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Abstract

Building models for realistic natural language

tasks requires dealing with long texts and ac-

counting for complicated structural depen-

dencies. Neural-symbolic representations have

emerged as a way to combine the reasoning

capabilities of symbolic methods, with the

expressiveness of neural networks. However,

most of the existing frameworks for combining

neural and symbolic representations have been

designed for classic relational learning tasks

that work over a universe of symbolic entities

and relations. In this paper, we present DRAIL,

an open-source declarative framework for spe-

cifying deep relational models, designed to

support a variety of NLP scenarios. Our frame-

work supports easy integration with expressive

language encoders, and provides an interface to

study the interactions between representation,

inference and learning.

1 Introduction

Understanding natural language interactions in

realistic settings requires models that can deal with

noisy textual inputs, reason about the depen-

dencies between different textual elements, and

leverage the dependencies between textual content

and the context from which it emerges. Work in

linguistics and anthropology has defined context

as a frame that surrounds a focal communicative

event and provides resources for its interpretation

(Gumperz, 1992; Duranti and Goodwin, 1992).

As a motivating example, consider the interac-

tions in the debate network described in Figure 1.

Given a debate claim (t1), and two consecutive

posts debating it (p1, p2), we define a textual in-

ference task, determining whether a pair of text

elements hold the same stance in the debate

(denoted using the relation Agree(X,Y)). This

task is similar to other textual inference tasks

(Bowman et al., 2015) that have been successfully

approached using complex neural representations

(Peters et al., 2018; Devlin et al., 2019). In add-

ition, we can leverage the dependencies between

these decisions. For example, assuming that one

post agrees with the debate claim (Agree(t1,
p2)), and the other one does not (¬Agree(t1, p1)),
the disagreement between the two posts can be

inferred: ¬Agree(t1, p1) ∧ Agree(t1, p2)→ ¬
Agree(p1, p2). Finally, we consider the social

context of the text. The disagreement between the

posts can reflect a difference in the perspectives

their authors hold on the issue. This informa-

tion might not be directly observed, but it can be

inferred using the authors’ social interactions and

behavior, given the principle of social homophily

(McPherson et al., 2001), stating that people with

strong social ties are likely to hold similar views

and authors’ perspectives can be captured by rep-

resenting their social interactions. Exploiting this

information requires models that can align the

social representation with the linguistic one.

Motivated by these challenges, we introduce

DRAIL1, a Deep Relational Learning framework,

which uses a combined neuro-symbolic repre-

sentation for modeling the interaction between

multiple decisions in relational domains. Similar

to other neuro-symbolic approaches (Mao et al.,

2019; Cohen et al., 2020), our goal is to exploit

the complementary strengths of the two modeling

paradigms. Symbolic representations, used by

logic-based systems and by probabilistic graphical

models (Richardson and Domingos, 2006; Bach

et al., 2017), are interpretable, and allow domain

experts to directly inject knowledge and constrain

the learning problem. Neural models capture de-

pendencies using the network architecture and are

better equipped to deal with noisy data, such as

text. However, they are often difficult to interpret

and constrain according to domain knowledge.

1https://gitlab.com/purdueNlp/DRaiL/.
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Figure 1: Example debate.

Our main design goal in DRAIL is to provide

a generalized tool, specifically designed for NLP

tasks. Existing approaches designed for classic

relational learning tasks (Cohen et al., 2020),

such as knowledge graph completion, are not

equipped to deal with the complex linguistic input,

whereas others are designed for very specific NLP

settings such as word-based quantitative reason-

ing problems (Manhaeve et al., 2018) or aligning

images with text (Mao et al., 2019). We discuss the

differences between DRAIL and these approaches

in Section 2. The examples in this paper focus

on modelings various argumentation mining tasks

and their social and political context, but the same

principles can be applied to wide array of NLP

tasks with different contextualizing information,

such as images that appear next to the text, or

prosody when analyzing transcribed speech, to

name a few examples.

DRAIL uses a declarative language for de-

fining deep relational models. Similar to other

declarative languages (Richardson and Domingos,

2006; Bach et al., 2017), it allows users to

inject their knowledge by specifying dependencies

between decisions using first-order logic rules,

which are later compiled into a factor graph

with neural potentials. In addition to probabilistic

inference, DRAIL also models dependencies using

a distributed knowledge representation, denoted

RELNETS, which provides a shared representation

space for entities and their relations, trained using

a relational multi-task learning approach. This

provides a mechanism for explaining symbols, and

aligning representations from different modali-

ties. Following our running example, ideological

standpoints, such as Liberal or Conservative,

are discrete entities embedded in the same space

as textual entities and social entities. These en-

tities are initially associated with users, however

using RELNETS this information will propagate to

texts reflecting these ideologies, by exploiting

the relations that bridge social and linguistic

information (see Figure 1).

To demonstrate DRAIL’s modeling approach,

we introduce the task of open-domain stance

prediction with social context, which combines

social network analysis and textual inference over

complex opinionated texts, as shown in Figure 1.

We complement our evaluation of DRAIL with two

additional tasks, issue-specific stance prediction,

where we identify the views expressed in debate

forums with respect to a set of fixed issues (Walker

et al., 2012), and argumentation mining (Stab

and Gurevych, 2017), a document-level discourse

analysis task.

2 Related Work

In this section, we survey several lines of work

dealing with symbolic, neural, and hybrid repre-

sentations for relational learning.

2.1 Languages for Graphical Models

Several high-level languages for specifying graph-

ical models have been suggested. BLOG (Milch

et al., 2005) and CHURCH (Goodman et al., 2008)

were suggested for generative models. For discri-

minative models, we have Markov Logic Net-

works (MLNs) (Richardson and Domingos, 2006)

and Probabilistic Soft Logic (PSL) (Bach et al.,

2017). Both PSL and MLNs combine logic and

probabilistic graphical models in a single repre-

sentation, where each formula is associated with

a weight, and the probability distribution over

possible assignments is derived from the weights

of the formulas that are satisfied by such assign-

ments. Like DRAIL, PSL uses formulas in clausal

form (specifically collections of horn clauses).

The main difference between DRAIL and these

languages is that, in addition to graphical models,

it uses distributed knowledge representations

to represent dependencies. Other discriminative

methods include FACTORIE (McCallum et al.,

2009), an imperative language to define factor

graphs, Constrained Conditional Models (CCMs)

(Rizzolo and Roth, 2010; Kordjamshidi et al.,

2015) an interface to enhance linear classifiers

with declarative constraints, and ProPPR (Wang

et al., 2013) a probabilistic logic for large data-

bases that approximates local groundings using a

variant of personalized PageRank.
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2.2 Node Embedding and Graph Neural Nets

A recent alternative to graphical models is to use

neural nets to represent and learn over relational

data, represented as a graph. Similar to DRAIL’s

RELNETS, the learned node representation can

be trained by several different prediction tasks.

However, unlike DRAIL, these methods do not

use probabilistic inference to ensure consistency.

Node embeddings approaches (Perozzi et al.,

2014; Tang et al., 2015; Pan et al., 2016; Grover

and Leskovec, Grover and Leskovec, 2016;

Tu et al., 2017) learn a feature representation

for nodes capturing graph adjacency information,

such that the similarity in the embedding space of

any two nodes is proportional to their graph

distance and overlap in neighboring nodes. Some

frameworks (Pan et al., 2016; Xiao et al., 2017;

Tu et al., 2017) allow nodes to have textual

properties, which provide an initial feature repre-

sentation when learning to represent the graph

relations. When dealing with multi-relational data,

such as knowledge graphs, both the nodes and

the edge types are embedded (Bordes et al., 2013;

Wang et al., 2014; Trouillon et al., 2016; Sun et al.,

2019). Finally, these methods learn to represent

nodes and relations based on pair-wise node

relations, without representing the broader graph

context in which they appear. Graph neural nets

(Kipf and Welling, 2017; Hamilton et al., 2017;

Veličković et al., 2017) create contextualized

node representations by recursively aggregating

neighboring nodes.

2.3 Hybrid Neural-Symbolic Approaches

Several recent systems explore ways to combine

neural and symbolic representations in a unified

way. We group them into five categories.

Lifted rules to specify compositional nets.

These systems use an end-to-end approach and

learn relational dependencies in a latent space.

Lifted Relational Neural Networks (LRNNs)

(Sourek et al., 2018) and RelNNs (Kazemi and

Poole, 2018) are two examples. These systems

map observed ground atoms, facts, and rules to

specific neurons in a network and define compo-

sition functions directly over them. While they

provide for a modular abstraction of the relational

inputs, they assume all inputs are symbolic and do

not leverage expressive encoders.

Differentiable inference. These systems iden-

tify classes of logical queries that can be compiled

into differentiable functions in a neural network

infrastructure. In this space we have Tensor

Logic Networks (TLNs) (Donadello et al., 2017)

and TensorLog (Cohen et al., 2020). Symbols are

represented as row vectors in a parameter matrix.

The focus is on implementing reasoning using a

series of numeric functions.

Rule induction from data. These systems

are designed for inducing rules from symbolic

knowledge bases, which is not in the scope of our

framework. In this space we find Neural Theorem

Provers (NTPs) (Rocktäschel and Riedel, 2017),

Neural Logic Programming (Yang et al., 2017),

DRUM (Sadeghian et al., 2019) and Neural Logic

Machines (NLMs) (Dong et al., 2019). NTPs use

a declarative interface to specify rules that add

inductive bias and perform soft proofs. The other

approaches work directly over the database.

Deep classifiers and probabilistic inference.

These systems propose ways to integrate prob-

abilistic inference and neural networks for diverse

learning scenarios. DeepProbLog (Manhaeve et al.

20180 extends the probabilistic logic program-

ming language ProbLog to handle neural

predicates. They are able to learn probabilities for

atomic expressions using neural networks. The

input data consists of a combination of feature

vectors for the neural predicates, together with

other probabilistic facts and clauses in the logic

program. Targets are only given at the output

side of the probabilistic reasoner, allowing them

to learn each example with respect to a single

query. On the other hand, Deep Probabilistic

Logic (DPL) (Wang and Poon 2018) combines

neural networks with probabilistic logic for indi-

rect supervision. They learn classifiers using neu-

ral networks and use probabilistic logic to intro-

duce distant supervision and labeling functions.

Each rule is regarded as a latent variable, and the

logic defines a joint probability distribution over

all labeling decisions. Then, the rule weights and

the network parameters are learned jointly using

variational EM. In contrast, DRAIL focuses on

learning multiple interdependent decisions from

data, handling and requiring supervision for all

unknown atoms in a given example. Lastly, Deep

Logic Models (DLMs) (Marra et al., 2019) learn a

set of parameters to encode atoms in a probabilistic

logic program. Similarly to Donadello et al. (2017)
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System

Symbolic Features Neural Features

Symbolic Raw Decla- Prob/Logic Rule Embed. End-to-end Backprop. to Architecture Multi-Task Open

Inputs Inputs rative Inference Induction Symbols Neural Encoders Agnostic Learning Source

MLN ✓ ✓ ✓ ✓
FACTORIE ✓ ✓ ✓
CCM ✓ ✓ ✓ ✓ ✓
PSL ✓ ✓ ✓ ✓

LRNNs ✓ ✓ ✓
RelNNs ✓ ✓ ✓ ✓

LTNs ✓ ✓ ✓ ✓ ✓ ✓
TensorLog ✓ ✓ ✓ ✓ ✓ ✓

NTPs ✓ ✓ ✓ ✓ ✓ ✓ ✓
Neural LP ✓ ✓ ✓ ✓ ✓
DRUM ✓ ✓ ✓ ✓ ✓
NLMs ✓ ✓ ✓ ✓ ✓

DeepProbLog ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
DPL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
DLMs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
DRAIL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparing systems.

and Cohen et al. (2020), they use differentiable

inference, allowing the model to be trained end-

to-end. Like DRAIL, DLMs can work with diverse

neural architectures and backpropagate back to

the base classifiers. The main difference between

DLMs and DRAIL is that DRAIL ensures repre-

sentation consistency of entities and relations

across all learning tasks by employing RELNETS.

Deep structured models. More generally,

deep structured prediction approaches have been

successfully applied to various NLP tasks such as

named entity recognition and dependency parsing

(Chen and Manning, 2014; Weiss et al., 2015; Ma

and Hovy, 2016; Lample et al., 2016; Kiperwasser

and Goldberg, 2016; Malaviya et al., 2018).

When the need arises to go beyond sentence-

level, some works combine the output scores of

independently trained classifiers using inference

(Beltagy et al., 2014; ?; Liu et al., 2016;

Subramanian et al., 2017; Ning et al., 2018),

whereas others implement joint learning for their

specific domains (Niculae et al., 2017; Han et al.,

2019). Our main differentiating factor is that we

provide a general interface that leverages first

order logic clauses to specify factor graphs and

express constraints.

To summarize these differences, we outline a

feature matrix in Table 1. Given our focus in

NLP tasks, we require a neural-symbolic system

that (1) allows us to integrate state-of-the-art text

encoders and NLP tools, (2) supports structured

prediction across long texts, (3) lets us combine

several modalities and their representations (e.g.,

social and textual information), and (4) results in

an explainable model where domain constraints

can be easily introduced.

3 The DRAIL Framework

DRAIL was designed for supporting complex

NLP tasks. Problems can be broken down into

domain-specific atomic components (which could

be words, sentences, paragraphs or full documents,

depending on the task), and dependencies be-

tween them, their properties and contextualizing

information about them can be explicitly modeled.

In DRAIL, dependencies can be modeled over

the predicted output variables (similar to other

probabilistic graphical models), as well as over

the neural representation of the atoms and their

relationships in a shared embedding space. This

section explains the framework in detail. We begin

with a high-level overview of DRAIL and the

process of moving from a declarative definition to

a predictive model.

A DRAIL task is defined by specifying a

finite set of entities and relations. Entities are

either discrete symbols (e.g., POS tags, ideologies,

specific issue stances), or attributed elements with

complex internal information (e.g., documents,

users). Decisions are defined using rule templates,

formatted as Horn clauses: tLH ⇒ tRH , where

tLH (body) is a conjunction of observed and

predicted relations, and tRH (head) is the

output relation to be learned. Consider the

debate prediction task in Figure 1, it consists

of several sub-tasks, involving textual inference

(Agree(t1, t2)), social relations (VoteFor(u, v)) and

their combination (Agree(u, t)). We illustrate how
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Figure 2: General overview of DRAIL.

to specify the task as a DRAIL program in Figure 2

(left), by defining a subset of rule templates to

predict these relations.

Each rule template is associated with a neural

architecture and a feature function, mapping the

initial observations to an input vector for each

neural net. We use a shared relational embedding

space, denoted RELNETS, to represent entities and

relations over them. As described in Figure 2

("RelNets Layer"), each entity and relation type

is associated with an encoder, trained jointly

across all prediction rules. This is a form of re-

lational multi-task learning, as the same entities

and relations are reused in multiple rules and

their representation is updated accordingly. Each

rule defines a neural net, learned over the relations

defined on the body. They they take a composition

of the vectors generated by the relations encoders

as an input (Figure 2, "Rule Layer"). DRAIL

is architecture-agnostic, and neural modules for

entities, relations and rules can be specified

using PyTorch (code snippets can be observed in

Appendix C). Our experiments show that we can

use different architectures for representing text,

users, as well as for embedding discrete entities.

The relations in the Horn clauses can correspond

to hidden or observed information, and a specific

input is defined by the instantiations—or ground-

ings—of these elements. The collection of all rule

groundings results in a factor graph representing

our global decision, taking into account the con-

sistency and dependencies between the rules. This

way, the final assignments can be obtained by

running an inference procedure. For example,

the dependency between the views of users on

the debate topic (Agree(u,t)) and the agreement

between them (VoteFor(u,v)), is modeled as a

factor graph in Figure 2 ("Structured Inference

Layer")).

We formalize the DRAIL language in

Section 3.1. Then, in Sections 3.2, 3.3, and 4,

we describe the neural components and learning

procedures.

3.1 Modeling Language

We begin our description of DRAIL by defining

the templating language, consisting of entities,

relations, and rules, and explaining how these

elements are instantiated given relevant data.

Entities are named symbolic or attributed

elements. An example of a symbolic entity is a

political ideology (e.g., Liberal or Conservative).

An example of an attributed entity is a user with

age, gender, and other profile information, or

a document associated with textual content. In

DRAIL entities can appear either as constants,

written as strings in double or single quote

(e.g., "user1") or as variables, which are

identifiers, substituted with constants when

grounded. Variables are written using unquoted

upper case strings (e.g., X, X1). Both constants and

variables are typed.

Relations are defined between entities and their

properties, or other entities. Relations are defined

using a unique identifier, a named predicate,

and a list of typed arguments. Atoms consist

of a predicate name and a sequence of entities,

consistent with the type and arity of the relation’s

argument list. If the atom’s arguments are all

constants, it is referred to as a ground atom. For

example, Agree("user1","user2") is a ground

atom representing whether "user1" and "user2"

are in agreement. When atoms are not grounded

(e.g., Agree(X,Y)) they serve as placeholders for

all the possible groundings that can be obtained by

replacing the variables with constants. Relations

can either be closed (i.e., all of their atoms are

observed) or open, when some of the atoms can

be unobserved. In DRAIL, we use a question mark

? to denote unobserved relations. These relations

are the units that we reason over.

To help make these concepts concrete, con-

sider the following example analyzing stances in a

debate, as introduced in Figure 1. First, we define

the entities. User = {"u1","u2"}, Claim = {"t1"}

Post ={"p1","p2"}. Users are entities associ-

ated with demographic attributes and prefer-

ences. Claims are assertions over which users

debate. Posts are textual arguments that users

write to explain their position with respect

to the claim. We create these associations by
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defining a set of relations, capturing author-

ship Author(User,Post), votes between users

VoteFor(User,User)?, and the position users, and

their posts, take with respect to to the debate

claim. Agree(Claim,User)?, Agree(Claim,Post)?.

The authorship relation is the only closed one, for

example, the atom: O = {Author("u1","p1")}.

Rules are functions that map literals (atoms or

their negation) to other literals. Rules in DRAIL are

defined using templates formatted as Horn clauses:

tLH ⇒ tRH , where tLH (body) is a conjunction

of literals, and tRH (head) is the output literal

to be predicted, and can only be an instance of

open relations. Horn clauses allow us to describe

structural dependencies as a collection of "if-then"

rules, which can be easily interpreted. For exam-

ple, Agree(X,C) ∧ VoteFor(Y,X)⇒ Agree(Y,C) ex-

presses the dependency between votes and users

holding similar stances on a specific claim. We

note that rules can be rewritten in disjunctive form

by converting the logical implication into a dis-

junction between the negation of the body and the

head. For example, the rule above can be rewritten

as ¬Agree(X,C) ∨ ¬VoteFor(Y,X) ∨ Agree(Y,C).

The DRAIL program consists of a set of rules,

which can be weighted (i.e., soft constraints), or

unweighted (i.e., hard constraints). Each weighted

rule template defines a learning problem, used

to score assignments to the head of the rule.

Because the body may contain open atoms,

each rule represents a factor function expressing

dependencies between open atoms in the body

and head. Unweighted rules, or constraints, shape

the space of feasible assignments to open atoms,

and represent background knowledge about the

domain.

Given the set of grounded atoms O, rules can

be grounded by substituting their variables with

constants, such that the grounded atoms corres-

pond to elements inO. This process results in a set

of grounded rules, each corresponding to a poten-

tial function or to a constraint. Together they

define a factor graph. Then, DRAIL finds the

optimally scored assignments for open atoms by

performing MAP inference. To formalize this

process, we first make the observation that rule

groundings can be written as linear inequalities,

directly corresponding to their disjunctive form,

as follows:

∑

i∈I+r

yi +
∑

i∈I−r

(1− yi) ≥ 1 (1)

Where I+r (I−r ) correspond to the set of open

atoms appearing in the rule that are not negated

(respectively, negated). Now, MAP inference

can be defined as a linear program. Each rule

grounding r, generated from template t(r), with

input features xr and open atoms yr defines the

potential

ψr(xr, yr) = min







∑

i∈I+r

yi +
∑

i∈I−r

(1− yi), 1







(2)

added to the linear program with a weight wr.

Unweighted rule groundings are defined as

c(xc,yc) = 1−
∑

i∈I+c

yi −
∑

i∈I−c

(1− yi) (3)

with c(xc, yc) ≤ 0 added as a constraints to the

linear program. This way, the MAP problem can

be defined over the set of all potentials Ψ and the

set of all constraints C as

argmax
y∈{0,1}n

P (y|x) ≡ argmax
y∈{0,1}n

∑

ψr,t∈Ψ

wr ψr(xr, yr)

such that c(xc, yc) ≤ 0; ∀c ∈ C

In addition to logical constraints, we also support

arithmetic constraints than can be written in the

form of linear combinations of atoms with an

inequality or an equality. For example, we can

enforce the mutual exclusivity of liberal and

conservative ideologies for any user X by writing:

Ideology(X,"con") + Ideology(X,"lib") = 1

We borrow some additional syntax from PSL to

make arithmetic rules easier to use. Bach et al.

(2017) define a summation atom as an atom that

takes terms and/or sum variables as arguments.

A summation atom represents the summations of

ground atoms that can be obtained by substituting

individual variables and summing over all possible

constants for sum variables. For example, we

could rewrite the above ideology constraint

as Ideology(X,+I) = 1, where Ideology(X,+I)

represents the summation of all atoms with

predicate Ideology that share variable X.

DRAIL uses two solvers, Gurobi (Gurobi

Optimization, 2015) and AD3 (Martins et al.,

2015) for exact and approximate inference,

respectively.

To ground DRAIL programs in data, we create

an in-memory database consisting of all relations
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expressed in the program. Observations associated

with each relation are provided in column sepa-

rated text files. DRAIL’s compiler instantiates the

program by automatically querying the database

and grounding the formatted rules and constraints.

3.2 Neural Components

Let r be a rule grounding generated from template

t, where t is tied to a neural scoring function

Φt and a set of parameters θt (Rule Layer in

Figure 2). In the previous section, we defined the

MAP problem for all potentials ψr(x, y) ∈ Ψ in a

DRAIL program, where each potential has a weight

wr. Consider the following scoring function:

wr = Φt(xr, yr; θ
t) = Φt(xrel0 , . . . , xreln−1 ; θ

t)
(4)

Notice that all potentials generated by the same

template share parameters. We define each scoring

function Φt over the set of atoms on the left

hand side of the rule template. Let t = rel0 ∧
rel1 ∧ . . . ∧ reln−1 ⇒ reln be a rule template.

Each atom reli is composed of a relation type, its

arguments and feature vectors for them, as shown

in Figure 2, "Input Layer".

Given that a DRAIL program is composed of

many competing rules over the same problem, we

want to be able to share information between the

different decision functions. For this purpose, we

introduce RELNETS.

3.3 RELNETS

A DRAIL program often uses the same entities and

relations in multiple different rules. The symbolic

aspect of DRAIL allows us to constrain the values

of open relations, and force consistency across all

their occurrences. The neural aspect, as defined in

Eq. 4, associates a neural architecture with each

rule template, which can be viewed as a way to

embed the output relation.

We want to exploit the fact that there are

repeating occurrences of entities and relations

across different rules. Given that each rule defines

a learning problem, sharing parameters allows us

to shape the representations using complementary

learning objectives. This form of relational multi-

task learning is illustrated it in Figure 2, "RelNets

Layer".

We formalize this idea by introducing relation-

specific and entity-specific encoders and their

parameters (φrel; θ
rel) and (φent; θ

ent), which are

reused in all rules. As an example, let’s write

the formulation for the rules outlined in Figure 2,

where each relation and entity encoder is defined

over the set of relevant features.

wr0 = Φt0(φdebates(φuser, φtext))

wr1 = Φt1(φagree(φuser, φtext), φvotefor(φuser, φuser))

Note that entity and relation encoders can be

arbitrarily complex, depending on the application.

For example, when dealing with text, we could

use BiLSTMs or a BERT encoder.

Our goal when using RELNETS is to learn entity

representations that capture properties unique to

their types (e.g., users, issues), as well as relational

patterns that contextualize entities, allowing them

to generalize better. We make the distinction

between raw (or attributed) entities and symbolic

entities. Raw entities are associated with rich, yet

unstructured, information and attributes, such as

text or user profiles. On the other hand, symbolic

entities are well-defined concepts, and are not

associated with additional information, such as

political ideologies (e.g., liberal) and issues (e.g.,

gun-control). With this consideration, we identify

two types of representation learning objectives:

Embed Symbol / Explain Data: Aligns the

embedding of symbolic entities and raw entities,

grounding the symbol in the raw data, and us-

ing the symbol embedding to explain properties

of previously unseen raw-entity instances. For

example, aligning ideologies and text to (1) obtain

an ideology embedding that is closest to the

statements made by people with that ideology,

or (2) interpret text by providing a symbolic label

for it.

Translate / Correlate: Aligns the represen-

tation of pairs of symbolic or raw entities. For

example, aligning user representations with text,

to move between social and textual information, as

shown in Figure 1, "Social-Linguistic Relations".

Or capturing the correlation between sym-

bolic judgements like agreement and matching

ideologies.

4 Learning

The scoring function used for comparing output

assignments can be learned locally for each

rule separately, or globally, by considering the

dependencies between rules.
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Global Learning The global approach uses

inference to ensure that the parameters for all

weighted rule templates are consistent across all

decisions. Let Ψ be a factor graph with potentials

{ψr} ∈ Ψ over the all possible structures Y .

Let θ = {θt} be a set of parameter vectors, and

Φt(xr, yr; θ
t) be the scoring function defined for

potential ψr(xr, yr). Here ŷ ∈ Y corresponds

to the current prediction resulting from the MAP

inference procedure and y ∈ Y corresponds to the

gold structure. We support two ways to learn θ:

(1) The structured hinge loss

max(0,max
ŷ∈Y

(∆(ŷ, y) +
∑

ψr∈Ψ

Φt(xr, ŷr; θ
t))

−
∑

ψr∈Ψ

Φt(xr, yr; θ
t)

(5)

(2) The general CRF loss

−log p(y|x)= −log





1

Z(x)

∏

ψr∈Ψ

exp
{

Φt(xr, yr ; θ
t)
}





= −
∑

ψr∈Ψ

Φt(xr, yr ; θ
t) + log Z(x)

(6)

Where Z(x) is a global normalization term

computed over the set of all valid structures Y .

Z(x) =
∑

y’∈Y

∏

ψr∈Ψ

exp
{

Φt(xr, y
′

r
; θt)

}

When inference is intractable, approximate

inference (e.g., AD3) can be used to obtain ŷ.

To approximate the global normalization term

Z(x) in the general CRF case, we follow Zhou

et al. (2015); Andor et al. (2016) and keep a pool

βk of k of high-quality feasible solutions during

inference. This way, we can sum over the solutions

in the pool to approximate the partition function
∑

y’∈βk

∏

ψr∈Ψ
exp

{

Φt(xr, y
′

r
; θt)

}

.

In this paper, we use the structured hinge loss

for most experiments, and include a discussion on

the approximated CRF loss in Section 5.7.

Joint Inference The parameters for each

weighted rule template are optimized indepen-

dently. Following Andor et al. (2016), we show

that joint inference serves as a way to greedily

approximate the CRF loss, where we replace the

normalization term in Eq. (6) with a greedy

approximation over local normalization as:

−log





1
∏

ψr∈Ψ
ZL(xr)

∏

ψr∈Ψ

exp
{

Φt(xr, yr; θ
t)
}





= −
∑

ψr∈Ψ

Φt(xr, yr; θ
t) +

∑

ψr∈Ψ

log ZL(xr)

(7)

where ZL(xr) is computed over all the valid

assignments y′

r
for each factor ψr. We refer to

models that use this approach as JOINTINF.

ZL(xr) =
∑

y
′

r

exp
{

Φt(xr, y
′

r
; θt)

}

5 Experimental Evaluation

We compare DRAIL to representative models from

each category covered in Section 2. Our goal is to

examine how different types of approaches cap-

ture dependencies and what are their limitations

when dealing with language interactions. These

baselines are described in Section 5.1. We also

evaluate different strategies using DRAIL in

Section 5.2.

We focus on three tasks: open debate stance

prediction (Sec. 5.3), issue-specific stance pre-

diction (Sec. 5.4) and argumentation mining

(Sec. 5.5), details regarding the hyper-parameters

used for all tasks can be found in Appendix B.

5.1 Baselines

End-to-end Neural Nets: We test all approaches

against neural nets trained locally on each task,

without explicitly modeling dependencies. In this

space, we consider two variants: INDNETS, where

each component of the problem is represented

using an independent neural network, and E2E,

where the features for the different components

are concatenated at the input and fed to a single

neural network.

Relational Embedding Methods: Introduced

in Section 2.2, these methods embed nodes

and edge types for relational data. They are

typically designed to represent symbolic entities

and relations. However, because our entities can be

defined by raw textual content and other features,

we define the relational objectives over our

encoders. This adaptation has proven successful

for domains dealing with rich textual information

(Lee and Goldwasser, 2019). We test three
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relational knowledge objectives: TransE (Bordes

et al., 2013), ComplEx (Trouillon et al., 2016),

and RotatE (Sun et al., 2019). Limitations: (1)

These approaches cannot constrain the space using

domain knowledge, and (2) they cannot deal with

relations involving more than two entities, limiting

their applicability to higher order factors.

Probabilistic Logics: We compare to PSL

(Bach et al., 2017), a purely symbolic probabilistic

logic, and TensorLog (Cohen et al., 2020), a

neuro-symbolic one. In both cases, we instantiate

the program using the weights learned with our

base encoders. Limitations: These approaches do

not provide a way to update the parameters of the

base classifiers.

5.2 Modeling Strategies

Local vs. Global Learning: The trade-off be-

tween local and global learning has been explored

for graphical models (MEMM vs. CRF), and for

deep structured prediction (Chen and Manning,

2014; Andor et al., 2016; Han et al., 2019).

Although local learning is faster, the learned

scoring functions might not be consistent with

the correct global prediction. Following (Han

et al., 2019), we initialize the parameters using lo-

cal models.

RELNETS: We will show the advantage of

having relational representations that are shared

across different decisions, in contrast to having

independent parameters for each rule. Note that

in all cases, we will use the global learning objec-

tive to train RELNETS.

Modularity: Decomposing decisions into

relevant modules has been shown to simplify the

learning process and lead to better generalization

(Zhang and Goldwasser, 2019). We will contrast

the performance of modular and end-to-end mod-

els to represent text and user information when

predicting stances.

Representation Learning and Interpretabil-

ity: We will do a qualitative analysis to show how

we are able to embed symbols and explain data

by moving between symbolic and sub-symbolic

representations, as outlined in Section 3.3.

5.3 Open Domain Stance Prediction

Traditionally, stance prediction tasks have focused

on predicting stances on a specific topic, such as

abortion. Predicting stances for a different topic,

such as gun control, would require learning a new

Figure 3: DRAIL Program for O.D. Stance Prediction.
T: Thread, C: Claim, P: Post, U: User, V: Voter, I: Ideology, A,B:

Can be any in {Claim, Post, User}

model from scratch. In this task, we would like to

leverage the fact that stances in different domains

are correlated. Instead of using a pre-defined set

of debate topics (i.e., symbolic entities) we define

the prediction task over claims, expressed in text,

specific to each debate. Concretely, each debate

will have a different claim (i.e., different value for

C in the relation Claim(T,C), where T corresponds

to a debate thread). We refer to these settings as

Open-Domain and write down the task in Figure 3.

In addition to the textual stance prediction problem

(r0), where P corresponds to a post, we represent

users (U) and define a user-level stance prediction

problem (r1). We assume that additional users read

the posts and vote for content that supports their

views, resulting in another prediction problem

(r2,r3). Then, we define representation learning

tasks, which align symbolic (ideology, defined as

I) and raw (users and text) entities (r4-r7). Finally,

we write down all dependencies and constrain the

final prediction (c0-c7).

Dataset: We collected a set of 7,555 debates

from debate.org, containing a total of 42,245

posts across 10 broader political issues. For a

given issue, the debate topics are nuanced and

vary according to the debate question expressed in

text (e.g., Should semi-automatic guns be banned,

Conceal handgun laws reduce violent crime).

Debates have at least two posts, containing up

to 25 sentences each. In addition to debates and

posts, we collected the user profiles of all users

participating in the debates, as well as all users
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Model Random Hard

P U V P U V

Local
INDNETS 63.9 61.3 54.4 62.2 53.0 51.3

E2E 66.3 71.2 54.4 63.4 68.1 51.3

Reln. TransE 58.5 54.1 52.6 57.2 53.1 51.2

Emb. ComplEx 61.0 63.3 58.1 57.3 55.0 55.4

RotatE 59.6 58.3 54.2 57.9 54.6 51.0

Prob. PSL 78.7 77.5 55.4 72.6 71.8 52.6

Logic. TensorLog 72.7 71.9 56.2 70.0 67.4 55.8

DRaiL

E2E +Inf 80.2 79.2 54.4 76.9 75.5 51.3

JOINTINF 80.7 79.5 55.6 75.2 74.0 52.5

GLOBAL 81.0 79.5 55.8 75.3 74.0 53.0

RELNETS 81.9 80.4 57.0 78.0 77.2 53.7

Model Random Hard

P U V P U V

Local
INDNETS 63.9 61.3 54.4 62.2 53.0 51.3

E2E 66.3 71.2 54.4 63.4 68.1 51.3

AC

JOINTINF 73.6 71.8 - 69.0 67.2 -

GLOBAL 73.6 72.0 - 69.0 67.2 -

RELNETS 73.8 72.0 - 71.7 69.5 -

AC JOINTINF 80.7 79.5 - 75.6 74.4 -

DC GLOBAL 81.4 79.9 - 75.8 74.6 -

RELNETS 81.8 80.1 - 77.8 76.4 -

AC JOINTINF 80.7 79.5 55.6 75.2 74.0 52.5

DC GLOBAL 81.0 79.5 55.8 75.3 74.0 53.0

SC RELNETS 81.9 80.4 57.0 78.0 77.2 53.7

Table 2: General Results for Open Domain Stance Prediction (Left), Variations of the Model (Right). P:Post,

U:User, V:Voter

that cast votes for the debate participants. Profiles

consist of attributes (e.g., gender, ideology).

User data is considerably sparse. We create two

evaluation scenarios, random and hard. In the

random split, debates are randomly divided into

ten folds of equal size. In the hard split, debates

are separated by political issue. This results in a

harder prediction problem, as the test data will not

share topically related debates with the training

data. We perform 10-fold cross validation and

report accuracy.

Entity and Relation Encoders: We represent

posts and titles using a pre-trained BERT-small2

encoder (Turc et al., 2019), a compact version of

the language model proposed by Devlin et al.

2019. For users, we use feed-forward computa-

tions with ReLU activations over the profile fea-

tures and a pre-trained node embedding (Grover

and Leskovec, 2016) over the friendship graph.

All relation and rule encoders are represented

as feed-forward networks with one hidden layer,

ReLU activations and a softmax on top. Note that

all of these modules are updated during learning.

Table 2 (Left) shows results for all the models

described in Section 5.1. In E2E models, post and

user information is collapsed into a single mod-

ule (rule), whereas in INDNETS, JOINTINF, GLOBAL

and RELNETS they are modeled separately. All

other baselines use the same underlying modular

encoders. We can appreciate the advantage of

relational embeddings in contrast to INDNETS for

user and voter stances, particularly in the case of

ComplEx and RotatE. We can attribute this to the

2We found negligible difference in performance between

BERT and BERT-small for this task, while obtaining a

considerable boost in speed.

fact that all objectives are trained jointly and entity

encoders are shared. However, approaches that

explicitly model inference, like PSL, TensorLog,

and DRAIL outperform relational embeddings and

end-to-end neural networks. This is because they

enforce domain constraints.

We explain the difference between the per-

formance of DRAIL and the other probabilistic

logics by: (1) The fact that we use exact inference

instead of approximate inference, (2) PSL learns

to weight the rules without giving priority to a

particular task, whereas the JOINTINF model works

directly over the local outputs, and most impor-

tantly, (3) our GLOBAL and RELNETS models back-

propagate to the base classifiers and fine-tune

parameters using a structured objective.

In Table 2 (Right) we show different versions

of the DRAIL program, by adding or removing

certain constraints. AC models only enforce

author consistency, AC-DC models enforce both

author consistency and disagreement between

respondents, and finally, AC-DC-SC models in-

troduce social information by considering voting

behavior. We get better performance when we

model more contextualizing information for the

RELNETS case. This is particularly helpful in the

Hard case, where contextualizing information,

combined with shared representations, help the

model generalize to previously unobserved topics.

With respect to the modeling strategies listed in

Section 5.2, we can observe: (1) The advantage of

using a global learning objective, (2) the advantage

of using RELNETS to share information and (3) the

advantage of breaking down the decision into

modules, instead of learning an end-to-end model.

Then, we perform a qualitative evaluation to

illustrate our ability to move between symbolic
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Issue Debate Statements Con Libt Mod Libl Pro

Guns

No gun laws should be passed restricting the right to bear arms .98 .01 .00 .01 .00

Gun control is an ineffective comfort tactic used by the government to fool the American people .08 .65 .22 .02 .03

Gun control is good for society .14 .06 .60 .15 .06

In the US handguns ought to be banned .03 .01 .01 .93 .02

The USA should ban most guns and confiscate them .00 .00 .01 .00 .99

Issue Ideology Statements close in the embedding space

LGBT
Libl gay marriage ought be legalized, gay marriage should be legalized, same-sex marriage should be federally legal

Con Leviticus 18:22 and 20:13 prove the anti gay marriage position, gay marriage is not bad, homosexuality is not a sin nor taboo

Table 3: Representation Learning Objectives: Explain Data (Top) and Embed Symbol (Bottom).
Note that ideology labels were learned from user profiles, and do not necessarily represent the official stances of political

parties.

and raw information. Table 3 (Top) takes a

set of statements and explains them by looking

at the symbols associated with them and their

score. For learning to map debate statements

to ideological symbols, we rely on the partial

supervision provided by the users that self-identify

with a political ideology and disclose it on their

public profiles. Note that we do not incorporate

any explicit expertise in political science to learn

to represent ideological information. We chose

statements with the highest score for each of the

ideologies. We can see that, in the context of

guns, statements that have to do with some form

of gun control have higher scores for the center-to-

left spectrum of ideological symbols (moderate,

liberal, progressive), whereas statements that

mention gun rights and the ineffectiveness of

gun control policies have higher scores for

conservative and libertarian symbols.

To complement this evaluation, in Table 3

(Bottom), we embed ideologies and find three

example statements that are close in the em-

bedding space. In the context of LGBT issues, we

find that statements closest to the liberal symbol

are those that support the legalization of same-

sex marriage, and frame it as a constitutional

issue. On the other hand, the statements closest

to the conservative symbol, frame homosexuality

and same-sex marriage as a moral or religious

issue, and we find statements both supporting

and opposing same-sex marriage. This experiment

shows that our model is easy to interpret, and

provides an explanation for the decision made.

Finally, we evaluate our learned model over

entities that have not been observed during

training. To do this, we extract statements made by

three prominent politicians from ontheissues.org.

Then, we try to explain the politicians by looking

at their predicted ideology. Results for this

Model AB E GM GC

S A S A S A S A

Local INDNETS 66.0 61.7 58.2 59.7 62.6 60.6 59.5 61.0

Reln. TransE 62.5 62.9 53.5 65.1 58.7 69.3 55.3 65.0

Embed. ComplEx 66.6 73.4 60.7 72.2 66.6 72.8 60.0 70.7

RotatE 66.6 72.3 59.2 71.3 67.0 74.2 59.4 69.9

Prob. PSL 81.6 74.4 69.0 64.9 83.3 74.2 71.9 71.7

Logic. TensorLog 77.3 61.3 68.2 51.3 80.4 65.2 68.3 55.6

JOINTINF 82.8 74.6 64.8 63.2 84.5 73.4 70.4 66.3

DRAIL GLOBAL 88.6 84.7 72.8 72.2 90.3 81.8 76.8 72.2

RELNETS 89.0 83.5 80.5 76.4 89.3 82.1 80.3 73.4

Table 4: General results for issue-specific stance
and agreement prediction (Macro F1). AB: Abortion,

E: Evolution, GM: Gay Marriage, GC: Gun Control.

evaluation can be seen in Table 4. The left part of

Figure 4 shows the proportion of statements that

were identified for each ideology: left (liberal or

progressive), moderate and right (conservative).

We find that we are able to recover the relative

positions in the political spectrum for the evaluated

politicians: Bernie Sanders, Joe Biden, and Donald

Trump. We find that Sanders is the most left

leaning, followed by Biden. In contrast, Donald

Trump stands mostly on the right. We also include

some examples of the classified statements. We

show that we are able to identify cases in which

the statement does not necessarily align with the

known ideology for each politician.

5.4 Issue-Specific Stance Prediction

Given a debate thread on a specific issue (e.g.,

abortion), the task is to predict the stance with

respect to the issue for each one of the debate

posts (Walker et al., 2012). Each thread forms a

tree structure, where users participate and respond

to each other’s posts. We treat the task as a

collective classification problem, and model the

agreement between posts and their replies, as well

as the consistency between posts written by the
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Figure 4: Statements made by politicians classified using our model trained on debate.org.

same author. The DRAIL program for this task can

be observed in Appendix A.

Dataset: We use the 4Forums dataset from the

Internet Argument Corpus (Walker et al., 2012),

consisting of a total of 1,230 debates and 24,658

posts on abortion, evolution, gay marriage, and

gun control. We use the same splits as Li et al.

(2018) and perform 5-fold cross validation.

Entity and Relation Encoders: We repre-

sented posts using pre-trained BERT encoders

(Devlin et al., 2019) and do not generate features

for authors. As in the previous task, we model all

relations and rules using feed-forward networks

with one hidden layer and ReLU activations. Note

that we fine-tune all parameters during training.

In Table 4 we can observe the general results for

this task. We report macro F1 for post stance and

agreement between posts for all issues. As in the

previous task, we find that ComplEx and RotatE

relational embeddings outperform INDNETS, and

probabilistic logics outperform methods that do

not perform constrained inference. PSL out-

performs JOINTINF for evolution and gun control

debates, which are the two issues with less

training data, whereas JOINTINF outperforms PSL

for debates on abortion and gay marriage. This

could indicate that re-weighting rules may be

advantageous for the cases with less supervision.

Finally, we see the advantage of using a global

learning objective and augmenting it with shared

representations. Table 5 compares our model with

previously published results.

5.5 Argument Mining

The goal of this task is to identify argumentative

structures in essays. Each argumentative structure

corresponds to a tree in a document. Nodes are

predefined spans of text and can be labeled

either as claims, major claims, or premises,

Model A E GM GC Avg

BERT (Devlin et al., 2019) 67.0 62.4 67.4 64.6 65.4

PSL (Sridhar et al., 2015b) 77.0 80.3 80.5 69.1 76.7

Struct. Rep. (Li et al., 2018) 86.5 82.2 87.6 83.1 84.9

DRAIL RELNETS 89.2 82.4 90.1 83.1 86.2

Table 5: Previous work on issue-specific stance

prediction (stance acc.).

and edges correspond to support/attack relations

between nodes. Domain knowledge is injected by

constraining sources to be premises and targets

to be either premises or major claims, as well

as enforcing tree structures. We model nodes,

links, and second order relations, grandparent

(a → b → c), and co-parent (a → b ← c)

(Niculae et al., 2017). Additionally, we consider

link labels, denoted stances. The DRAIL program

for this task can be observed in Appendix A.

Dataset: We used the UKP dataset (Stab and

Gurevych, 2017), consisting of 402 documents,

with a total of 6,100 propositions and 3,800 links

(17% of pairs). We use the splits used by Niculae

et al. (2017), and report macro F1 for components

and positive F1 for relations.

Entity and Relation Encoders: To represent

the component and the essay, we used a

BiLSTM over the words, initialized with

GloVe embeddings (Pennington et al., 2014),

concatenated with a feature vector following

Niculae et al. (2017). For representing the relation,

we use a feed-forward computation over the

components, as well as the relation features used

in Niculae et al. (2017).

We can observe the general results for this

task in Table 6. Given that this task relies on

constructing the tree from scratch, we find that all

methods that do not include declarative constraints

(INDNETS and relational embeddings) suffer when
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Model Node Link Avg Stance Avg

Local INDNETS 70.7 52.8 61.7 63.4 62.3

Reln. TransE 65.7 23.7 44.7 44.6 44.7

Embed. ComplEx 69.1 15.7 42.4 53.5 46.1

RotatE 67.2 20.7 44.0 46.7 44.9

Prob. Logic PSL 76.5 56.4 66.5 64.7 65.9

DRAIL

JOINTINF 78.6 59.5 69.1 62.9 67.0

GLOBAL 83.1 61.2 72.2 69.2 71.2

RELNETS 82.9 63.7 73.3 68.4 71.7

Table 6: General results for argument mining.

Model Node Link Avg

Human upper bound 86.8 75.5 81.2

ILP Joint (Stab and Gurevych, 2017) 82.6 58.5 70.6

Struct RNN strict (Niculae et al., 2017) 79.3 50.1 64.7

Struct SVM full (Niculae et al., 2017) 77.6 60.1 68.9

Joint PointerNet (Potash et al., 2017) 84.9 60.8 72.9

Kuribayashi et al. 2019 85.7 67.8 76.8

DRAIL RELNETS 82.9 63.7 73.3

Table 7: Previous work on argument mining.

trying to predict links correctly. For this task, we

did not apply TensorLog, given that we couldn’t

find a way to express tree constraints using their

syntax. Once again, we see the advantage of using

global learning, as well as sharing information

between rules using RELNETS.

Table 7 shows the performance of our model

against previously published results. While we

are able to outperform models that use the same

underlying encoders and features, recent work

by Kuribayashi et al. (2019) further improved

performance by exploiting contextualized word

embeddings that look at the whole document,

and making a distinction between argumentative

markers and argumentative components. We

did not find a significant improvement by in-

corporating their ELMo-LSTM encoders into

our framework,3 nor by replacing our BiLSTM

encoders with BERT. We leave the exploration

of an effective way to leverage contextualized

embeddings for this task for future work.

5.6 Run-time Analysis

In this section, we perform a run-time analysis

of all probabilistic logic systems tested. All ex-

periments were run on a 12 core 3.2Ghz Intel i7

CPU machine with 63GB RAM and an NVIDIA

GeForce GTX 1080 Ti 11GB GDDR5X GPU.

3We did not experiment with their normalization

approach, extended BoW features, nor AC/AM distinction.

Figure 5: Average overall training time (per fold).

Figure 5 shows the overall training time (per

fold) in seconds for each of the evaluated tasks.

Note that the figure is presented in logarithmic

scale. We find that DRAIL is generally more

computationally expensive than both TensorLog

and PSL. This is expected given that DRAIL back-

propagates to the base classifiers at each epoch,

while the other frameworks just take the local

predictions as priors. However, when using a large

number of arithmetic constraints (e.g., Argument

Mining), we find that PSL takes a really long time

to train. We found no significant difference when

using ILP or AD.3 We presume that this is due to

the fact that our graphs are small and that Gurobi

is a highly optimized commercial software.

Finally, we find that when using encoders with

a large number of parameters (e.g., BERT) in

tasks with small graphs, the difference in training

time between training local and global models

is minimal. In these cases, back-propagation is

considerably more expensive than inference, and

global models converge in fewer epochs. For

Argument Mining, local models are at least twice

as fast. BiLSTMs are considerably faster than

BERT, and inference is more expensive for this

task.

5.7 Analysis of Loss Functions

In this section we perform an evaluation of the

CRF loss for issue-specific stance prediction.

Note that one drawback of the CRF loss (Eq. 6)

is that we need to accumulate the gradient for

the approximated partition function. When using

entity encoders with a lot of parameters (e.g.,

BERT), the amount of memory needed for a single

instance increases. We were unable to fit the full

models in our GPU. For the purpose of these tests,

we froze the BERT parameters after local training
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Model Stance Agree Avg Secs p/epoch

Hinge loss 82.74 78.54 80.64 132

CRF(β = 5) 83.09 81.03 82.06 345

CRF(β = 20) 84.10 82.16 83.13 482

CRF(β = 50) 84.19 81.80 83.00 720

Table 8: Stance prediction (abortion) dev results

for different training objectives.

and updated only the relation and rule parameters.

To obtain the solution pool, we use Gurobi’s pool

search mode to find β high-quality solutions. This

also increases the cost of search at inference time.

Development set results for the debates on

abortion can be observed in Table 8. While

increasing the size of the solution pool leads

to better performance, it comes at a higher

computational cost.

6 Conclusions

In this paper, we motivate the need for a

declarative neural-symbolic approach that can be

applied to NLP tasks involving long texts and

contextualizing information. We introduce a gen-

eral framework to support this, and demonstrate

its flexibility by modeling problems with diverse

relations and rich representations, and obtain

models that are easy to interpret and expand.

The code for DRAIL and the application examples

in this paper have been released to the community,

to help promote this modeling approach for other

applications.
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A DRaiL Programs

Figure 6: DRAIL programs.

B Hyperparameters

For BERT, we use the default parameters.

Task Param Search Space Selected Value

Open Domain Learning Rate 2e-6,5e-6,2e-5,5e-5 2e-5

(Local) Batch size 32 (Max. Mem) 32

Patience 1,3,5 3

Optimizer SGD,Adam,AdamW AdamW

Hidden Units 128,512 512

Non-linearity − ReLU

Open Domain Learning Rate 2e-6,5e-6,2e-5,5e-5 2e-6

(Global) Batch size − Full instance

Stance Pred. Learning Rate 2e-6,5e-6,2e-5,5e-5 5e-5

(Local) Patience 1,3,5 3

Batch size 16 (Max. Mem) 16

Optimizer SGD,Adam,AdamW AdamW

Stance Pred. Learning Rate 2e-6,5e-6,2e-5,5e-5 2e-6

(Global) Batch size − Full instance

Arg. Mining Learning Rate 1e-4,5e-4,5e-3,1e-3,5e-2,1e-2 5e-2

(Local) Patience 5,10,20 20

Batch size 16,32,64,128 64

Dropout 0.01,0.05,0.1 0.05

Optimizer SGD,Adam,AdamW SGD

Hidden Units 128,512 128

Non-linearity − ReLU

Arg. Mining Learning Rate 1e-4,5e-4,5e-3,1e-3,5e-2,1e-2 1e-4

(Global) Patience 5,10,20 10

Batch size − Full instance

Table 9: Hyper-parameter tuning.

C Code Snippets

We include code snippets to show how to load

data into DRAIL (Figure 7-a), as well as to

how to define a neural architecture (Figure 7-b).

Neural architectures and feature functions can be

programmed by creating Python classes, and the

module and classes can be directly specified in

the DRAIL program (lines 13, 14, 24, and 29 in

Figure 7-a).

Figure 7: Code snippets.
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