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Abstract

This study carries out a systematic intrin-
sic evaluation of the semantic representations
learned by state-of-the-art pre-trained multi-
modal Transformers. These representations are
claimed to be task-agnostic and shown to help
on many downstream language-and-vision
tasks. However, the extent to which they align
with human semantic intuitions remains un-
clear. We experiment with various models and
obtain static word representations from the
contextualized ones they learn. We then eval-
uate them against the semantic judgments pro-
vided by human speakers. In line with previous
evidence, we observe a generalized advantage
of multimodal representations over language-
only ones on concrete word pairs, but not on
abstract ones. On the one hand, this confirms
the effectiveness of these models to align lan-
guage and vision, which results in better se-
mantic representations for concepts that are
grounded in images. On the other hand, mod-
els are shown to follow different represen-
tation learning patterns, which sheds some
light on how and when they perform multi-
modal integration.

1 Introduction

Increasing evidence indicates that the meaning
of words is multimodal: Human concepts are
grounded in our senses (Barsalou, 2008; De Vega
et al., 2012), and the sensory-motor experiences
humans have with the world play an important role
in determining word meaning (Meteyard et al.,
2012). Since (at least) the first operationalizations
of the distributional hypothesis, however, standard
NLP approaches to derive meaning representa-
tions of words have solely relied on information
extracted from large text corpora, based on the
generalized assumption that the meaning of a
word can be inferred from the effects it has on
its linguistic context (Harris, 1954; Firth, 1957).

Language-only semantic representations, from pi-
oneering ‘count’ vectors (Landauer and Dumais,
1997; Turney and Pantel, 2010; Pennington et al.,
2014) to either static (Mikolov et al., 2013)
or contextualized (Peters et al., 2018; Devlin
et al., 2019) neural network-based embeddings,
have proven extremely effective in many lin-
guistic tasks and applications, for which they
constantly increased state-of-the-art performance.
However, they naturally have no connection with
the real-world referents they denote (Baroni,
2016). As such, they suffer from the symbol
grounding problem (Harnad, 1990), which in
turn limits their cognitive plausibility (Rotaru and
Vigliocco, 2020).

To overcome this limitation, several methods
have been proposed to equip language-only rep-
resentations with information from concurrent
modalities, particularly vision. Until not long ago,
the standard approach aimed to leverage the com-
plementary information conveyed by language and
vision—for example, that bananas are yellow (vi-
sion) and rich in potassium (language)—by build-
ing richer multimodal representations (Beinborn
et al., 2018). Overall, these representations have
proved advantageous over purely textual ones in
a wide range of tasks and evaluations, including
the approximation of human semantic similarity/
relatedness judgments provided by benchmarks
like SimLex999 (Hill et al., 2015) or MEN (Bruni
et al., 2014). This was taken as evidence that
leveraging multimodal information leads to more
human-like, full-fledged semantic representations
of words (Baroni, 2016).

More recently, the advent of Transformer-based
pre-trained models such as BERT (Devlin et al.,
2019) has favored the development of a plethora
of multimodal models (Li et al., 2019; Tan and
Bansal, 2019; Lu et al., 2019; Chen et al., 2020;
Tan and Bansal, 2020) aimed to solve downstream
language and vision tasks such as Visual Question
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Answering (Antol et al., 2015) and Visual Dia-
logue (De Vries et al., 2017; Das et al., 2017).
Similarly to the revolution brought about by
Transformer-based language-only models to NLP
(see Tenney et al., 2019), these systems have
rewritten the recent history of research on lan-
guage and vision by setting new state-of-the-art
results on most of the tasks. Moreover, similarly
to their language-only counterparts, these systems
have been claimed to produce all-purpose, ‘task-
agnostic’ representations ready-made for any task.

While there has been quite a lot of interest in un-
derstanding the inner mechanisms of BERT-like
models (see the interpretability line of research
referred to as BERTology; Rogers et al., 2020)
and the nature of their representations (Mickus
et al., 2020; Westera and Boleda, 2019), compa-
rably less attention has been paid to analyzing the
multimodal equivalents of these models. In par-
ticular, no work has explicitly investigated how
the representations learned by these models com-
pare to those by their language-only counterparts,
which were recently shown to outperform standard
static representations in approximating people’s
semantic intuitions (Bommasani et al., 2020).

In this work, we therefore focus on the repre-
sentations learned by state-of-the-art multimodal
pre-trained models, and explore whether, and to
what extent, leveraging visual information makes
them closer to human representations than those
produced by BERT. Following the approach pro-
posed by Bommasani et al. (2020), we derive static
representations from the contextualized ones pro-
duced by these Transformer-based models. We
then analyze the quality of such representations
by means of the standard intrinsic evaluation based
on correlation with human similarity judgments.

We evaluate LXMERT (Tan and Bansal, 2019),
UNITER (Chen et al., 2020), ViLBERT (Lu et al.,
2019), VisualBERT (Li et al., 2019), and Vok-
enization (Tan and Bansal, 2020) on five human
judgment benchmarks1 and show that: (1) in line
with previous work, multimodal models outper-
form purely textual ones in the representation of
concrete, but not abstract, words; (2) representa-
tions by Vokenization stand out as the overall best-
performing multimodal ones; and (3) multimodal
models differ with respect to how and when they

1Data and code can be found at https://github
.com/sandropezzelle/multimodal-evaluation.

integrate information from language and vision, as
revealed by their learning patterns across layers.

2 Related Work

2.1 Evaluating Language Representations

Evaluating the intrinsic quality of learned seman-
tic representations has been one of the main, long-
standing goals of NLP (for a recent overview of
the problem and the proposed approaches, see
Navigli and Martelli, 2019; Taieb et al., 2020).
In contrast to extrinsic evaluations that measure
the effectiveness of task-specific representations
in performing downstream NLU tasks (e.g., those
contained in the GLUE benchmark; Wang et al.,
2019), the former approach tests whether, and
to what extent, task-agnostic semantic representa-
tions (i.e., not learned nor fine-tuned to be effective
on some specific tasks) align with those by human
speakers. This is typically done by measuring the
correlation between the similarities computed on
system representations and the semantic similarity
judgments provided by humans, a natural testbed
for distributional semantic models (Landauer and
Dumais, 1997). Lastra-Dı́az et al. (2019) pro-
vide a recent, comprehensive survey on methods,
benchmarks, and results.

In the era of Transformers, recent work has ex-
plored the relationship between the contextualized
representations learned by these models and the
static ones learned by distributional semantic models
(DSMs). On a formal level, some work has ar-
gued that this relation is not straightforward since
only context-invariant—but not contextualized—
representations may adequately account for ex-
pression meaning (Westera and Boleda, 2019).
In parallel, Mickus et al. (2020) focused on
BERT and explored to what extent the seman-
tic space learned by this model is comparable to
that by DSMs. Though an overall similarity was
reported, BERT’s next-sentence-prediction objec-
tive was shown to partly obfuscate this relation.
A more direct exploration of the intrinsic seman-
tic quality of BERT representations was carried
out by Bommasani et al. (2020). In their work,
BERT’s contextualized representations were first
turned into static ones by means of simple meth-
ods (see Section 4.2) and then evaluated against
several similarity benchmarks. These representa-
tions were shown to outperform traditional ones,
which revealed that pooling over many contexts
improves embeddings’ representational quality.
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Recently, Ilharco et al. (2021) probed the represen-
tations learned by purely textual language models
in their ability to perform language grounding.
Though far from human performance, they were
shown to learn nontrivial mappings to vision.

2.2 Evaluating Multimodal Representations

Since the early days of DSMs, many approaches
have been proposed to enrich language-only rep-
resentations with information from images. Bruni
et al. (2012, 2014) equipped textual representa-
tions with low-level visual features, and reported
an advantage over language-only representations
in terms of correlation with human judgments.
An analogous pattern of results was obtained by
Kiela and Bottou (2014) and Kiela et al. (2016),
who concatenated visual features obtained with
convolutional neural networks (CNNs) with skip-
gram linguistic representations. Lazaridou et al.
(2015) further improved over these techniques by
means of a model trained to optimize the similar-
ity of words with their visual representations, an
approach similar to that by Silberer and Lapata
(2014). Extensions of these latter methods include
the model by Zablocki et al. (2018), which lever-
ages information about the visual context in which
objects appear; and Wang et al. (2018), where
three dynamic fusion methods were proposed to
learn to assign importance weights to each modal-
ity. More recently, some work has explored the
quality of representations learned from images
only (Lüddecke et al., 2019) or by combining lan-
guage, vision, and emojis (Rotaru and Vigliocco,
2020). In parallel, new evaluation methods based,
for example, on decoding brain activity (Davis
et al., 2019) or success on tasks such as image
retrieval (Kottur et al., 2016) have been proposed.
This mass of studies has overall demonstrated
the effectiveness of multimodal representations in
approximating human semantic intuitions better
than purely textual ones. However, this advantage
has been typically reported for concrete, but not
abstract, concepts (Hill and Korhonen, 2014).

In recent years, the revolution brought about
by Transformer-based multimodal models has
fostered research that sheds light on their inner
workings. One approach has been to use probing
tasks: Cao et al. (2020) focused on LXMERT
and UNITER and systematically compared the
two models with respect to, for example, the de-
gree of integration of the two modalities at each

layer or the role of various attention heads (for
a similar analysis on VisualBERT, see Li et al.,
2020). Using two tasks (image-sentence verifica-
tion and counting) as testbeds, Parcalabescu et al.
(2021) highlighted capabilities and limitations of
various pre-trained models to integrate modalities
or handle dataset biases. Another line of work
has explored the impact of various experimental
choices, such as pre-training tasks and data, loss
functions and hyperparameters, on the performance
of pre-trained multimodal models (Singh et al.,
2020; Hendricks et al., 2021). Since all of these
aspects have proven to be crucial for these mod-
els, Bugliarello et al. (2021) proposed VOLTA,
a unified framework to pre-train and evaluate
Transformer-based models with the same data,
tasks and visual features.

Despite the renewed interest in multimodal
models, to the best of our knowledge no work has
explored, to date, the intrinsic quality of the task-
agnostic representations built by various pre-
trained Transformer-based models. In this work,
we tackle this problem for the first time.

3 Data

We aim to evaluate how the similarities between
the representations learned by pre-trained mul-
timodal Transformers align with the similarity
judgments by human speakers, and how these
representations compare to those by textual Trans-
formers such as BERT. To do so, we need data that
(1) is multimodal, that is, where some text (lan-
guage) is paired with a corresponding image (vi-
sion), and (2) includes most of the words making
up the word pairs for which human semantic judg-
ments are available. In what follows, we describe
the semantic benchmarks used for evaluation and
the construction of our multimodal dataset.

3.1 Semantic Benchmarks

We experiment with five human judgment bench-
marks used for intrinsic semantic evaluation in
both language-only and multimodal work: RG65
(Rubenstein and Goodenough, 1965), WordSim-
353 (Finkelstein et al., 2002), SimLex999 (Hill
et al., 2015), MEN (Bruni et al., 2014), and
SimVerb3500 (Gerz et al., 2016). These bench-
marks have a comparable format, namely, they
contain N 〈w1, w2, score〉 samples, where w1

and w2 are two distinct words, and score is a
bounded value—that we normalize to range in
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original found in VICO

benchmark rel. PoS # pairs # W concr. (#) # pairs (%) # W (%) concr. (#)
RG65 S N 65 48 4.37 (65) 65 (100%) 48 (100%) 4.37 (65)
WordSim353 R N, V, Adj 353 437 3.82 (331) 306 (86.7%) 384 (87.9%) 3.91 (300)
SimLex999 S N, V, Adj 999 1028 3.61 (999) 957 (95.8%) 994 (99.5%) 3.65 (957)
MEN R N, V, Adj 3000 752 4.41 (2954) 2976 (99.2%) 750 (99.7%) 4.41 (2930)
SimVerb3500 S V 3500 827 3.08 (3487) 2890 (82.6%) 729 (88.2%) 3.14 (2890)
total 7917 2453 7194 (90.9%) 2278 (92.9%)

Table 1: Statistics of the benchmarks before (original) and after (found in VICO) filtering them based
on VICO: rel. refers to the type of semantic relation, i.e., (S)imilarity or (R)elatedness; # W to the
number of unique words present; concr. to average concreteness of the pairs (in brackets, # found in
Brysbaert et al., 2014). Within found in VICO, percentages in brackets refer to the coverage compared
to original.

[0, 1]—which stands for the degree of semantic
similarity or relatedness between w1 and w2: The
higher the value, the more similar the pair. At
the same time, these benchmarks differ in several
respects, namely, (1) the type of semantic rela-
tion they capture (i.e., similarity or relatedness);
(2) the parts-of-speech (PoS) they include; (3)
the number of pairs they contain; (4) the size of
their vocabulary (i.e., the number of unique words
present); and (5) the words’ degree of concrete-
ness, which previous work found to be particularly
relevant for evaluating the performance of multi-
modal representations (see Section 2.2). We report
descriptive statistics of all these relevant features
in Table 1 (original section). For concreteness,
we report a single score for each benchmark: the
higher, the more concrete. We obtained this score
(1) by taking, for each word, the corresponding
5-point human rating collected by Brysbaert et al.
(2014);2 (2) by computing the average concrete-
ness of each pair; and (3) by averaging over the
entire benchmark.

3.2 Dataset
Previous work evaluating the intrinsic quality of
multimodal representations has faced the issue of
limited vocabulary coverage in the datasets used.
As a consequence, only a subset of the tested
benchmarks has often been evaluated (e.g., 29%
of word pairs in SimLex999 and 42% in MEN,
reported by Lazaridou et al., 2015). To overcome
this issue, we jointly consider two large mul-
timodal datasets: Common Objects in Contexts
(COCO; Lin et al., 2014) and Visual Storytelling

2Participants were instructed that concrete words refer to
things/actions that can be experienced through our senses,
while meanings of abstract words are defined by other words.

(VIST; Huang et al., 2016). The former contains
samples where a natural image is paired with a
free-form, crowdsourced description (or caption)
of its visual content. The latter contains samples
where a natural image is paired with both a de-
scription of its visual content (DII, Descriptions
of Images in Isolation) and a fragment of a story
invented based on a sequence of five images to
which the target image belongs (SIS, Stories of
Images in Sequences). Both DII and SIS contain
crowdsourced, free-form text. In particular, we
consider the entire COCO 2017 data (the con-
catenation of train and val splits), which consists
of 616,767 〈image, description〉 samples. As for
VIST, we consider the train, val, and test splits
of both DII and SIS, which sum up to 401,600
〈image, description/story〉 samples.

By concatenating VIST and COCO, we obtain a
dataset containing 1,018,367 〈image, sentence〉
samples, that we henceforth refer to as VICO.
Thanks to the variety of images and, in particu-
lar, the types of text it contains, the concatenated
dataset proves to be very rich in terms of lexicon,
an essential desideratum for having broad cover-
age of the word pairs in the semantic benchmarks.
We investigate this by considering all the 7917
word pairs making up the benchmarks and check-
ing, for each pair, whether both of its words are
present at least once in VICO. We find 7194 pairs
made up of 2278 unique words. As can be seen in
Table 1 (found in VICO section), this is equivalent
to around 91% of total pairs found (min. 83%,
max. 100%), with an overall vocabulary coverage
of around 93% (min. 88%, max. 100%). This is re-
flected in a pattern of average concreteness scores
that is essentially equivalent to original. Figure 1
reports this pattern in a boxplot.
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Figure 1: Concreteness of word pairs found in VICO.
Concreteness ranges from 1 to 5. The horizontal line
shows median; �, mean.

# samples # imgs sent. L # W # WP

COCO 50452 39767 13.4 1988 6076
VIST 63256 40528 14.7 2250 7122
total 113708 80295 14.7 2278 7194

Table 2: Dataset statistics. # imgs: number of
unique images; sent. L: average sentence length;
# W, # WP: resp., number of words and word pairs.

Since experimenting with more than 1 mil-
lion 〈image, sentence〉 samples turns out to be
computationally highly demanding, for efficiency
reasons we extract a subset of VICO such that: (1)
all 2278 words found in VICO (hence, the vocabu-
lary) and the corresponding 7194 pairs are present
at least once among its sentences; (2) its size is
around an order of magnitude smaller than VICO;
(3) it preserves the word frequency distribution ob-
served in VICO. We obtain a subcorpus including
113,708 unique 〈image, sentence〉 samples, that
is, around 11% of the whole VICO. Since all the
experiments reported in the paper are performed
on this subset, from now on we will simply refer to
it as our dataset. Some of its descriptive statistics
are reported in Table 2.3 Interestingly, VIST sam-
ples contain more vocabulary words compared to
COCO (2250 vs. 1988 words), which is reflected
in higher coverage of word pairs (7122 vs. 6076).

4 Experiments

In our experiments, we build representations for
each of the words included in our semantic bench-
marks by means of various language-only and

3The average frequency of our vocabulary words is 171
(min. 1, max. 8440). 61 words (3%) have frequency 1.

multimodal models (Section 4.1). In all cases,
representations are extracted from the samples in-
cluded in our dataset. In the language-only models,
representations are built based on only the sen-
tence; in the multimodal models, based on the
sentence and its corresponding image (or, for
Vokenization, just the sentence but with visual su-
pervision in pre-training, as explained later). Since
representations by most of the tested models are
contextualized, we make them static by means
of an aggregation method (Section 4.2). In the
evaluation (Section 4.3), we test the ability of
these representations to approximate human se-
mantic judgments.

4.1 Models

Language-Only Models We experiment with
one distributional semantic model producing static
representations, namely, GloVe (Pennington et al.,
2014) and one producing contextualized repre-
sentations, namely, the pre-trained Transformer-
based BERT (Devlin et al., 2019). For GloVe,
following Bommasani et al. (2020) we use its
300-d word representations pre-trained on 6B to-
kens from Wikipedia 2014 and Gigaword 5.4

As for BERT, we experiment with its standard
12-layer version (BERT-base).5 This is the model
serving as the backbone of all the multimodal mod-
els we test, which allows for direct comparison.

Multimodal Models We experiment with five
pre-trained Transformer-based multimodal mod-
els. Four of them are both pre-trained and evalu-
ated using multimodal data, that is, they produce
representations based on a sentence and an image
(Language and Vision; LV ) at both training and
inference time: LXMERT (Tan and Bansal, 2019),
UNITER (Chen et al., 2020), ViLBERT (Lu et al.,
2019), and VisualBERT (Li et al., 2019). One of
them, in contrast, is visually supervised during
training, but only takes Language as input during
inference (LV ): Vokenization (Tan and Bansal,
2020). All five models are similar in three main
respects: (1) they have BERT as their backbone;
(2) they produce contextualized representations;
and (3) they have multiple layers from which
such representations can be extracted.

4http://nlp.stanford.edu/data/glove.6B
.zip.

5We adapt the code from: https://github.com
/rishibommasani/Contextual2Static.
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As for the LV models, we use reimplementa-
tions by the VOLTA framework (Bugliarello et al.,
2021).6 This has several advantages since all the
models: (1) are initialized with BERT weights;7

(2) use the same visual features, namely, 36 re-
gions of interest extracted by Faster R-CNN with
a ResNet-101 backbone (Anderson et al., 2018);8

and (3) are pre-trained in a controlled setting using
the same exact data (Conceptual Captions; Sharma
et al., 2018), tasks, and objectives, that is, Masked
Language Model (MLM), masked object clas-
sification with KL-divergence, and image-text
matching (ITM), a binary classification problem
to predict whether an image and text pair match.
This makes the four LV models directly com-
parable to each other, with no confounds. Most
importantly, each model is reimplemented as
a particular instance of a unified mathematical
framework based on the innovative gated bimodal
Transformer layer. This general layer can be used
to model both intra-modal and inter-modal inter-
actions, which makes it suitable to reimplement
both single-stream models (where language and
vision are jointly processed by a single encoder;
UNITER, VisualBERT) and dual-stream models
(where the two modalities are first processed sepa-
rately and then integrated; LXMERT, ViLBERT).

As for Vokenization, we use the original im-
plementation by Tan and Bansal (2020). This
model is essentially a visually supervised language
model which, during training, extracts multimodal
alignments to language-only data by contextually
mapping words to images. Compared to LV mod-
els where alignment between language and vision
is performed at the 〈sentence, image〉 level, in
Vokenization the mapping is done at the token
level (the image is named voken). It is worth men-
tioning that Vokenization is pre-trained with less
textual data compared to the standard BERT, the
model used to initialize all LV architectures. For
comparison, in Table 3 we report the tasks and
data used to pre-train each of the tested models.
None of the tested LV models were pre-trained
with data present in our dataset. For Vokenization,
we cannot exclude that some COCO samples of
our dataset were also used in the TIM task.

6https://github.com/e-bug/volta.
7Including LXMERT, which was initialized from scratch

in its original implementation.
8Our code to extract visual features for all our images

is adapted from: https://github.com/airsplay
/py-bottom-up-attention/blob/master/demo
/demo_feature_extraction_attr.ipynb.

pre-training task(s) pre-training data

GloVe Unsupervised vector learning Wikipedia 2014
+ Gigaword 5

BERT Masked Language Model (MLM) English Wikipedia
+ Next Sentence Prediction (NSP) + BooksCorpus

LV *
Masked Language Model (MLM)

Conceptual Captions+ Masked Object Classification KL
+ Image-Text Matching (ITM)

Vok.
Token-Image Matching (TIM)* COCO

+ Visual Genome

Masked Language Model (MLM) English Wikipedia
+ Wiki103

Table 3: Overview of tasks and data used to pre-
train models. LV refers to the 4 multimodal mod-
els; Vok. to Vokenization. *Initialized with BERT.

4.2 Aggregation Method
With the exception of GloVe, all our tested
models build contextualized representations.
We closely follow the method proposed by
Bommasani et al. (2020) and, for each word in
our benchmarks, we compute a single, static
context-agnostic representation using the samples
included in our dataset. This involves two steps:
(1) subword pooling and (2) context combination.
A schematic illustration of both these steps is
shown in Figure 2, where we exemplify the
general architecture of a LV model. Subword
pooling is the operation by which we construct a
word representation from the tokens produced by
the BERT tokenizer. Since, during tokenization,
some words (e.g., ‘donut’) get decomposed into
N subwords (don, ##ut), we apply a function to
combine the representations s1, . . . , sN produced
for each subword token tk, . . . , tk+N−1 into a
contextualized word-level representation wc. We
take the corresponding model hidden states as
our representations, and use arithmetic mean as
the combination function, following Bommasani
et al. (2020):

wc = mean(s1, . . . , sN ) (1)

For each word, we then compute a static repre-
sentation from its contextualized representations.
This is done via context combination, where we
aggregate the contextualized representations wc1 ,
. . . , wcM of the same word found in M sentences
(contexts). We obtain a single static representation
for the word, again using arithmetic mean:

w = mean(wc1 , . . . , wcM ) (2)
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Figure 2: A schematic illustration of our method to obtain static representations of words, e.g., ‘donut’.

As a result, for each of the 2278 words in our
vocabulary we obtain a single static 768-d rep-
resentation w. The operations of aggregating sub-
words (Eq. 1) and contextualized representations
(Eq. 2) are carried out for each layer of each
tested model.

For BERT, we consider 13 layers, from 0 (the
input embedding layer) to 12. For Vokenization,
we consider its 12 layers, from 1 to 12. For LV
models, we consider the part of VOLTA’s gated
bimodal layer processing the language input, and
extract activations from each of the feed-forward
layers following a multi-head attention block. In
LXMERT, there are 5 such layers: 21, 24, 27, 30,
33; in both UNITER and VisualBERT, 12 layers:
2, 4, . . . , 24; in ViLBERT, 12 layers: 14, 16,
. . . , 36.9 Representations are obtained by running
the best snapshot of each pre-trained model10

on our samples in evaluation mode, i.e., without
fine-tuning nor updating the model’s weights.

4.3 Evaluation
To evaluate the intrinsic quality of the obtained
representations, we compare the semantic space
of each model with that of human speakers. For
each word pair in each semantic benchmark de-
scribed in Section 3.1, we compute the cosine
similarity between the representations of the words
in the pair:

similarity = cosine(w1, w2) (3)

For each benchmark, we then compute Spear-
man’s rank ρ correlation between the similarities
obtained by the model and the normalized human
judgments: The higher the correlation, the more
aligned the two semantic spaces are.

9For reproducibility reasons, we report VOLTA’s indexes.
10https://github.com/e-bug/volta/blob

/main/MODELS.md.

5 Results

In Table 4, we report the best results obtained
by all tested models on the five benchmarks. In
brackets we report the number of the model layer.

Language-Only Models We notice that BERT
evaluated on our dataset (hence, just BERT) sys-
tematically outperforms GloVe. This is in line
with Bommasani et al. (2020), and replicates their
findings that, as compared to standard static em-
beddings, averaging over contextualized represen-
tations by Transformer-based models is a valuable
method for obtaining semantic representations
that are more aligned to those of humans.

It is interesting to note, moreover, that the re-
sults we obtain with BERT actually outperform the
best results reported by Bommasani et al. (2020)
using the same model on 1M Wikipedia contexts
(BERT-1M-Wiki). This is intriguing since it sug-
gests that building representations using a dataset
of visually grounded language, as we do, is not
detrimental to the representational power of the
resulting embeddings. Since this comparison is
partially unfair due to the different methods em-
ployed in selecting language contexts, we also
obtain results on a subset of Wikipedia that we
extract using the method described for VICO (see
Section 3.2),11 and which is directly comparable to
our dataset. As can be seen, representations built
on this subset of Wikipedia (BERT-Wiki ours)
turn out to perform better than those by BERT
for WordSim353, SimLex999, and SimVerb3500
(the least concrete benchmarks—see Table 1);
worse for RG65 and MEN (the most concrete
ones). This pattern of results indicates that visually
grounded language is different from encyclopedic
one, which in turn has an impact on the resulting
representations.

11This subset contains 127,246 unique sentences.
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model input Spearman ρ correlation (layer)

RG65 WS353 SL999 MEN SVERB
BERT-1M-Wiki* L 0.7242 (1) 0.7048 (1) 0.5134 (3) – 0.3948 (4)
BERT-Wiki ours L 0.8107 (1) 0.7262 (1) 0.5213 (0) 0.7176 (2) 0.4039 (4)
GloVe L 0.7693 0.6097 0.3884 0.7296 0.2183
BERT L 0.8124 (2) 0.7096 (1) 0.5191 (0) 0.7368 (2) 0.4027 (3)
LXMERT LV 0.7821 (27) 0.6000 (27) 0.4438 (21) 0.7417 (33) 0.2443 (21)
UNITER LV 0.7679 (18) 0.6813 (2) 0.4843 (2) 0.7483 (20) 0.3926 (10)
ViLBERT LV 0.7927 (20) 0.6204 (14) 0.4729 (16) 0.7714 (26) 0.3875 (14)
VisualBERT LV 0.7592 (2) 0.6778 (2) 0.4797 (4) 0.7512 (20) 0.3833 (10)
Vokenization LV 0.8456 (9) 0.6818 (3) 0.4881 (9) 0.8068 (10) 0.3439 (9)

Table 4: Spearman’s rank ρ correlation between similarities computed with representations by all tested
models and human similarity judgments in the five evaluation benchmarks: the higher the better. Results
in bold are the highest in the column among models run on our dataset (that is, all but the top 2 models).
Results underlined are the highest among LV models. *Original results from Bommasani et al. (2020).

Figure 3: Highest ρ by each model on WordSim353, SimLex999 and MEN. Each barplot reports results on both
the whole benchmark (Table 4) and the most concrete subset of it (Table 5). Best viewed in color.

Multimodal Models Turning to multimodal
models, we observe that they outperform BERT
on two benchmarks, RG65 and MEN. Though
Vokenization is found to be the best-performing
architecture on both of them, all multimodal mod-
els surpass BERT on MEN (see rightmost panel
of Figure 3; dark blue bars). In contrast, no multi-
modal model outperforms or is on par with BERT
on the other three benchmarks (Figure 3 shows
the results on WordSim353 and SimLex999). This
indicates that multimodal models have an advan-
tage on benchmarks containing more concrete
word pairs (recall that MEN and RG65 are the
overall most concrete benchmarks; see Table 1);
in contrast, leveraging visual information appears
to be detrimental for more abstract word pairs, a
pattern that is very much in line with what was
reported for previous multimodal models (Bruni
et al., 2014; Hill and Korhonen, 2014). Among
multimodal models, Vokenization stands out as
the overall best-performing model. This indicates

that grounding a masked language model is an ef-
fective way to obtain semantic representations that
are intrinsically good, as well as being effective in
downstream NLU tasks (Tan and Bansal, 2020).
Among the models using an actual visual input
(LV ), ViLBERT turns out to be best-performing
on high-concreteness benchmarks, while UNITER
is the best model on more abstract benchmarks.
This pattern could be due to the different embed-
ding layers of these models, which are shown to
play an important role (Bugliarello et al., 2021).

Concreteness Our results show a generalized
advantage of multimodal models on more concrete
benchmarks. This seems to indicate that visual in-
formation is beneficial for representing concrete
words. However, it might still be that models are
just better at representing the specific words con-
tained in these benchmarks. To further investigate
this point, for each benchmark we extract the sub-
set of pairs where both words have concreteness
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model input concr. Spearman ρ correlation (layer)

RG65 WS353 SL999 MEN SVERB
BERT L ≥ 4 0.8321 (2) 0.6138 (1) 0.4864 (0) 0.7368 (2) 0.1354 (3)
LXMERT LV ≥ 4 0.8648 (27) 0.6606 (27) 0.5749 (21) 0.7862 (33) 0.1098 (21)
UNITER LV ≥ 4 0.8148 (18) 0.5943 (2) 0.4975 (2) 0.7755 (20) 0.1215 (10)
ViLBERT LV ≥ 4 0.8374 (20) 0.5558 (14) 0.5534 (16) 0.7910 (26) 0.1529 (14)
VisualBERT LV ≥ 4 0.8269 (2) 0.6043 (2) 0.4971 (4) 0.7727 (20) 0.1310 (10)
Vokenization LV ≥ 4 0.8708 (9) 0.6133 (3) 0.5051 (9) 0.8150 (10) 0.1390 (9)
# pairs (%) 44 (68%) 121 (40%) 396 (41%) 1917 (65%) 210 (7%)

Table 5: Correlation on the concrete subsets (concr. ≥ 4) of the five evaluation benchmarks. Results in
bold are the highest in the column. Results underlined are the highest among LV multimodal models.

≥4 out of 5 in Brysbaert et al. (2014). For
each model, we consider the results by the layer
which is best-performing on the whole benchmark.
Table 5 reports the results of this analysis, along
with the number (and %) of word pairs considered.

For all benchmarks, there is always at least one
multimodal model that outperforms BERT. This
pattern is crucially different from that observed
in Table 4, and confirms that multimodal models
are better than language-only ones at representing
concrete words, regardless of their PoS. Zooming
into the results, we note that Vokenization still
outperforms other multimodal models on both
RG65 and MEN (see rightmost panel of Figure 3;
light blue bars), while LXMERT turns out to
be the best-performing model on both WordSim-
353 and SimLex999 (see left and middle pan-
els of Figure 3; light blue bars). These results
suggest that this model is particularly effective
in representing highly concrete words, but fails
with abstract ones, which could cause the overall
low correlations in the full benchmarks (Table 4).
ViLBERT obtains the best results on SimVerb-
3500, thus confirming the good performance of
this model in representing verbs/actions seen also
in Table 4. However, the low correlation that all
models achieve on this subset indicates that they
all struggle to represent the meaning of verbs
that are deemed very concrete. This finding ap-
pears to be in line with the generalized difficulty
in representing verbs reported by Hendricks and
Nematzadeh (2021). Further work is needed to
explore this issue.

6 Analysis

We perform analyses aimed at shedding light on
commonalities and differences between the vari-

ous models. In particular, we explore how model
performance evolves through layers (Section 6.1),
and how various models compare to humans at
the level of specific word pairs (Section 6.2).

6.1 Layers

Table 4 reports the results by the best-performing
layer of each model. Figure 4 complements these
numbers by showing, for each model, how perfor-
mance changes across various layers. For BERT,
Bommasani et al. (2020) found an advantage of
earlier layers in approximating human semantic
judgments. We observe the same exact pattern,
with earlier layers (0–3) achieving the best corre-
lation scores on all benchmarks and later layers
experiencing a significant drop in performance.
As for multimodal models, previous work (Cao
et al., 2020) experimenting with UNITER and
LXMERT revealed rather different patterns be-
tween the two architectures. For the former, a
higher degree of integration between language
and vision was reported in later layers; as for the
latter, such integration appeared to be in place
from the very first multimodal layer. Cao et al.
(2020) hypothesized this pattern to be represen-
tative of the different behaviors exhibited by
single-stream (UNITER, VisualBERT) vs. dual-
stream (LXMERT, ViLBERT) models. If a higher
degree of integration between modalities leads to
better semantic representations, we should observe
an advantage of later layers in UNITER and Visu-
alBERT, but not in LXMERT and ViLBERT. In
particular, we expect this to be the case for bench-
marks where the visual modality plays a bigger
role, i.e., the more concrete RG65 and MEN.

As can be seen in Figure 4, LXMERT exhib-
its a rather flat pattern of results, which overall
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Figure 4: Correlation by all tested models on the five benchmarks across layers. Best viewed in color.

confirms the observation that, in this dual-stream
model, integration of language and vision is in
place from the very first multimodal layer. Con-
versely, we notice that single-stream UNITER
achieves the best correlation on RG65 and MEN
towards the end of its pipeline (at layers 18 and
20, respectively), which supports the hypothesis
that later representations are more multimodal.
The distinction between single- and dual-stream
models appears less clear-cut in the other two
architectures (not explored by Cao et al., 2020).
Though ViLBERT (dual-stream) achieves gener-
ally good results in earlier layers, the best corre-
lation on RG65 and MEN is reached in middle
layers. As for VisualBERT (single-stream), con-
sistently with the expected pattern the best cor-
relation on MEN is achieved at one of the latest
layers; however, the best correlation on RG65 is
reached at the very first multimodal layer. Overall,
our results mirror the observations by Cao et al.
(2020) for LXMERT and UNITER. However, the
somewhat mixed pattern observed for the other
models suggests more complex interactions be-
tween the two modalities. As for Vokenization,
there is a performance drop at the last two layers,
but otherwise its performance constantly increases
through the layers and reaches the highest peaks
toward the end.

Taken together, the results of this analysis con-
firm that various models differ with respect to how

they represent and process the inputs and to how
and when they perform multimodal integration.

6.2 Pair-Level Analysis

Correlation results are not informative about (1)
which word pairs are more or less challenging
for the models, nor about (2) how various models
compare to each other in dealing with specific
word pairs. Intuitively, this could be tested by
comparing the raw similarity values output by a
given model to both human judgments and scores
by other models. However, this turns out not to be
sound in practice due to the different ranges of val-
ues produced. For example, some models output
generally low cosine values, while others produce
generally high scores,12 which reflects differences
in the density of the semantic spaces they learn. To
compare similarities more fairly, for each model
we consider the entire distribution of cosine val-
ues obtained in a given benchmark, rank it in
descending order (from highest to lowest similar-
ity values) and split it in five equally-sized bins,
that we label highest, high, medium, low, lowest.
We do the same for human similarity scores.
Then, for each word pair, we check whether it
is assigned the same similarity ‘class’ by both
humans and the model. We focus on the three

12Differences also emerge between various model layers.
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BERT ViLBERT Vokenization BERT ViLBERT Vokenization
most similar pairs according to humans least similar pairs according to humans

gem, jewel gem, jewel gem, jewel cord, smile cord, smile cord, smile
midday, noon midday, noon midday, noon noon, string noon, string noon, string
automobile, car automobile, car automobile, car rooster, voyage rooster, voyage rooster, voyage
cemetery, graveyard cemetery, graveyard cemetery, graveyard fruit, furnace fruit, furnace fruit, furnace

RG65

cushion, pillow cushion, pillow cushion, pillow autograph, shore autograph, shore autograph, shore
coast, shore coast, shore coast, shore king, cabbage king, cabbage king, cabbage
money, cash money, cash money, cash chord, smile chord, smile chord, smile
midday, noon midday, noon midday, noon noon, string noon, string noon, string
journey, voyage journey, voyage journey, voyage professor, cucumber professor, cucumber professor, cucumber

WS353

dollar, buck dollar, buck dollar, buck rooster, voyage rooster, voyage rooster, voyage
stupid, dumb stupid, dumb stupid, dumb cliff, tail cliff, tail cliff, tail
creator, maker creator, maker creator, maker container, mouse container, mouse container, mouse
vanish, disappear vanish, disappear vanish, disappear ankle, window ankle, window ankle, window
quick, rapid quick, rapid quick, rapid new, ancient new, ancient new, ancient

SL999

insane, crazy insane, crazy insane, crazy shrink, grow shrink, grow shrink, grow
sun, sunlight sun, sunlight sun, sunlight feather, truck feather, truck feather, truck
cat, kitten cat, kitten cat, kitten angel, gasoline angel, gasoline angel, gasoline
automobile, car automobile, car automobile, car bakery, zebra bakery, zebra bakery, zebra
river, water river, water river, water bikini, pizza bikini, pizza bikini, pizza

MEN

stair, staircase stair, staircase stair, staircase muscle, tulip muscle, tulip muscle, tulip
repair, fix repair, fix repair, fix drive, breed drive, breed drive, breed
triumph, win triumph, win triumph, win die, grow die, grow die, grow
build, construct build, construct build, construct visit, giggle visit, giggle visit, giggle
flee, escape flee, escape flee, escape miss, catch miss, catch miss, catch

SVERB

rip, tear rip, tear rip, tear shut, vomit shut, vomit shut, vomit

Table 6: Similarity assigned by BERT, ViLBERT, and Vokenization to most (left) and least (right)
similar pairs according to humans. Dark green indicates highest assigned similarity; light green, high;
yellow, medium; orange, low; red, lowest. Best viewed in color.

overall best-performing models, namely, BERT
(L), ViLBERT (LV ), and Vokenization (LV ).

We perform a qualitative analysis by focusing
on 5 pairs for each benchmark with the highest and
lowest semantic similarity/relatedness according
to humans. Table 6 reports the results of this anal-
ysis through colors. Dark green and red indicate
alignment between humans and models on most
similar and least similar pairs, respectively. At
first glance, we notice a prevalence of dark green
on the left section of the table, which lists 5 of the
most similar pairs according to humans; a preva-
lence of red on the right section, which lists the
least similar ones. This clearly indicates that the
three models are overall effective in capturing sim-
ilarities of words, mirroring the results reported in
Table 4. Consistently, we notice that model rep-
resentations are generally more aligned in some
benchmarks compared to others: consider, for ex-
ample, RG65 vs. SimLex999 or SimVerb3500.
Moreover, some models appear to be more aligned
than others in specific benchmarks: For example,
in the highly concrete MEN, Vokenization is much
more aligned than BERT on the least similar cases.
In contrast, BERT is more aligned with humans
than are multimodal models on the most similar

RG65 WS353 SL999 MEN SVERB

all
BERT 0.52 0.39 0.38 0.41 0.31
ViLBERT 0.49 0.37 0.35 0.43 0.30
Vokenization 0.60 0.39 0.35 0.45 0.29
similar
BERT 0.62 0.45 0.41 0.44 0.33
ViLBERT 0.50 0.43 0.38 0.47 0.31
Vokenization 0.73 0.48 0.38 0.46 0.29
dissimilar
BERT 0.46 0.43 0.39 0.42 0.32
ViLBERT 0.50 0.39 0.33 0.44 0.33
Vokenization 0.54 0.41 0.36 0.48 0.31

Table 7: Proportion of aligned cases between
humans and the models when considering all
pairs in the benchmarks (all), their highest + high
partition (similar), and lowest + low partition
(dissimilar).

pairs of SimLex999, to which ViLBERT (and, to
a lesser extent, Vokenization), often assigns low
and medium similarities. These qualitative obser-
vations are in line with the numbers reported in
Table 7, which refer to the proportion of aligned
cases between humans and the models within
each benchmark. Interestingly, all models display
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Figure 5: Four 〈image, caption〉 samples from our
dataset (in brackets, we indicate the source: VIST/
COCO). For the high-similarity SL999 pair creator,
maker (top), multimodal models perform worse than
BERT. An opposite pattern is observed for the low-
similarity MEN pair bakery, zebra (bottom). The
pair bakery, zebra is highly concrete, while creator,
maker is not.

a comparable performance when dealing with se-
mantically similar and dissimilar pairs; that is,
none of the models is biased toward one or the
other extreme of the similarity scale.

Some interesting observations can be made by
zooming into some specific word pairs in Table 6:
For example, creator,maker, one of the most
similar pairs in SimLex999 (a pair with low con-
creteness), is assigned the highest class by BERT;
low and medium by ViLBERT and Vokeniza-
tion, respectively. This suggests that adding visual
information has a negative impact on the repre-
sentation of these words. As shown in Figure 5
(top), this could be due to the (visual) special-
ization of these two words in our dataset, where
creator appears to be usually used to refer to a
human agent, while maker typically refers to some
machinery. This confirms that multimodal mod-
els effectively leverage visual information, which
leads to rather dissimilar representations. Another
interesting case is bakery, zebra, one of MEN’s
least similar pairs (and highly concrete), which is

RG65 WS353 SL999 MEN SVERB

all 0.31 0.20 0.18 0.19 0.13
none 0.22 0.43 0.44 0.32 0.51
B only 0.08 0.06 0.10 0.08 0.08
MM only 0.08 0.05 0.05 0.09 0.05

Table 8: Proportion of pairs where all / none of
the 3 models or only either BERT (B only) or mul-
timodal (MM only) models are aligned to humans.

assigned to low and lowest by ViLBERT and Vo-
kenization, respectively, to medium by BERT. In
this case, adding visual information has a positive
role toward moving one representation away from
the other, which is in line with human intuitions.
As for the relatively high similarity assigned by
BERT to this pair, a manual inspection of the
dataset reveals the presence of samples where the
word zebra appears in bakery contexts; for exam-
ple, ‘‘There is a decorated cake with zebra and
giraffe print’’ or ‘‘A zebra and giraffe themed
cake sits on a silver plate’’. We conjecture these
co-occurrence patterns may play a role in the
non-grounded representations of these words.

To provide a more quantitative analysis of con-
trasts across models, we compute the proportion
of word pairs in each benchmark for which all /
none of the 3 models assign the target similarity
class; BERT assigns the target class, but neither
of the multimodal models do (B only); both mul-
timodal models are correct but BERT is not (MM
only). We report the numbers in Table 8. It can
be noted that, in MEN, the proportion of MM
only cases is higher compared to B only; that is,
visual information helps more than harms in this
benchmark. An opposite pattern is observed for,
as an example, SimLex999.

7 Conclusion

Language is grounded in the world. Thus, a priori,
representations extracted from multimodal data
should better account for the meaning of words.
We investigated the representations obtained by
Transformer-based pre-trained multimodal models
—which are claimed to be general-purpose seman-
tic representations—and performed a systematic
intrinsic evaluation of how the semantic spaces
learned by these models correlate with human se-
mantic intuitions. Though with some limitations
(see Faruqui et al., 2016; Collell Talleda and
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Moens, 2016), this evaluation is simple and in-
terpretable, and provides a more direct way to
assess the representational power of these models
compared to evaluations based on task perfor-
mance (Tan and Bansal, 2020; Ma et al., 2021).
Moreover, it allows to probe these models on a
purely semantic level, which can help answer im-
portant theoretical questions regarding how they
build and represent word meanings, and how these
mechanisms compare to previous methods (see
Mickus et al., 2020, for a similar discussion).

We proposed an experimental setup that
makes evaluation of various models comparable
while maximizing coverage of human judgments
data. All the multimodal models we tested—
LXMERT, UNITER, ViLBERT, VisualBERT,
and Vokenization—show higher correlations with
human judgments than language-only BERT for
more concrete words. These results confirm the
effectiveness of Transformer-based models in
aligning language and vision. Among these, Vok-
enization exhibits the most robust results overall.
This suggests that the token-level approach to vi-
sual supervision used by this model in pre-training
may lead to more fine-grained alignment between
modalities. In contrast, the sentence-level regime
of the other models may contribute to more un-
certainty and less well defined multimodal word
representations. Further work is needed to better
understand the relation between these different
methods.
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