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Abstract

Recent improvements in the predictive quality

of natural language processing systems are of-

ten dependent on a substantial increase in the

number of model parameters. This has led to

various attempts of compressing such models,

but existing methods have not considered the

differences in the predictive power of various

model components or in the generalizability

of the compressed models. To understand the

connection between model compression and

out-of-distribution generalization, we define

the task of compressing language representa-

tion models such that they perform best in a

domain adaptation setting. We choose to ad-

dress this problem from a causal perspective,

attempting to estimate the average treatment

effect (ATE) of a model component, such as

a single layer, on the model’s predictions.

Our proposed ATE-guided Model Compres-

sion scheme (AMoC), generates many model

candidates, differing by the model components

that were removed. Then, we select the best

candidate through a stepwise regression model

that utilizes the ATE to predict the expected

performance on the target domain. AMoC

outperforms strong baselines on dozens of do-

main pairs across three text classification and

sequence tagging tasks.1

1 Introduction

The rise of deep neural networks has transformed

the way we represent language, allowing models

to learn useful features directly from raw inputs.

However, recent improvements in the predictive

quality of language representations are often re-

lated to a substantial increase in the number of

model parameters. Indeed, the introduction of the

Transformer architecture (Vaswani et al., 2017)

∗Authors contributed equally.
1Our code and data are available at: https://github

.com/rotmanguy/AMoC.

and attention-based models (Devlin et al., 2019;

Liu et al., 2019; Brown et al., 2020) have improved

performance on most natural language processing

(NLP) tasks, while facilitating a large increase in

model sizes.

Since large models require a significant amount

of computation and memory during training and

inference, there is a growing demand for com-

pressing such models while retaining the most

relevant information. While recent attempts have

shown promising results (Sanh et al., 2019), they

have some limitations. Specifically, they attempt

to mimic the behavior of the larger models without

trying to understand the information preserved or

lost in the compression process.

In compressing the information represented in

billions of parameters, we identify three main

challenges. First, current methods for model

compression are not interpretable. While the im-

portance of different model parameters is certainly

not uniform, it is hard to know a priori which

of the model components should be discarded

in the compression process. This notion of fea-

ture importance has not yet trickled down into

compression methods, and they often attempt to

solve a dimensionality reduction problem where

a smaller model aims to mimic the predictions of

the larger model. Nonetheless, not all parameters

are born equal, and only a subset of the informa-

tion captured in the network is actually useful for

generalization (Frankle and Carbin, 2018).

The second challenge we observe in model

compression is out-of-distribution generalization.

Typically, compressed models are tested for their

in-domain generalization. However, in reality the

distribution of examples often varies and is differ-

ent than that seen during training. Without testing

for the generalization of the compressed models

on different test-set distributions, it is hard to fully

assess what was lost in the compression process.
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The setting explored in domain adaptation pro-

vides us with a platform to test the ability of the

compressed models to generalize across-domains,

where some information that the model has learned

to rely on might not exist. Strong model perfor-

mance across domains provides a stronger signal

on retaining valuable information.

Lastly, another challenge we identify in training

and selecting compressed models is confidence es-

timation. In trying to understand what gives large

models the advantage over their smaller competi-

tors, recent probing efforts have discovered that

commonly used models such as BERT (Devlin

et al., 2019), learn to capture semantic and syn-

tactic information in different layers and neurons

across the network (Rogers et al., 2021). While

some features might be crucial for the model, oth-

ers could learn spurious correlations that are only

present in the training set and are absent in the

test set (Kaushik et al., 2019). Such cases have

led to some intuitive common practices such as

keeping only layers with the same parity or the top

or bottom layers (Fan et al., 2019; Sajjad et al.,

2020). Those practices can be good on average,

but do not provide model confidence scores or

success rate estimates on unseen data.

Our approach addresses each of the three main

challenges we identify, as it allows estimating

the marginal effect of each model component, is

designed and tested for out-of-distribution gen-

eralization, and provides estimates for each com-

pressed model performance on an unlabeled target

domain. We dive here into the connection be-

tween model compression and out-of-distribution

generalization, and ask whether compression

schemes should consider the effect of individual

model components on the resulting compressed

model. Particularly, we present a method that

attempts to compress a model while maintain-

ing components that can generalize well across

domains.

Inspired by causal inference (Pearl, 1995), our

compression scheme is based on estimating the

average effect of model components on the de-

cisions the model makes, at both the source and

target domains. In causal inference, we measure

the effect of interventions by comparing the differ-

ence in outcome between the control and treatment

groups. In our setting, we take advantage of the

fact that we have access to unlabeled target ex-

amples, and treat the model’s predictions as our

outcome variable. We then try to estimate the

effect of a subset of the model components, such

as one or more layers, on the model’s output.

To do that, we propose an approximation of a

counterfactual model where a model component

of choice is removed. We train an instance of the

model without that component and keep every-

thing else equal apart from the input and output to

that component, which allows us to perform only a

small number of gradient steps. Using this approx-

imation, we then estimate the average treatment

effect (ATE) by comparing the predictions of the

base model to those of its counterfactual instance.

Since our compressed models are very effi-

ciently trained, we can generate a large number of

such models per each source-target domain pair.

We then train a regression model on our training

domain pairs in order to predict how well a com-

pressed model would generalize from a source to

a target domain, using the ATE as well as other

variables. This regression model can then be ap-

plied to new source-target domain pairs in order

to select the compressed model that best supports

cross-domain generalization.

To organize our contributions, we formulate

three research questions:

1. Can we produce a compressed model that out-

performs all baselines in out-of-distribution

generalization?

2. Does the model component we decide to

remove indeed hurt performance the least?

3. Can we use the average treatment effect to

guide our model selection process?

In § 6 we directly address each of the three

research questions, and demonstrate the usefulness

of our method, ATE-guided model compression

(AMoC), to improve model generalization.

2 Previous Work

Previous work on the intersection of neural model

compression, domain adaptation, and causal in-

ference is limited, as our application of causal

inference to model compression and our discus-

sion of the connection between compression and

cross-domain generalization are novel. However,

there is an abundance of work in each field on

its own, and on the connection between domain

adaptation and causal inference. Since our goal
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is to explore the connection between compression

and out-of-distribution generalization, as framed

in the setting of domain adaptation, we survey the

literature on model compression and the connec-

tion between generalization, causality, and domain

adaptation.

2.1 Model Compression

NLP models have been increased exponentially in

size, growing from less than a million parameters

a few years ago to hundreds of billions. Since the

introduction of the Transformer architecture, this

trend has been strengthened, with some models

reaching more than 175 billion parameters (Brown

et al., 2020). As a result, there has been a growing

interest in compressing the information captured

in Transformers into smaller models (Chen et al.,

2020; Ganesh et al., 2020; Sun et al., 2020).

Usually, such smaller models are trained us-

ing the base model as a teacher, with the smaller

student model learning to predict its output prob-

abilities (Hinton et al., 2015; Jiao et al., 2020;

Sanh et al., 2019). However, even if the student

closely matches the teacher’s soft labels, their

internal representations may be considerably dif-

ferent. This internal mismatch can undermine the

generalization capabilities originally intended to

be transferred from the teacher to the student

(Aguilar et al., 2020; Mirzadeh et al., 2020).

As an alternative, we try not to interfere or alter

the learned representation of the model. Compres-

sion schemes such as those presented in Sanh et al.

(2019) discard model components randomly. In-

stead, we choose to focus on understanding which

components of the model capture the information

that is most useful for it to perform well across

domains, and hence should not be discarded.

2.2 Domain Adaptation and Causality

Domain adaptation is a longstanding challenge

in machine learning (ML) and NLP, which deals

with cases where the train and test sets are drawn

from different distributions. A great effort has

been dedicated to exploit labels from both source

and target domains for that purpose (Daumé III

et al., 2010; Sato et al., 2017; Cui et al., 2018;

Lin and Lu, 2018; Wang et al., 2018). However,

a much more challenging and realistic scenario,

also termed unsupervised domain adaptation, oc-

curs when no labeled target samples exist (Blitzer

et al., 2006; Ganin et al., 2016; Ziser and Reichart,

2017, 2018a, b, 2019; Rotman and Reichart, 2019;

Ben-David et al., 2020). In this setting, we have

access to labeled and unlabeled data from the

source domain and to unlabeled data from the

target, and models are tested by their performance

on unseen examples from the target domain.

A closely related task is domain adaptation

success prediction. This task explores the pos-

sibility of predicting the expected performance

degradation between source and target domains

(McClosky et al., 2010; Elsahar and Gallé,

2019). Similar to predicting performance in a

given NLP task, methods for predicting domain

adaptation success often rely on in-domain per-

formance and distance metrics estimating the

difference between the source and target dis-

tributions (Reichart and Rappoport, 2007; Ravi

et al., 2008; Louis and Nenkova, 2009; Van Asch

and Daelemans, 2010; Xia et al., 2020). While

these efforts have demonstrated the importance of

out-of-domain performance prediction, they have

not been made as far as we know in relation to

model compression.

As the fundamental purpose of domain adap-

tation algorithms is improving the out-of-

distribution generalization of learning models, it

is often linked with causal inference (Johansson

et al., 2016). In causal inference we typically

care about estimating the effect that an inter-

vention on a variable of interest would have on

an outcome (Pearl, 2009). Recently, using causal

methods to improve the out-of-distribution per-

formance of trained classifiers is gaining traction

(Rojas-Carulla et al., 2018; Wald et al., 2021).

Indeed, recent papers applied a causal approach

to domain adaptation. Some researchers proposed

using causal graphs to predict under distribution

shifts (Schölkopf et al., 2012) and to understand

the type of shift (Zhang et al., 2013). Adapting

these ideas to computer vision, Gong et al. (2016)

were one of the first to propose a causal graph

describing the generative process of an image

as being generated by a ‘‘domain’’. The causal

graph served for learning invariant components

that transfer across domains. Since that, the no-

tion of invariant prediction has emerged as an

important operational concept in causal inference

(Peters et al., 2017). This idea has been used to

learn classifiers that are robust to domain shifts

and can perform well on unseen target distribu-

tions (Gong et al., 2016; Magliacane et al., 2018;
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Rojas-Carulla et al., 2018; Greenfeld and Shalit,

2020).

Here we borrow ideas from causality to help

us reason on the importance of specific model

components, such as individual layers. That is,

we estimate the effect of a given model compo-

nent (denoted as the treatment) on the model’s

predictions in the unlabeled target domain, and

use the estimated effect as an evaluation of the

importance of this component. Our treatment ef-

fect estimation method is inspired by previous

causal model explanation work (Goyal et al., 2019;

Feder et al., 2021), although our algorithm is very

different.

3 Causal Terminology

Causal methodology is most commonly used in

cases where the goal is estimating effects on

real-world outcomes, but it can be adapted to

help us understand and explain what affects NLP

models (Feder et al., 2021). Specifically, we can

think of intervening on a model and altering its

components as a causal question, and measure the

effect of this intervention on model predictions.

A core benefit of this approach is that we can

estimate treatment effects on model’s predictions

without the need for manually-labeled target data.

Borrowing causal methodology into our setting,

we treat model components as our treatment, and

try to estimate the effect of removing them on our

model’s predictions. The predictions of a model

are driven by its components, and by changing

one component and holding everything else equal,

we can estimate the effect of this intervention. We

can use this estimation in deciding which model

component should be kept in the compression

process.

As the link between model compression and

causal inference was not explored previously, we

provide here a short introduction to causal infer-

ence and its basic terminology, focusing on its

application to our use case. We then discuss the

connection to Pearl’s do-operator (Pearl et al.,

2009) and the estimation of treatment effects.

Imagine we have a model m that classifies

examples to one of L classes. Given a set C
of K model components, which we hypothesize

might affect the model’s decision, we denote the

set of binary variables Ic = {Icj ∈ {0, 1}|j ∈
{1, . . . ,K}}, where each corresponds to the in-

clusion of the component in the model, that is,

if Icj = 1 then the j-th component (cj) is in the

model. Our goal is to assert how the model’s pre-

dictions are affected by the components in C. As

we are interested in the effect on the class proba-

bility assigned by m, we measure this probability

for an example x, and denote it for a class l as

z(m(x))l and for all L classes as ~z(m(x)).

Using this setup, we can now define the ATE,

the common metric used when estimating causal

effects. ATE is the difference in mean outcomes

between the treatment and control groups, and

using do-calculus (Pearl, 1995) we can define it

as follows:

Definition 1 (Average Treatment Effect (ATE))

The average treatment effect of a binary treatment

Icj on the outcome ~z(m(x)) is:

ATE(cj) =E
[

~z(m(x))|do(Icj = 1)
]

− E
[

~z(m(x))|do(Icj = 0)
]

,
(1)

where the do-operator is a mathematical opera-

tor introduced by Pearl (1995), which indicates

that we intervene on cj such that it is included

(do(Icj = 1)) or not (do(Icj = 0)) in the model.

While the setup usually explored with do-

calculus involves a fixed joint-distribution where

treatments are assigned to individuals (or exam-

ples), we borrow intuition from a specialized case

where interventions are made on the process which

generates outcomes given examples. This type of

an intervention is called Process Control, and

was proposed by Pearl et al. (2009) and further

explored by Bottou et al. (2013). This unique

setup is designed to improve our understanding of

the behavior of complex learning systems and

predict the consequences of changes made to

the system. Recently, Feder et al. (2021) used

it to intervene on language representation models,

generating a counterfactual representation model

through an adversarial training algorithm which

biases the representation model to forget infor-

mation about treatment concepts and maintain

information about control concepts.

In our approach we intervene on the j-th com-

ponent, by holding the rest of the model fixed and

training only the parameters that control the input

and output to that component. This is crucial for

our estimation procedure as we want to know the

effect of the j-th component on a specific model

instance. This effect can be computed by compar-

ing the predictions of the original model instance

1358



to those of the intervened model (see below).

This computation is fundamentally different from

measuring the conditional probability where the

j-th component is not in the model by estimating

E
[

~z(m(x))|Icj = 0
]

.

4 Methodology

We start by describing the task of compress-

ing models such that they perform well on

out-of-distribution examples, detailing the domain

adaptation framework we focus on. Then, we de-

scribe our compression scheme, designed to allow

us to approximate the ATE and responsible for

producing compressed model candidates. Finally,

we propose a regression model that uses the ATE

and other features to predict a candidate model’s

performance on a target domain. This regression

allows us to select a strong candidate model.

4.1 Task Definition and Framework

To test the ability of a compressed model to

generalize on out-of-distribution examples, we

choose to focus on a domain adaptation setting. An

appealing property of domain adaptation setups is

that they allow us to measure out-of-distribution

performance in a very natural way by training on

one domain and testing on another.

In our setup, during training, we have access

to n source-target domain pairs (Si,Ti)ni=1. For

each pair we assume to have labeled data from the

source domains (LSi)ni=1 and unlabeled data from

the the source and target domains (USi , UTi)ni=1.

We also assume to have held-out labeled data

for all domains, for measuring test performance

(HSi ,HTi)ni=1. At test time we are given an unseen

domain pair (Sn+1,Tn+1) with labeled source data

LSn+1 and unlabeled data from both domainsUSn+1

and UTn+1 , respectively. Our goal is to classify

examples on the unseen target domain T
n+1 using

a compressed model mn+1 trained on the new

source domain.

For each domain pair in (Si,Ti)ni=1, we gen-

erate a set of K candidate models M i =
{mi

1, . . . ,m
i
K}, differing by the model compo-

nents that were removed from the base model

mi
B . For each candidate, we compute the ATE and

other relevant features which we discuss in § 4.3.

Then, using the training domain pairs, for which

we have access to a limited amount of labeled

target data, we train a stepwise linear regression

to predict the performance of all candidate models

in {M i}ni=1 on their target domain. Finally, at test

time, after computing the regression features on

the unseen source-target pair, we use the trained

regression model to select the compressed model

(mn+1)∗ ∈ Mn+1 that is expected to perform best

on the unseen unlabeled target domain.

While this task definition relies on a limited

number of labeled examples from some target do-

mains at training time, at test time we only use

labeled examples from the source domain and un-

labeled examples from the target. We elaborate

on our compression scheme, responsible for gen-

erating the compressed model candidates in § 4.2.

We then describe the regression features and the

regression model in § 4.3 and § 4.4, respectively.

4.2 Compression Scheme

Our compression scheme (AMoC) assumes to

operate on a large classifier, consisting of an

encoder-decoder architecture, that serves as the

base model being compressed. In such models,

the encoder is the language representation model

(e.g., BERT), and the decoder is the task classifier.

Each input sentence x to the base model mi
B is

encoded by the encoder e. Then, the encoded

sentence e(x) is passed through the decoder d to

compute a distribution over the the label space

L: ~z(mi
B(x)) = Softmax(d(e(x))). AMoC is

designed to remove a set of encoder components,

and can in principle be used with any language

encoder.

As described in Algorithm 1, AMoC generates

candidate compressed versions of mi
B . In each it-

eration it selects from C, the set containing subsets

of encoder components, a candidate ck ∈ C to be

removed.2 The goal of this process is to generate

many compressed model candidates, such that the

k-th candidate ck differs from the base model mi
B

only by the effect of the parameters in ck on the

model’s predictions. After generating these candi-

dates, AMoC tries to choose the best performing

model for the unseen target domain.

When generating the k-th compressed model of

the i-th source-target pair, we start by removing

all parameters in ck from the computational graph

of mi
B . Then, we connect the predecessor of each

detached component from ck to its successor in

the graph, which yields the new mi
k (see Figure 1).

To estimate the effect of ck on the predictions of

2For example, if components correspond to layers, and we

wish to remove an individual layer from a 12-layer encoder,

then C = {{i}|i ∈ {1, . . . , 12}}.
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Algorithm 1 ATE-Guided Model Compression (AMoC)

Input: Domain pairs (Si,Ti)n+1
i=1 with Labeled source data

(LSi)n+1

i=1
, Unlabeled source and target data (USi ,UTi)n+1

i=1 ,

Labeled held-out source and target data (HSi ,HTi)ni=1, and

a set C of subsets of encoder components to be removed.

Algorithm:

1. For each domain pair in (Si,Ti)ni=1

(a) Train the base model mi
B on LSi .

(b) For ck ∈ C

- Freeze all encoder parameters.

- Remove every component in ck from mi
B .

- Connect and unfreeze the remaining

components according to § 4.2.

- Fine-tune the new model mi
k on LSi for

one or more epochs.

- Compute ÂTESi(ck) and ÂTET i(ck)
according to Eq. 2, using USi and UTi .

- Compute the remaining features in 4.3.

2. Train the stepwise regression according to Eq. 4, using

all compressed models generated in step 1.

3. Repeat steps 1(a)-1(b) for (Sn+1,Tn+1) and choose

(mn+1)∗ with the highest expected performance

according to the regression model.

mi
B , we freeze all remaining model parameters in

mi
k and fine-tune it for one or more epochs, train-

ing only the decoder and the parameters of the

new connections between the predecessors and

successors of the removed components. An ad-

vantage of this procedure is that we can efficiently

generate many model candidates. Figure 1 demon-

strates this process on a simple architecture when

considering the removal of layer components.

Guiding our model selection step is the ATE

of ck on the base model mi
B . The generation of

each compressed candidate mi
k is designed to al-

low us to estimate the effect of ck on the model’s

predictions. In comparing the predictions of mi
B

to the compressed model mi
k on many exam-

ples, we try to mimic the process of generating

control and treatment groups. As is done in con-

trolled experiments, we compare examples that

are given a treatment, namely, encoded by the

compressed model mi
k, and examples that were

encoded by the base model mi
B . Intervening on

the example-generating process was explored pre-

viously in the causality literature by Bottou et al.

(2013); Feder et al. (2021).

Alongside the ATE, we compute other fea-

tures that might be predictive of a compressed

model’s performance on an unlabeled target do-

main, which we discuss in detail in § 4.3. Using

those features and the ATE, we train a linear step-

wise regression to predict a compressed model’s

performance on target domains (§ 4.4). Finally,

at test time AMoC is given an unseen domain

pair and applies the regression in order to choose

the compressed source model expected to perform

best on the target domain. Using the regression,

we can estimate the power of the ATE in predict-

ing model performance and answer Question 3

of § 1.

In this paper, we choose to focus on the removal

of sets of layers, as done in previous work (Fan

et al., 2019; Sanh et al., 2019; Sajjad et al., 2020).

While our method can support any other parameter

partitioning, such as clusters of neurons, we leave

this for future work. In the case of layers, to estab-

lish the new compressed model we simply connect

the remained layers according to their hierarchy.

For example, for a base model with a 12-layer

encoder and c = {2, 3, 7} the unconnected com-

ponents are {1}, {4, 5, 6} and {8, 9, 10, 11, 12}.

Layer 1 will then be connected to layer 4, and

layer 6 to layer 8. The compressed model will be

then trained for one or more epochs where only

the decoder and layers 1 and 6 (using the original

indices) are fine-tuned. In times where layer 1 is

removed, the embedding layer is connected to the

first unremoved layer and is fine-tuned.

4.3 Regression Features

Apart from the ATE, which estimates the impact

of the intervention on the base model, we naturally

need to consider other features. Indeed, without

any information on the target domain, predicting

that a model will perform the same as in the source

domain could be a reasonable first-order approx-

imation (McClosky et al., 2010). Also, adding

information on the distance between the source

and target distributions (Van Asch and Daelemans,

2010) or on the type of components that were re-

moved (such as the number of layers) might also

be useful for predicting the model’s success. We

present here all the features we consider, and

discuss their usefulness in predicting model per-

formance. To answer Q3, we need to show that

given all this information, the ATE is still pre-

dictive for the model’s performance in the target

domain.

ATE Our main variable of interest is the av-
erage treatment effect of the components in ck
on the predictions of the model. In our compres-
sion scheme, we estimate for a specific domain
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Figure 1: An example of our method with a 3-layer encoder when considering the removal of layer components.

(a) At first, the base model is trained (Alg. 1, step 1(a)). (b) The second encoder layer is removed from the base

model, and the first layer is connected to the final encoder layer. The compressed model is then fine-tuned for one

or more epochs, where only the parameters of the first layer and the decoder are updated (Alg. 1, step 1(b)). We

mark frozen layers and non-frozen layers with snowflakes and fire symbols, respectively.

d ∈ {Si, T i} the ATE for each compressed model

mi
k by comparing it to the base model mi

B:

ÂTEd(ck) =
1

|Ud|

∑

x∈Ud

〈~z
(

mi

B(x)
)

− ~z
(

mi

k(x)
)

〉

(2)

where the operator 〈〉 denotes the total variation

distance: A summation over the absolute values

of vector coordinates.3 As we are interested in the

effect on the probability assigned to each class by

the classifier mi
k, we measure the class probability

of its output for an example x, as proposed by

Feder et al. (2021).4

In our regression model we choose to include

the ATE of the source and the target domains,

ÂTESi(ck) (estimated on USi) and ÂTET i(ck)
(estimated on UTi) , respectively. We note that

in computing the ATE we only require the pre-

dictions of the models, and do not need labeled

data.

In-domain Performance A common metric for

selecting a classification model is its performance

3For a three class prediction and a single example, where

the probability distributions for the base and the compressed

models are (0.7, 0.2, 0.1) and (0.5, 0.1, 0.4), respectively,

ÂTEi(ck) = |0.7− 0.5|+ |0.2− 0.1|+ |0.1− 0.4| = 0.6.
4For sequence tagging tasks, we first compute

sentence-level ATEs by averaging the word-level proba-

bility differences, and then average those ATEs to get the

final ATE.

on a held-out set. Indeed, in cases where we do

not have access to any information from the target

domain, the naive choice is the best performing

model on a held-out source domain set (Elsahar

and Gallé, 2019). Hence, for every ck ∈ C we

compute the performance of mi
k on HSi .

Domain Classification An important variable

when predicting model performance on an unseen

test domain is the distance between its training

domain and that test domain (Elsahar and Gallé,

2019). While there are many ways to approximate

this distance, we choose to do so by training a

domain classifier on USi and UTi , classifying

each example according to its domain. We then

compute the average probability assigned to the

target examples to belong to the source domain,

according to the domain classifier:

̂P (Si|T i) =
1

|HTi |

∑

x∈H
Ti

P (Si|x), (3)

where P (Si|x) denotes for an unlabeled target

example x, the probability that it belongs to the

source domain S
i, based on the domain classifier.

Compression-size Effects We include in our

regression binary variables indicating the number

of layers that were removed. Naturally, we assume

that the larger the number of layers removed, the

bigger the gap from the base model should be.
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4.4 Regression Analysis

In order to decide which ck should be removed

from the base model, we follow the process de-

scribed in Algorithm 1 for all c ∈ C and end up

with many candidate compressed models, differ-

ing by the model components that were removed.

As our goal is to choose a candidate model to be

used in an unseen target domain, we train a stan-

dard linear stepwise regression model (Hocking,

1976; Draper and Smith, 1998; Dubossarsky et al.,

2020) to predict the candidate’s performance on

the seen target domains:

Y = β0 + β1X1 + · · ·+ βmXm + ǫ, (4)

where Y is performance on these target domains,

computed using their held-out sets (HTi)ni=1, and

X1, · · · , Xm are the set of variables described in

4.3, including the ATE. In stepwise regression

variables are added to the model incrementally

only if their marginal addition for predicting Y is

statistically significant (p < 0.01). This method

is useful for finding variables with maximal and

unique contribution to the explanation of Y . The

value of this regression is two-fold in our case

as it allows us to: (1) get a predictive model

that can choose a high quality compressed model

candidate, and (2) estimate the predictive power

of the ATE on model performance in the target

domain.

5 Experiments

5.1 Data

We consider three challenging data sets (tasks):

(1) The Amazon product reviews data set for sen-

timent classification (He and McAuley, 2016).5

This data set consists of product reviews and

metadata, from which we choose 6 distinct do-

mains: Amazon Instant Video (AIV), Beauty (B),

Digital Music (DM), Musical Instruments (MI),

Sports and Outdoors (SAO), and Video Games

(VG). All reviews are annotated with an integer

score between 0 and 5. We label > 3 reviews as

positive and < 3 reviews as negative. Ambiguous

reviews (rating = 3) are discarded. Since the data

set does not contain development and test sets, we

randomly split each domain into training (64%),

development (16%), and test (20%) sets.

5http://jmcauley.ucsd.edu/data/amazon/.

(2) The Multi-Genre Natural Language In-

ference (MultiNLI) corpus for natural language

inference classification (Williams et al., 2018).6

This corpus consists of pairs of sentences, a

premise and a hypothesis, where the hypothesis

either entails the premise, is neutral to it or contra-

dicts it. The MultiNLI data set extends upon the

SNLI corpus (Bowman et al., 2015), assembled

from image captions, to 10 additional domains:

5 matched domains, containing training, devel-

opment and test samples and 5 mismatched,

containing only development and test samples.

We experiment with the original SNLI corpus

(Captions domain) as well as the matched version

of MultiNLI, containing the Fiction, Government,

Slate, Telephone and Travel domains, for a total

of 6 domains.

(3) The OntoNotes 5.0 data set (Hovy et al.,

2006), consisting of sentences annotated with

named entities, part-of-speech tags and parse

trees.7 We focus on the Named Entity Recogni-

tion (NER) task with 6 different English domains:

Broadcast Conversation (BC), Broadcast News

(BN), Magazine (MZ), Newswire (NW), Tele-

phone Conversation (TC), and Web data (WB).

This setup allows us to evaluate the quality of

AMoC on a sequence tagging task.

The statistics of our experimental setups are

reported in Table 1. Since the test sets of the

MultiNLI domains are not publicly available, we

treat the original development sets as our test

sets, and randomly choose 2,000 examples from

the training set of each domain to serve as the

development sets. We use the original splits of

the SNLI as they are all publicly available. Since

our data sets manifest class imbalance phenomena

we use the macro average F1 as our evaluation

measure.

For the regression step of Algorithm 1, we

use the development set of each target domain

to compute the model’s macro F1 score (for the

Y and the in-domain performance variables). We

compute the ATE variables on the development

sets of both domains, train the domain classifier

on unlabeled versions of the training sets and

compute P̂ (S|T ) on the target development set.

6https://cims.nyu.edu/∼sbowman/multinli/.
7https://catalog.ldc.upenn.edu/LDC2013T19.
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Amazon Reviews

Train Dev Test

Amazon Instant Video 21K 5.2K 6.5K

Beauty 112K 28K 35K

Digital Music 37K 9.2K 11K

Musical Instruments 6K 1.5K 1.9K

Sports and Outdoors 174K 43K 54K

Video Games 130K 32K 40K

MultiNLI

Train Dev Test

Captions 550K 10K 10K

Fiction 75K 2K 2K

Government 75K 2K 2K

Slate 75K 2K 2K

Telephone 81K 2K 2K

Travel 75K 2K 2K

OntoNotes

Train Dev Test

Broadcast Conversation 173K 30K 36K

Broadcast News 207K 25K 26K

Magazine 161K 15K 17K

News 878K 148K 60K

Telephone Conversation 92K 11K 11K

Web 361K 48K 50K

Table 1: Data statistics. We report the number of

sentences for Amazon Reviews and MultiNLI,

and the number of tokens for OntoNotes.

5.2 Model and Baselines

Model The encoder being compressed is the

BERT-base model (Devlin et al., 2019). BERT

is a 12-layer Transformer model Vaswani et al.

(2017); Radford et al. (2018), representing tex-

tual inputs contextually and sequentially. Our

decoder consists of a layer attention mechanism

(Kondratyuk and Straka, 2019) which computes

a parameterized weighted average over the lay-

ers’ output, followed by a 1D convolution with

the max-pooling operation and a final Softmax

layer. Figure 1(a) presents a simplified version

of the architecture of this model with 3 encoder

layers.

Baselines To put our results in context of pre-

vious model compression work, we compare our

models to three strong baselines. Like AMoC,

the baselines generate reduced-size encoders.

These encoders are augmented with the same

decoder as in our model to yield the baseline

architectures.

The first baseline is DistilBERT (DB) (Sanh

et al., 2019): A 6-layer compressed version of

BERT-base, trained on the masked language

modelling task with the goal of mimicking the

predictions of the larger model. We used its

default setting, i.e., removal of 6 layers with

c = {2, 4, 6, 7, 9, 11}. Sanh et al. (2019) demon-

strated that DistilBERT achieves comparable

results to the large model with only half of its

layers.

Since DistilBERT was not designed or tested

on out-of-distribution data, we create an addi-

tional version, denoted as DB + DA. In this

version, the training process is performed on the

masked language modelling task using an unla-

beled version of the training data from both the

source and the target domains, with its original

hyperparameters.

We further add an additional adaptation-aware

baseline: DB + GR, the DistilBERT model

equipped with the gradient reversal (GR) layer

(Ganin and Lempitsky, 2015). Particularly, we

augment the DistilBERT model with a domain

classifier, similar in structure to the task classifier,

which aims to distinguish between the unlabeled

source and the unlabeled target examples. By re-

versing the gradients resulting from the objective

function of this classifier, the encoder is biased to

produce domain-invariant representations. We set

the weights of the main task loss and the domain

classification loss to 1 and 0.1, respectively.

Another baseline is LayerDrop (LD), a pro-

cedure that applies layer dropout during training,

making the model robust to the removal of certain

layers during inference (Fan et al., 2019). During

training, we apply a fixed dropout rate of 0.5 for all

layers. At inference, we apply their Every Other

strategy by removing all even layers to obtain a

reduced 6-layer model.

Finally, we compare AMoC to ALBERT, a

recently proposed BERT-based variant designed

to mimic the performance of the larger BERT

model with only a tenth of its parameters (11M

parameters compared to BERT’s 110M parame-

ters) (Lan et al., 2020). ALBERT is trained with

cross-layer parameter sharing and sentence order-

ing objectives, leading to better model efficiency.

Unlike other baselines explored here, it is not

directly comparable since it consists of 12 layers

and was pre-trained on substantially more data. As

such, we do not include it in the main results ta-

ble (Table 2), and instead discuss its performance

compared to AMoC in Section 6.
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Amazon Reviews

S\T AIV B DM

Base AMoC DB DB+DA DB+GR LD Base AMoC DB DB+DA DB+GR LD Base AMoC DB DB+DA DB+GR LD

AIV 75.49 82.14 65.00 75.86 65.42 69.51 77.66 76.02 67.12 75.94 62.8 71.92

B 80.05 79.18 69.23 74.07 66.73 74.10 77.10 76.60 65.42 72.74 58.52 69.94

DM 78.97 78.57 69.52 76.00 70.39 72.14 76.54 74.37 63.83 74.94 65.21 67.36

MI 65.24 69.87 54.96 67.21 55.99 56.53 72.72 72.78 55.75 74.83 46.44 61.25 60.09 63.88 50.01 68.24 30.42 52.67

SAO 77.10 77.64 63.26 70.01 63.43 67.72 83.88 85.12 69.87 81.74 67.19 76.32 74.30 75.15 58.51 67.60 60.58 64.60

VG 82.73 83.79 73.66 78.98 73.24 76.24 85.20 85.21 69.62 80.34 70.91 77.13 81.10 82.43 71.21 75.08 72.51 76.01

AVG 76.81 77.81 66.13 73.25 65.96 69.35 78.77 79.92 64.81 77.54 63.03 70.31 74.05 74.82 62.45 71.92 56.97 67.03

MI SAO VG

Base AMoC DB DB+DA DB+GR LD Base AMoC DB DB+DA DB+GR LD Base AMoC DB DB+DA DB+GR LD

AIV 67.99 64.44 58.26 61.64 58.64 61.43 69.76 69.52 59.71 71.62 58.96 62.97 77.71 76.52 67.43 76.44 67.11 70.19

B 82.70 80.16 66.47 76.28 68.03 71.87 83.73 83.21 72.23 79.57 72.11 77.29 82.57 82.23 65.52 76.96 65.50 71.59

DM 71.53 71.10 59.18 67.21 61.37 63.13 70.94 63.83 58.45 65.29 61.75 62.79 78.45 76.04 68.67 76.21 66.93 70.66

MI 70.08 72.71 59.23 71.39 58.30 66.10 65.10 67.91 51.60 56.37 49.67 56.87

SAO 84.16 84.73 71.09 78.64 72.27 72.44 80.05 81.06 64.51 75.14 65.78 70.00

VG 86.43 82.07 66.22 76.77 67.38 70.59 82.61 82.23 68.96 79.12 70.18 73.83

AVG 78.56 76.50 64.24 72.11 65.54 67.89 75.42 74.30 63.72 73.40 64.26 68.60 76.78 76.75 63.55 72.22 63.00 67.86

MNLI

S\T Captions Fiction Govern.

Base AMoC DB DB+DA DB+GR LD Base AMoC DB DB+DA DB+GR LD Base AMoC DB DB+DA DB+GR LD

Captions 58.92 58.37 46.96 57.37 46.04 54.93 59.51 59.35 40.14 57.85 42.54 56.85

Fiction 71.33 68.81 39.04 67.60 45.26 63.27 73.41 69.71 46.83 69.55 47.10 63.56

Govern. 62.52 68.04 44.45 63.47 39.23 54.68 67.61 66.05 44.5 63.47 46.75 60.44

Slate 65.04 62.40 37.58 46.99 44.87 55.39 69.83 67.70 46.53 58.59 43.58 62.07 72.95 72.16 49.53 71.31 49.23 66.82

Telephone 65.04 61.22 40.03 58.65 36.64 59.77 69.07 67.77 47.45 63.76 46.76 61.91 71.46 65.47 46.83 66.63 45.99 65.53

Travel 65.77 62.11 36.54 60.11 38.29 55.41 66.97 65.19 44.05 60.06 42.94 56.67 74.24 72.07 49.03 72.69 51.32 65.47

AVG 65.94 64.52 39.53 59.36 40.86 57.70 66.48 65.02 45.90 60.65 45.21 59.20 70.31 67.75 46.47 67.61 47.24 63.65

Slate Telephone Travel

Base AMoC DB DB+DA DB+GR LD Base AMoC DB DB+DA DB+GR LD Base AMoC DB DB+DA DB+GR LD

Captions 52.83 53.26 41.30 52.96 42.23 50.56 56.94 56.68 41.22 58.35 45.53 54.01 57.88 57.40 42.86 54.84 43.64 54.88

Fiction 66.76 62.94 44.79 64.13 45.70 59.82 71.83 68.47 41.66 67.70 44.52 64.97 69.86 66.28 46.98 66.52 46.81 62.36

Govern. 65.22 65.59 46.57 62.89 45.42 61.06 67.54 67.87 43.73 65.39 45.88 65.46 67.45 64.70 48.67 66.99 48.58 63.09

Slate 68.27 71.27 45.21 59.39 39.50 61.06 71.47 69.01 46.19 57.94 46.92 61.79

Telephone 65.53 63.62 45.73 56.35 44.68 60.70 69.20 65.97 47.30 65.53 42.94 61.76

Travel 65.02 60.11 45.65 60.96 47.08 56.51 69.57 66.31 42.30 64.35 45.86 61.63

AVG 63.07 61.10 44.81 59.46 45.02 57.73 66.83 66.12 42.82 63.04 44.26 61.43 67.17 64.67 46.40 62.36 45.78 60.78

OntoNotes

S\T BC BN MZ

Base AMoC DB DB+DA DB+GR LD Base AMoC DB DB+DA DB+GR LD Base AMoC DB DB+DA DB+GR LD

BC 73.78 71.28 70.76 70.94 58.22 66.46 64.06 60.96 63.44 64.75 48.48 53.78

BN 74.25 71.06 70.83 70.11 70.29 65.61 69.92 68.34 68.71 69.39 69.70 60.87

MZ 66.56 62.00 60.55 61.76 62.06 54.76 71.47 67.32 66.5 66.41 59.67 61.29

NW 72.23 70.26 68.22 70.16 41.20 63.57 80.85 79.54 78.15 79.34 68.92 75.07 74.66 71.78 71.86 72.28 65.76 64.82

TC 42.63 41.78 45.14 39.18 21.32 29.64 53.08 52.37 54.56 51.69 19.80 42.16 39.17 38.59 41.94 38.75 16.98 33.81

WB 28.47 27.58 26.79 25.17 26.97 21.97 40.39 40.68 39.09 40.35 30.79 33.55 15.86 20.09 22.84 24.84 15.53 13.52

AVG 56.83 54.54 54.31 53.28 44.37 47.11 63.91 62.24 61.81 61.75 47.48 55.71 52.73 51.95 53.76 54.00 43.29 45.36

NW TC WB

Base AMoC DB DB+DA DB+GR LD Base AMoC DB DB+DA DB+GR LD Base AMoC DB DB+DA DB+GR LD

BC 61.31 58.80 58.44 57.75 46.95 50.73 62.39 63.07 58.19 59.53 59.31 55.21 48.90 47.42 45.58 46.00 45.56 40.17

BN 73.55 69.79 70.51 71.26 58.80 62.31 69.64 65.69 61.45 64.68 64.98 60.40 51.34 50.14 48.02 48.72 48.39 43.45

MZ 67.40 63.80 63.04 63.64 50.33 52.08 60.31 56.94 54.61 55.51 63.37 42.00 48.25 44.78 43.11 43.91 39.98 38.80

NW 61.20 51.88 50.73 49.78 36.48 44.38 52.23 50.52 49.07 49.30 41.34 45.72

TC 35.25 35.15 36.73 35.58 20.83 27.93 36.50 35.36 37.00 36.23 25.72 27.04

WB 22.60 26.40 23.64 27.57 20.61 17.02 18.68 15.45 18.36 15.38 7.64 10.77

AVG 52.02 50.79 50.47 51.16 39.50 42.01 54.44 50.61 48.67 48.98 46.36 42.55 47.44 45.64 44.56 44.83 40.20 39.04

Table 2: Domain adaptation results in terms of macro F1 scores on Amazon Reviews (top), MultiNLI

(middle), and OntoNotes (bottom) with 6 removed layers. S and T denote Source and Target, respectively.

The best result among the compressed models (all models except from Base) is highlighted in bold. We

mark results that outperform the uncompressed Base model with an underscore.

5.3 Compression Scheme Experiments

While our compression algorithm is neither

restricted to a specific deep neural network ar-

chitecture nor to the removal of certain model

components, we follow previous work and focus

on the removal of layer sets (Fan et al., 2019, Sanh

et al., 2019; Sajjad et al., 2020). With the goal of

addressing our research questions posed in § 1,

we perform extensive compression experiments

on the 12-layer BERT by considering the removal

of 4, 6, and 8 layers. For each number of layers

removed, we randomly sample 100 layer sets to

generate our model candidates. To be able to test

our method on all domain pairs, we randomly split

these pairs into five 20% domain pair sets and train

five regression models, differing in the set used

for testing. Our splits respect the restriction that

no test set domain (source or target) appears in the

training set.

5.4 Hyperparameters

We implement all models using HuggingFace’s

Transformers package (Wolf et al., 2020).8 We

consider the following hyperparameters for the

uncompressed models: Training for 10 epochs

8https://github.com/huggingface/transformers.

1364

https://github.com/huggingface/transformers


(Amazon Reviews and MultiNLI) or 30 epochs

(OntoNotes) with an early stopping criterion ac-

cording to the development set, optimizing all

parameters using the ADAM optimizer (Kingma

and Ba, 2015) with a weight decay of 0.01 and a

learning rate of 1e-4, a batch size of 32, a window

size of 9, 16 output channels for the 1D convolu-

tion, and a dropout layer probability of 0.1 for the

layer attention module. The compressed models

are trained on the labeled source data for 1 epoch

(Amazon Reviews and MultiNLI) or 10 epochs

(OntoNotes).

The domain classifiers are identical in ar-

chitecture to our task classifiers and use the

uncompressed encoder after it was optimized

during the above task-based training. These clas-

sifiers are trained on the unlabeled version of the

source and target training sets for 25 epochs with

early stopping, using the same hyperparameters as

above.

6 Results

Performance of Compressed Models Table 2

reports macro F1 scores for all domain pairs of

the Amazon Reviews, MultiNLI, and OntoNotes

data sets, when considering the removal of 6 lay-

ers, and Figure 2 provides summary statistics.

Clearly, AMoC outperforms all baselines in the

vast majority of setups (see, e.g., the lower graphs

of Figure 2). Moreover, its average target-domain

performance (across the 5 source domains) im-

proves over the second best model (DB + DA)

by up to 4.56%, 5.16%, and 1.63%, on Amazon

Reviews, MultiNLI, and OntoNotes, respectively

(lowest rows of each table in Table 2; see also

the average across setups in the upper graphs of

Figure 2). These results provide a positive answer

to Q1 of § 1, by indicating the superiority of

AMoC over strong alternatives.

DB+GR is overall the worst performing base-

line, followed by DB, with an average degradation

of 11.3% and 8.2% macro F1 score, respectively,

compared to the more successful cross-domain

oriented variant DB + DA. This implies that

out-of-the-box compressed models such as DB

struggle to generalize well to out-of-distribution

data. DB + DA also performs worse than AMoC

in a large portion of the experiments. These results

are even more appealing given that AMoC does

not perform any gradient step on the target data,

performing only a small number of gradient steps

Figure 2: Summary of domain adaptation results. Over-

all average score (top) and overall number of wins

(bottom) over all source-target domain pairs.

on the source data. In fact, AMoC only uses the

unlabeled target data for computing the regres-

sion features. Lastly, LD, another strong baseline

which was specifically designed to remove layers

from BERT, is surpassed by AMoC by as much as

6.76% F1, when averaging over all source-target

domain pairs.

Finally, we compare AMoC to ALBERT. We

find that on average ALBERT is outperformed

by AMoC by 8.8% F1 on Amazon Reviews,

and by 1.6% F1 on MultiNLI. On OntoNotes the

performance gap between ALBERT and AMoC

is an astounding 24.8% F1 in favor of AMoC,

which might be a result of ALBERT being an

uncased model, an important feature for NER

tasks.

Compressed Model Selection We next evalu-

ate how well the regression model and its variables

predict the performance of a candidate compressed

model on the target domain. Table 3 presents the

Adjusted R2, indicating the share of the variance

in the predicted outcome that the variables ex-

plain. Across all experiments and regardless of

the number of layers removed, our regression

model predicts well the performance on unseen

domain pairs, averaging an R2 of 0.881, 0.916,

and 0.826 on Amazon Reviews, MultiNLI, and

OntoNotes, respectively. This indicates that our
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# of removed Layers

Data set 4 6 8 Average

Amazon Reviews 0.844 0.898 0.902 0.881

MultiNLI 0.902 0.921 0.926 0.916

OntoNotes 0.827 0.830 0.821 0.826

Table 3: Adjusted R2 on the test set for each

type of compression (4, 6, or 8 layers) on each

data set.

regression properly estimates the performance of

candidate models.

Another support for this observation is that in

75% of the experiments the model selected by the

regression is among the top 10 performing com-

pressed candidates. In 55% of the experiments, it

is among the top 5 models. On average it performs

only 1% worse than the best performing com-

pressed model. Combined with the high adjusted

R2 across experiments, this suggests a positive

answer to Q2 of § 1.

Finally, as expected, we find that AMoC is

often outperformed by the full model. However,

the gap between the models is small, averaging

only in 1.26%. Moreover, in almost 25% of all

experiments AMoC was able to surpass the full

model (underscored scores in Table 2).

Marginal Effects of Regression Variables

While the performance of the model on data drawn

from the same distribution may also be indicative

of its out-of-distribution performance, additional

information is likely to be needed in order to

make an exact prediction. Here, we supplement

this indicator with the variables described in § 4.3

and ask whether they can be useful to select the

best compressed model out of a set of candidates.

Table 4 presents the most statistically significant

variables in our stepwise regression analysis. It

demonstrates that the ATE and the model’s per-

formance in the source domain are usually very

indicative of the model’s performance.

Indeed, most of the regression’s predictive

power comes from the model performance on

the source domain (F1S) and the treatment effects

on the source and target domains (ÂTES , ÂTET ).

In contrast, the distance metric (P̂ (S|T )) and the

interaction terms (ÂTET ·P̂ (S|T ),F1S ·P̂ (S|T ))
contribute much less to the total R2. The predic-

tive power of the ATE in both source and target

domains suggests a positive answer to Q3 of § 1.

Amazon MultiNLI OntoNotes

Variable β ∆R2 β ∆R2 β ∆R2

F1S 0.435 0.603 −0.299 0.143 0.748 0.510

ÂTET −1.207 0.239 −0.666 0.413 117.5 0.202

ÂTES 1.836 0.029 0.557 0.232 125.9 0.072

P̂ (S|T ) −0.298 0.028 −0.652 0.061 15.60 0.052

ÂTET −0.560 0.007 −0.092 0.029 −115.8 0.004
·P̂ (S|T )
F1S 0.472 0.004 1.027 0.043 0.187 0.004
·P̂ (S|T )
8 layers −0.137 0.001 −0.303 0.001 −3.145 0.001

6 layers −0.066 0 −0.146 0.007 −1.020 0.005

const 0.259 0 0.594 0 −12.18 0

Table 4: Stepwise regression coefficients (β) and

their marginal contribution to the adjusted R2

(∆R2) on all experiments on both data sets.

7 Additional Analysis

7.1 Layer Importance

To further understand the importance of each

of BERT’s layers, we compute the frequency in

which each layer appears in the best candidate

model, namely, the model with the highest F1

score on the target test set, of every experiment.

Figure 3 captures the layer frequencies across

the different data sets and across the number of

removed layers.
The plots suggest that the two final layers, lay-

ers 11 and 12, are the least important layers with

average frequencies of 30.3% and 24.8%, respec-

tively. Additionally, in most cases layer 1 is ranked

below the other layers. These results imply that

the compressed models are able to better recover

from the loss of parameters when the external lay-

ers are removed. The most important layer appears

to be layer 4, with an average frequency of 73.3%.

Finally, we notice that a large frequency variance

exists across the different subplots. Such variance

supports our hypothesis that the decision of which

layers to remove should not be based solely on the

architecture of the model.
To pin down the importance of a specific layer

for a given base model, we utilize a similar regres-

sion analysis to that of § 6. Specifically, we train

a regression model on all compressed candidates

for a given source-target domain pair (in all three

tasks), adding indicator variables for the exclusion

of each layer from the model. This model asso-

ciates each layer with a regression coefficient,

which can be interpreted as the marginal effect
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Figure 3: Layer frequency at the best (oracle) compressed models when considering the removal of 4, 6, and 8

layers in the three data sets.

of that layer being removed on expected target

performance. We then compute for each layer

its average coefficient across source-target pairs

(Table 5, β column) and compare it to the frac-

tion of source-target pairs where this layer is not

included in the best possible (oracle) compressed

model (Table 5, P (Layer removed) column).

As can be seen in the table, layers that their re-

moval is associated with better model performance

are more often not included in the best performing

compressed models. Indeed, the Spearman’s rank

correlation between the two rankings is as high as

0.924. Such analysis demonstrates that the regres-

sion model used as part of AMoC not only selects

high quality candidates, but can also shed light on

the importance of individual layers.

7.2 Training Epochs

We next analyze the number of epochs required

to fine-tune our compressed models. For each

data set (task) we randomly choose for every

target domain 10 compressed models and cre-

ate two alternatives, differing in the number of

training epochs performed after layer removal:

One trained for a single epoch and another for

5 epochs (Amazon Reviews, MultiNLI) or 10

Layer Rank β̄ P (Layer removed)

1 0.0448 0.300

2 0.0464 0.333

3 0.0473 0.333

4 0.0483 0.333

5 0.0487 0.416

6 0.0495 0.555

7 0.0501 0.472

8 0.0507 0.638

9 0.0514 0.500

10 0.0522 0.638

11 0.0538 0.611

12 0.0577 0.666

Table 5: Layer rank according to regres-

sion coefficients (β) and the probability

the layer was removed form the best com-

pressed model. Results are averaged across

all target-domain pairs in our experiments.

epochs (Ontonotes). Table 6 compares the av-

erage F1 (target-domain task performance) and

ÂTET differences between the two alternatives,

on the target domain test and dev sets, respec-

tively. The results suggest that when training for
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F1 Difference ÂTET Difference

Amazon Reviews 0.080 0.011

MNLI −0.250 0.003

OntoNotes 2.940 −0.009

Table 6: F1 and ATE differences when training

AMoC after layer removal for multiple epochs

vs. a single epoch.

Overall Parameters Trainable Parameters Train Time Reduction

BERT-base 110M 110M ×1
DistilBERT 66M 66M ×1.83

AMoC 110M - 7M · L
7M · min{L, 12−L}

×11
+17M · 1 {1∈c}

Table 7: Comparison of number of parameters and

training time between BERT-base, DistilBERT,

and AMoC when removing L layers. AMoC’s

number of trainable parameters is an upper bound.

more epochs on Amazon Reviews and MultiNLI

the difference in both the F1 and ATE are negligi-

ble. For OntoNotes (NER), in contrast, additional

training improves the F1, suggesting that further

training of the compressed model candidates may

be favorable for sequence tagging tasks such as

NER.

7.3 Space and Time Complexity

Table 7 compares the number of overall and

trainable parameters and the training time of

BERT, DistilBERT, and AMoC. Removing L

layers from BERT yields a reduction of 7L mil-

lion parameters. As can be seen in the Table,

AMoC requires training only a small fraction of

the overall parameters. Since we only unfreeze

one layer per each new connected component, at

the worst case our algorithm requires the training

of min{L, 12 − L} layers. The only exception is

in the case where Layer 1 is removed (1 ∈ c).

In such a case we unfreeze the embedding layer,

which adds 24 million trained parameters. In terms

of total training time (one epoch of task-based

fine-tuning), when averaging over all setups, a

single compressed AMoC model is ×11 faster

than BERT and ×6 faster than DistilBERT.

7.4 Design Choices

Computing the ATE Following Goyal et al.

(2019) and Feder et al. (2021), we implement

the ATE with the total variation distance be-

tween the probability output of the original model

and that of the compressed models. To verify

the quality of this design choice, we re-ran our

experiments where the ATE is calculated using

the KL-divergence between the same distribu-

tions. While the results in both conditions are

qualitatively similar, we did find a consistent

quantitative improvement of the R2 (average of

0.05 across setups) when considering our total

variation distance.

Regression Analysis Our regression approach

is designed to allow us to both select high-quality

compressed candidates and to interpret the im-

portance of each explanatory variable, including

the ATEs. As this regression has relatively few

features, we do not expect to lose significant

predictive power by choosing to focus on linear

predictors. To verify this, we re-ran our experi-

ments when using a fully connected feed-forward

network9 to predict target performance. This

model, which is less interpretable than our re-

gression, is also less accurate: We have observed

an increased mean squared error of 1-3% with the

network.

8 Conclusion

We explored the relationship between model com-

pression and out-of-distribution generalization.

AMoC, our proposed algorithm, relies on causal

inference tools for estimating the effects of inter-

ventions. It hence creates an interpretable process

that allows to understand the role of specific model

components. Our results indicate that AMoC is

able to produce a smaller model with minimal loss

in performance across domains, without any use

of target labeled data at test time (Q1).

AMoC can efficiently train a large number of

compressed model candidates, that can then serve

as training examples for a regression model. We

have shown that this approach results in a high

quality estimation of the performance of com-

pressed models on unseen target domains (Q2).

Moreover, our stepwise regression analysis indi-

cates that the ÂTES and ÂTET estimates are

instrumental for these attractive properties (Q3).

As training and test set mismatches are com-

mon, we steered our model compression research

towards out-of-domain generalization. Besides

its realistic nature, this setup poses additional

modeling challenges, such as understanding the

proximity between domains, identifying which

9With one intermediate layer, same input feature as the

regression, and hyperparameters tuned on the development

set of each source-target pair.
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components are invariant to domain shift, and es-

timating performance on unseen domains. Hence,

AMoC is designed for model compression in

the out-of-distribution setup. We leave the design

of similar in-domain compression methods for

future work.

Finally, we believe that using causal methods

to produce compressed NLP models that can well

generalize across distributions is a promising di-

rection of research, and hope that more work will

be done in this intersection.
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