Long-Short
Term Memory (Hochreiter and Schmidhuber, 1997). Formally, these input sequences
are numerically vectorized using pretrained embeddings, at word-level W and at
character-level C' representations. The hidden feature layer then merges all input
features Xy, X¢ in a single vector with a k-dimension, (W, C). The output layer
calculates an activation function 6, where W, is the output weight, h is the hidden
layer, and b, is its bias.

h =tanh(Wrw - Xw + Whe - Xo) [5]

output = (W, - h + b,) (6]
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1 1 Word —>Prefix Stem Suffix

Prefix —>"2

Prefix —>"PrefixMorphs

1 1 PrefixMorphs —>PrefixMorph PrefixMorphs
1 1 PrefixMorphs —>PrefixMorph

PrefixMorph —>SubMorphs

Stem —>SubMorphs

Suffix = $$$

Suffix —>SuffixMorphs $$$

1 1 SuffixMorphs —>SuffixMorph
SuffixMorphs

1 1 SuffixMorphs —>SuffixMorph
SuffixMorph —>SubMorphs

1 1 SubMorphs —>SubMorph SubMorphs
1 1 SubMorphs —>SubMorph
SubMorph —>Chars

1 1 Chars —>Char

1 1 Chars —>Char Chars

Table 1. The standard PrefixStemSuffix+SuffixMorph grammar for Inuktitut. The
symbols Mand $3$$ mean the beginning and the end of the word sequence,

respectively. Source: Eskander et al. (2019).

[..]

[All standard setting grammar in Table
1 1 PrefixMorph —> (a) (u) (1) (1) (a)

1 1 PrefixMorph — (i) (g) (1) (u)

1 1 PrefixMorph —> (q) (i) (n) (m) (i)

1 1 PrefixMorph —> (u) (t) (a) (q) (q) ()

1 1 SuffixMorph —> (a) (n) (n) (i) (n)

I'1 SuffixMorph —> (f) (f) (a) (2) (n) (g) (m) (i)
11 SuffixMorph —> (g) (i) (2) (q) (1) (u) (q)

1 1 SuffixMorph —> (m) (i) () (¢) (a) (1)

11 SuffixMorph —> (n) () (n) (g) (u) (1) (i) (q)

[...]
11 Char —> (q)
11 Char —> (k)
[...]
11 Char —> (p)
11 Char —> (t)

1 1 SuffixMorph —> (y) (u) (t)

Table 2. The scholar-seeded PrefixStemSuffix+SuffixMorph grammar for Inuktitut,

with prefixes, suffixes, and characters.

3.3. Ugqailaut morphological analyzer for Inuktitut

The Uqailaut project, proposed by Farley (2012), is based on a Finite-State Trans-
ducers (FST), while applying several techniques and resources such as grammar rules,
linguistic knowledge and heuristics. The FST-based morphological analyzer produces
one or more morphological predictions for a given word. Heuristics make it possible
to choose the shortest path for the morphological analysis. For example, trusaattialau-
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rit is segmented as tusaa tti ala u rit or tusaa ttia lau rit or tusaa ttia la u rit (Table[3).
The root tusaa means fo listen, tti, ala, u are lexical suffixes, and rit is a grammatical
suffix.

Morphological Segmentation Output

Raw text tusaattialaurit

Reference tusaa tti ala u rit
First best prediction tusaa tti ala u rit
Second best prediction tusaa ttia lau rit
Third best prediction tusaa ttia la u rit

Table 3. Predictions of the Inuktitut morphological segmentation by the Uqailaut
analyzer (Meaning: please listen).

3.4. Byte-Pair Encoding segmentation

Sennrich et al. (2016) proposed the Byte-Pair Encoding (BPE) method for the
word segmentation task. This method consists of unsupervised word segmentation
that tries to break words into subword units, which aids in dealing with unusual and
unfamiliar terms.

BPE uses the minimum entropy on subword units, often known as tokens, with a
given vocabulary size. Although these tokens resemble morphemes, the BPE segmen-
tation model is based on training data rather than linguistic knowledge bases.

For example, in Inuktitut, ‘tusaattialaurit’ (meaning: please listen in English) may
be segmented as "fusaa@ @ i@ @ alau@ @ rit’ (Table[d). This word should be cor-
rectly segmented 'fusaa@ @ i@ @ ala@ @ u@ @ rit’, in the case of large-scale train-
ing data.

Method Morphological Segmentation Output
Raw text tusaattialaurit

Reference tusaa tti ala u rit

Uqailaut analyzer (Farley, 2012)  tusaa tti ala u rit

BPE (Sennrich et al., 2016) tusaa@ @ tti@ @ ala@ @ u@ @ rit

Our proposed approach tusaa tti ala u rit

Table 4. lllustration of several Inuktitut word segmentation methods. The symbol
@ @ represents an in-word morpheme boundary (Meaning: please listen).

3.5. Polysynthetic indigenous language NMT

The second phase of our framework consists of building an NMT for indigenous
language to English based on the Transformer encoder-decoder architecture (Vaswani
et al., 2017). We apply our morphological segmentation method to preprocess the
source indigenous language in the context of an Inuktitut-English NMT system.
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Figure 2. Architecture of our Inuktitut-English NMT with three main parts:

(1) Preprocessing with our proposed morphological segmenter and Byte Pair
Encoding (BPE) for both source and target languages, respectively, (2) Building a
source-target word aligner and (3) Building a source-target lexicon extractor.

3.5.1. Word Aligner and Lexicon Extractor for NMT

This architecture aims to investigate our Inuktitut-English neural machine trans-
lation system while using the word alignment information and the source-target lexi-
con. Our approach consists of three main parts. First, the source input is preprocessed
by applying our proposed morphological segmenter and Byte Pair Encoding (BPE)
(Sennrich et al., 2016) for both source and target languages, respectively. Second, the
word alignment information is extracted from the bilingual parallel corpus and is fed
into the encoder. Third, we prepare a bilingual source-target lexical shortlist. This
bilingual lexicon is then used during the decoding.

3.5.2. Multilingual NMT architecture

Adding data from multiple languages, i.e. multilingual NMT, can enhance the per-
formance of NMT systems (Aharoni et al., 2019). We adapt this approach in the con-
text of low-resource indigenous languages by using several closely-related languages

(Figure [3).

For each language pair, a BPE-based model is learned jointly from the source-
target sides of the parallel corpora using subword-nmt (Sennrich et al., 2016). In
addition, the source-side indigenous languages, here Inuktitut and Inuinnaqtun, are
segmented by our proposed word segmenter. Then the joint BPE model is applied
to all the training datasets. Moreover, we apply the BPE drop-out (Provilkov et al.,
2019) to deal with data sparsity and morphological complexity, such as orthographic
variation or spelling errors.
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Multilingual Source Input
FR,FILHU

DAET,DE,IU

Preprocessing
with our segmenter = BP

¥

ENCODER A DECODER

Transformer-based architecture

Target output
EN

Figure 3. Architecture of our multilingual NMT system. Here, multilingual source
input is composed of multiple related languages such as French-fr, Finnish-fi,
Danish-da, German-de, Hungarian-hu, Estonian-et and Inuktitut-iu, and the target
output is English-en.

4. Experiments
4.1. Data preparation

In our experiments and evaluations, we used the third edition of the Inuktitut-
English Nunavut Hansard (Joanis et al., 2020) to train our models. This parallel corpus
contains 1,293,348 training sentences, 5,433 development sentences and 6,139 test-
ing sentences, respectively. Furthermore, in order to develop our multilingual NMT
model, we used several parallel corpora, including multiple language sources with an
English target, provided from the shared task of WMT 2020. Tables [5| and [6] describe
the statistics of the training corpora.

#tokens #train #tdev  i#test
IU 20,657,477 1,293,348 5,433 6,139
EN 10,962,904 1,293,348 5433 6,139

Table 5. Statistics of the Nunavut Hansard for Inuktitut-English.

Inuktitut corpus is transformed from syllabic to roman using the uniconv toolkitﬂ
We then apply consistent preprocessing with English defaults on both source and tar-
get languages of the parallel corpora using Moses (Koehn et al., 2007) scripts such as
punctuation normalization, tokenization, cleaning the training corpus and truecasing
on the training datasets.

7. Toolkit uniconv with Yudit: www.yudit.org.


www.yudit.org
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Source-Target [English] #train #tdev  #test

Finnish (fi-en) 1,918,232 1,000 -
French (fr-en) 2,002,165 1,000 -
Hungarian (hu-en) 623,448 1,000 -
Danish (da-en) 1,949,393 1,000 -
Estonian (et-en) 651,746 1,000 -
German (de-en) 1,920,209 1,000 -
Inuktitut (iu-en) 1,293,348 5,433 6,139
Inuinnaqtun (ikt-en) 3,511 - -

Table 6. Statistics of all corpora for multilingual NMT model training (Source:
WMT 2020). Inuinnaqtun corpus is extracted from the Nunavut Government Website:
https://www.gov.nu.ca/in/.

For the Inuinnaqtun dataset, we manually collected a small corpus from several
resources such as the Nunavut Website[ﬂ government, open source dictionaries and
grammar books (Lowe, 1985; Kudlak and Compton, 2018). The experimental corpus
contains 190 word bases and 571 affixes. A small golden testing set was manually
crafted containing 1,055 unique segmented words.

4.2. Training settings

To train the supervised morphological segmentation model, we adapted the
RichWordSegmenter toolkit (Yang et al., 2017). We chose Inuktitut source from
the Nunavut Hansard to perform experiments. Then, using the Uqailaut toolkit
(Farley, 2012), we annotated 11k training sentences, 250 development sentences, and
250 testing sentences. To pre-train the character-based and word-based embeddings,
we used the Nunavut Hansard Inuktitut corpus 3.0 and the Gensimﬂ library to train
all embeddings with a dimension of 30 and 50, respectively. We found that there
are only 97,785 unique terms for the word-based vocabulary, 102 unique terms for the
character-based vocabulary and 1,406 unique terms for the character-based vocabulary

(Table[7).

Embedding type #terms #dimension
word-based 97,785 50
character-based 102 30
bicharacter-based 1,406 30

Table 7. Statistics of word-based and (bi)character-based embeddings training using
Nunavut Hansard Inuktitut-English parallel corpus 3.0 for Inuktitut.

8. Nunavut government Website in Inuinnaqtun: https://www.gov.nu.ca/in/cgs-1in.
9. Gensim library: https://radimrehurek.com/gensim/models/word2vec.html,


https://www.gov.nu.ca/in/cgs-in
https://radimrehurek.com/gensim/models/word2vec.html
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The two principal inputs, used to train the Adaptor Grammars-based unsupervised
morphological segmentation model, consist of the grammar and the lexicon of the
language. The learning hyperparameters are configured as in Eskander et al. (2019)
according to the best standard PrefixStemSuffix+SuffixMorph grammar (Table[I)) and
the best scholar-seeded grammar (Table[2). Next, we fine-tuned the outputs of the first
stage with an RNN-based architecture consisting of bi-directional Long Short-term
Memory, with 200 neurons in the hidden layer. We evaluated both supervised and
unsupervised proposed morphological segmentation models versus the baseline, for
example Morfessor 2.0 (Virpioja et al., 2013).

To train the baseline morphological segmenter, we used Morfessor 2.0 toolkit
with Python interpreter. The training, development and testing datasets for Morfessor
are the same as the datasets used to train our proposed segmenter for both Inuktitut
and Inuinnaqtun, respectively. We filtered out all tokens of the corpus which are not
included in the corresponding word list. These smaller datasets were also used in the
semi-supervised training experiments. The F1 scores converged after 5 iterations for
all runs. As the evaluation metric, we used the micro-average segmentation boundary
F1-score. The scores were calculated based on the word types in the testing sets.

To train our NMT model, we first used the subword-nmt (Sennrich et al., 2016)
toolkit to create a 30k BPE joint source-target vocabulary. Then, to train our
Transformer-based NMT models, we used the Marian-nmt toolkit (Junczys-Dowmunt
et al., 2018) with the following hyperparameter settings: 6-layer depth for both en-
coder and decoder, 8-layer multi-heads, embedding dimension of 512, hidden layers
of 2,048 units in the feed-forward networks, with optimizer Adam and an initial learn-
ing rate of 0.0003. For the architecture type, we could choose either the Seq2Seq
(Sutskever et al., 2014) or the Transformer (Vaswani et al., 2017) inside the toolkit.
We performed multiple NMT experiments as follows:

— System 1 (Baseline): We chose the same configuration as described in Joanis
et al. (2020), with only BPE-preprocessed data;

— System 1 + align information: We incorporated source-target word alignment
information in the training step. We applied an unsupervised word aligner, fast_align
(Dyer et al., 2013) to generate symmetrized source-target alignments, trained on BPE
preprocessed data;

— System 1 + lex.s2t: We combined the source-target bilingual lexicon, during the
decoding phase, in the baseline system. We applied the lexicon extractor from Moses
(Koehn et al., 2007) to prepare a bilingual lexical shortlist;

— System 1 + align information + lex.s2t: We combined both word alignment in-
formation and the source-target bilingual lexicon in the baseline system;

— Systems 2, 3, 4, 5: We configured the proposed morphological segmenta-
tion using the standard or scholar-seeded settings combined with the sequence-to-

10. Morfessor 2.0 toolkit: https://morfessor.readthedocs.io/en/latest/index.
html.


https://morfessor.readthedocs.io/en/latest/index.html
https://morfessor.readthedocs.io/en/latest/index.html
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sequence based or the Transformer-based architectures for our NMT model, named
AG-Standard+s2s, AG-Scholar+s2s, AG-Standard+TF, AG-Scholar+TF, respectively;

— Multilingual NMT system (multiNMT): We performed the following experi-
ments applying the word segmentation for the source-side indigenous languages, e.g.
Inuktitut, Inuinnaqtun, within different multilingual NMT systems:

- (multiNMT) We chose, for this baseline, the same configuration as described
in Joanis et al. (2020), with only BPE-preprocessed data, with all source-target lan-
guage pairs and the test set on Inuktitut-English only,

- (multiNMT-1) The training datasets are without segmenting any indigenous
language (Inuktitut, Inuinnaqtun),

- (multiNMT-2) The source-side training datasets are segmented only for Inuk-
titut but not for Inuinnaqtun,

- (multiNMT-3) The source-side training datasets are segmented for both Inuk-
titut and Inuinnaqtun,

- (multiNMT-4) The source-side training datasets are segmented for Inuinnag-
tun but not for Inuktitut.

4.3. Evaluations and discussion

4.3.1. Morphological segmentation task

We evaluated the morphological segmentation system using the automatic metrics:
Precision (P), Recall (R), and FI score.

For the supervised morphological segmentation, we evaluated only the Inuktitut
data source. As described in Table[8] our proposed system, with all pretrained embed-
dings, showed a good performance with 75.33% in terms of F1 score. However, the
Morfessor system outperformed our proposed system, with a gain of +4.37 points in
terms of F1 score. Using the additional golden annotated data with the training data,
the Morfessor model obtained better precision and recall than our proposed model,
with a gain of +1.36 points and +6.83 points. In addition, the Morfessor model used
an n-best Viterbi algorithm that allows extraction of all posible segmentations for a
compound and the probabilities of the segmentation.

Precision Recall F1 score
Morfessor 82.15 77.40 79.70
supervised_Inuktitut. WS  80.79 70.57 75.33

Table 8. Results for Inuktitut supervised morphological segmentation.

For the unsupervised morphological segmentation, we evaluated both Inuktitut and
Inuinnaqtun data sources. Table 0] shows the performance and results of our models
versus Morfessor for the polysynthetic language on the Inuktitut test set. The standard
setting is better than the baseline, with a gain of +8.30 points in terms of precision,
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on the test set, compared with Morfessor. Moreover, we also observed large gains
of +8.92 points in terms of precision, on the test set, when using the scholar-seeded
setting compared with Morfessor. All models obtained low recall between 77.40%
and 82.33%, including Morfessor, due to the under-segmentation.

Inuktitut Precision Recall F1 score
Morfessor 82.15 77.40 79.70
AG-Standard 90.45 81.51 85.75
AG-Scholar 91.07 82.33 86.48

Table 9. Morphological segmentation task: Results for the Inuktitut test set using the
Standard setting (AG-Standard), Scholar seeded setting (AG-Scholar), and Morfessor
toolkit. Values in bold refer to the best performances.

Table [I0] shows the performance results of our models versus Morfessor for the
polysynthetic language using the Inuinnaqtun test set. Both AG-based models outper-
formed the baseline, with gains of +3.33%, +17.62% in terms of F1 score, for the AG-
standard setting and AG-Scholar setting, respectively. The recall of all three models is
good enough to recognize all possible patterns, with 75.40%, 80.30%, and 82.83% for
the baseline, AG-standard setting and AG-Scholar setting, respectively. However, the
baseline and the AG-Standard model obtained low precision with 48.29% and 50.76%,
respectively, compared with the AG-scholar-seeded model, which obtained 71.06%.
We observed an under-segmentation in these models.

Inuinnaqtun  Precision Recall F1 score

Morfessor 48.29 75.40 58.87
AG-Standard 50.76 80.30 62.20
AG-Scholar 71.06 82.83 76.49

Table 10. Morphological segmentation task: Results for the Inuinnaqtun test set
using the Standard setting (AG-Standard), Scholar seeded setting (AG-Scholar),
and Morfessor toolkit. Values in bold refer to the best performances.

We noted that our proposed models could not correctly recognize more complex
morphemes due to the languages’ linguistic irregularities and rich morphophonemics.
In particular, they were unable to detect common affixes such as ag, ik, ig, mi, ti or
ut in Inuktitut and common lexical suffixes such as at, aq, ig, na, ng or grammatical
ending suffixes such as q, k, g, t, n, it, mi or uk in Inuinnaqtun.

Tables[TT]and[T2]illustrate some predictions by all the models and the performance
of our models on Inuktitut and Inuinnaqtun, respectively.
4.3.2. Machine translation task

We conducted additional evaluations of Machine Translation task based on the
BLEU scores (Papineni et al., 2002) which were computed with lowercase and vi3a
tokenization, using sacrebleu (Post, 2018). We also used chrF++ (Popovié, 2015) to
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Segmentation Sentence Example

Raw text niqtunaqtuq piku tusaattialaurit

Reference niqtu naq tuq piku tusaa tti ala u rit

Uqailaut analyzer (Farley, 2012)  niqtu naq tuq piku tusaa ttia lau rit

BPE (Sennrich et al., 2016) niqtunaqtuq piku tusa@ @ atti@ @ alaur@ @ it
Our proposed approach niqtu naq tuq piku tusaa tti ala u rit

Table 11. lllustrations of the Inuktitut word segmentation (Meaning: Mr. Picco,
please listen).

Word Ground Truth  Morfessor AG-Standard  AG-Scholar
aullarnanga aullar na nga aulla rn anga aulla rna nga aullar na nga
aullagtinnatin  aullaq tinnatin  aullaqtinnatin aullaqtinnatin aullaq tinna tin
igluptun iglu ptun iglu p tun iglu ptun iglu ptun
nattighiuqtuq  nattiq hiuq tuq  nattighiuqtuq  nattiq hiuqtuq  nattiq hiuq tuq
kitkungnin kitku ngnin kitku ng nin kitku ng ni n kitku ngnin
tupaktuhi tupak tu hi tupak tuhi tupak tu hi tupak tu hi

iqaluktinnagu  iqaluk tinna gu  iqaluk ti nna gu iqaluk tin na gu  iqaluk tin na gu

Table 12. lllustrations of Inuinnaqtun morpheme segmentation predictions on the
test set using the different settings such as Standard (AG-Standard), Scholar seeded
(AG-Scholar), and Morfessor. Red text indicates deviations in segmentation from the
Ground Truth.

calculate the Fl-score averaged on character n-gram precision and recall enhanced
with word n-grams for the translation references and their hypotheses.

Experiment BLEU (dev set) BLEU (test set) chrF++
System 1 (Baseline) 41.40 35.00 65.40
System 1 + align information 41.45 35.71 65.59
System 1 + lex.s2t 41.66 35.93 65.97
System 1 + align information + lex.s2t  41.78 36.03 66.30

Table 13. Performance on Inuktitut-English NMT in terms of lowercase word BLEU
score, using only the BPE subword segmentation method.

We observed that combining the word alignment information and the source-target
bilingual lexicon had a positive impact on the performance of the NMT model. Com-
pared to the baseline, with all the additional features, the NMT system obtained a gain
of +1.03 points in terms of BLEU score (Table[I3). However, using only the BPE sub-
word segmentation method, the multilingual NMT system outperformed the system 1
and all variants, with a gain of +3.06 points in terms of BLEU score (Table [I4).

To go further, we performed multiple variants of the multilingual NMT systems,
with and without applying our proposed word segmenter to the source-side indige-
nous languages (Table[I4). We noted that the multiNMT-1 system obtained the worst
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Experiment BLEU (test set) chrF++
multiNMT (baseline, only BPE method) 38.06 68.15
multiNMT-1 (-INU_segmented, -IKT_segmented) 8.11 14.52
multiNMT-2 (+INU_segmented, -IKT_segmented)  40.91 73.25
multiNMT-3 (+INU_segmented, +IKT_segmented) 41.40 74.13
multiNMT-4 (-INU_segmented, +IKT_segmented)  38.08 68.19

Table 14. Performance of all the multilingual NMT for Inuktitut-English, with and
without applying our proposed segmenter, where INU and IKT refers to Inuktitut and
Inuinnagqtun, respectively.

performance, only 8.11% in terms of BLEU score or 14.52% in terms of chrF++,
due to without any indigenous languages. The best performance was obtained by the
multiNMT-3, 41.40% in terms of BLEU score or 74.13% in terms of chrF++. We
observed that the translation quality were significantly improved as we segmented in-
digenous languages in the source side rather than other related languages, up to +3.34
points versus the multiNMT baseline (Table [I4). It means that is sufficient to seg-
ment the source-side indigenous languages to have a better performance. The related
languages are not necessarily required for word segmentation.

Moreover, we tested other NMT systems with our proposed morphological seg-
mentation based on Adaptor Grammars. All our systems 2, 3, 4 and 5 outperformed
the baseline with gains of up to +2.98 points and +3.41 points in terms of BLEU
score, on the development set and the test set, respectively (Table [I5), compared to
the baseline.

Experiment dev test  chrF++
System 1-Baseline-(Joanis et al., 2020) 41.40  35.00 65.40
System 2 (AG-Standard+s2s) 4393 37.78 66.43
System 3 (AG-Scholar+s2s) 44.38 38.41 68.71
System 4 (AG-Standard+TF) 44.18 38.28 68.41
System 5 (AG-Scholar+TF) 4441 3832 68.61

Table 15. Performance on Inuktitut-English NMT in terms of lowercase word BLEU
score, with our proposed morpheme segmenter.

We compared our best system against other NMT systems from WMT 2020 using
morphological segmentation methods, such as Roest et al. (2020), and Knowles et al.
(2020). Our best system outperformed all the NMT systems from WMT 2020 in terms
of BLEU score on the third version of the Nunavut Hansard test set, with 38.41%
versus 30.05% and 29.90% (Table[16).

Roest et al. (2020) reported their best NMT system results due to multiple reasons.
First, they applied three methods of segmentation: unsupervised such as BPE, LMVR
(Ataman et al., 2017) and 3-step segmentation. They varied the value of the decoder’s
penalty length based on results on the development set with 0.8 for news and 1.4
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Experiment dev test
System (Knowles e al., 2020) - 29.90
System (Roest et al., 2020) - 30.05

Our best system 3 (AG-Scholar+s2s) 44.38  38.41

Table 16. Comparison of performance results of our best system on Inuktitut-English
NMT in terms of lowercase word BLEU score with other best systems of WMT 2020.

System Sentence Example

Raw apiqqutiga turaaqtittumajara aanniaqarnangittulirijikkut ministangannut.
Reference I would like to direct my question to the Minister of Health.

Baseline This is a question for the Minister of Health.

System 1 My question is for the Minister responsible for Health.

System 2 My question is directed for the Minister of Health.

System 3 I would like to direct my question to the Minister of Health.

System 4 My question is directed for the Minister of Health.

System 5 I would like to ask my question for the Minister of Health.
MultiNMT  This is my question directed for the Minister responsible for Health.

Table 17. Illlustrations of some translation predictions using different NMT systems,
from Inuktitut to English.

for Hansards, respectively. Furthermore. there was a mixture of in-domain and out-
domain training data. Finally, the use of ensembling and fine-tuning on all NMT
systems helped to improve the BLEU performance.

In the case of Knowles ef al. (2020), the final systems were trained on a mix of
news and Hansard data, using joint BPE, BPE-dropout, tagged back-translation for
Inuktitut-English, fine-tuning, ensembling, and the use of domain-specific models.

We assume the preprocessing as word segmentation helped to solve the complex
morphology of Inuktitut at source-side. Our proposed NMT model outperformed the
state-of-the-art, as presented in Joanis et al. (2020), using only BPE-preprocessed
training data, with the best performance of 44.38% and 38.41% in terms of BLEU on
the development set and the test set, respectively.

5. Conclusion and Perspectives

In this paper, we empirically explored different word segmentation techniques on
both Inuktitut and Inuinnaqtun. We then proposed a novel morphological segmenta-
tion technique that may be applied to any indigenous language.

In the supervised approach, the neural networks-based word segmentation model
showed promising results, but not good enough, due to multiple factors, such as the
quantity of the annotated data and the quality of the pretrained embedding models.
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In the semi-supervised and non-supervised approaches, the Adaptor Grammars-based
word segmentation models yielded better results, employing a collection of grammat-
ical rules from grammar books, and a lexicon from relatively little data. We applied
our word segmenter to preprocess the Inuktitut source-side language before imple-
menting an Inuktitut-English NMT system. We empirically evaluated our proposed
NMT method against several baseline NMT architectures. Our proposed NMT sys-
tem outperformed the state-of-the-art, as described in Joanis et al. (2020), with just
BPE-preprocessed training data.

Our study makes an important contribution by focusing on morpheme segmenta-
tion in the source-side indigenous language. This significantly enhances the MT per-
formance in the low-resource scenario. Furthermore, the NLP community is becoming
increasingly interested in indigenous languages. Indigenous language research might
lead to a more thorough knowledge of human languages and the development of uni-
versal NLP models.

In the future, we plan to add more annotated data and study other domain-specific
characteristics to increase the segmentation model’s accuracy. Moreover, we are de-
veloping a multilingual NMT framework in order to include more indigenous lan-
guages, particularly endangered ones, with the goal of preserving and revitalizing
endangered and indigenous languages, as well as their legacy and culture. Globally,
our research interest focuses on an inclusive, fairer and more equitable and respon-
sible Artificial Intelligence, while emphasizing on the revitalization and preservation
of indigenous languages. We have encountered a variety of challenges, including lan-
guage skills, data gathering, and validation, to name a few. Thus, we seek to conduct
research “by and with” indigenous peoples, which will help validate the results and
construct more reliable linguistic resources that will be, we hope, of great help to the
indigenous communities.
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