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Abstract
We take a step towards addressing the under-
representation of the African continent in NLP
research by bringing together different stake-
holders to create the first large, publicly avail-
able, high-quality dataset for named entity
recognition (NER) in ten African languages.
We detail the characteristics of these languages
to help researchers and practitioners better
understand the challenges they pose for NER
tasks. We analyze our datasets and conduct
an extensive empirical evaluation of state-
of-the-art methods across both supervised and
transfer learning settings. Finally, we release
the data, code, and models to inspire future
research on African NLP.1

1https://git.io/masakhane-ner.

1 Introduction

Africa has over 2,000 spoken languages (Eberhard
et al., 2020); however, these languages are
scarcely represented in existing natural language
processing (NLP) datasets, research, and tools
(Martinus and Abbott, 2019). ∀ (2020) investigate
the reasons for these disparities by examining
how NLP for low-resource languages is con-
strained by several societal factors. One of these
factors is the geographical and language diver-
sity of NLP researchers. For example, of the
2695 affiliations of authors whose works were
published at the five major NLP conferences in
2019, only five were from African institutions
(Caines, 2019). Conversely, many NLP tasks such

1116

Transactions of the Association for Computational Linguistics, vol. 9, pp. 1116–1131, 2021. https://doi.org/10.1162/tacl a 00416
Action Editor: Miguel Ballesteros. Submission batch: 5/2021; Revision batch: 7/2021; Published 10/2021.

c© 2021 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

https://git.io/masakhane-ner
https://doi.org/10.1162/tacl_a_00416


as machine translation, text classification, part-
of-speech tagging, and named entity recognition
would benefit from the knowledge of native speak-
ers who are involved in the development of data-
sets and models.

In this work, we focus on named entity recog-
nition (NER)—one of the most impactful tasks
in NLP (Sang and De Meulder, 2003; Lample
et al., 2016). NER is an important information
extraction task and an essential component of
numerous products including spell-checkers, lo-
calization of voice and dialogue systems, and
conversational agents. It also enables identifying
African names, places, and organizations for infor-
mation retrieval. African languages are under-
represented in this crucial task due to lack of
datasets, reproducible results, and researchers who
understand the challenges that such languages
present for NER.

In this paper, we take an initial step towards im-
proving representation for African languages for
the NER task, making the following contributions:

(i) We bring together language speakers, dataset
curators, NLP practitioners, and evaluation
experts to address the challenges facing
NER for African languages. Based on the
availability of online news corpora and lan-
guage annotators, we develop NER datasets,
models, and evaluation covering ten widely
spoken African languages.

(ii) We curate NER datasets from local sources
to ensure relevance of future research for
native speakers of the respective languages.

(iii) We train and evaluate multiple NER models
for all ten languages. Our experiments
provide insights into the transfer across
languages, and highlight open challenges.

(iv) We release the datasets, code, and models
to facilitate future research on the spe-
cific challenges raised by NER for African
languages.

2 Related Work

African NER Datasets NER is a well-studied
sequence labeling task (Yadav and Bethard, 2018)
and has been the subject of many shared
tasks in different languages (Tjong Kim Sang,
2002; Tjong Kim Sang and De Meulder, 2003;

Sangal et al., 2008; Shaalan, 2014; Benikova
et al., 2014). However, most of the available
datasets are in high-resource languages. Although
there have been efforts to create NER datasets for
lower-resourced languages, such as the WikiAnn
corpus (Pan et al., 2017) covering 282 languages,
such datasets consist of ‘‘silver-standard’’ labels
created by transferring annotations from English
to other languages through cross-lingual links in
knowledge bases. Because the WikiAnn corpus
data comes from Wikipedia, it includes some
African languages; though most have fewer than
10k tokens.

Other NER datasets for African languages in-
clude SADiLaR (Eiselen, 2016) for ten South
African languages based on government data, and
small corpora of fewer than 2K sentences for
Yorùbá (Alabi et al., 2020) and Hausa (Hedderich
et al., 2020). Additionally, the LORELEI language
packs (Strassel and Tracey, 2016) include some
African languages (Yorùbá, Hausa, Amharic,
Somali, Twi, Swahili, Wolof, Kinyarwanda, and
Zulu), but are not publicly available.

NER Models Popular sequence labeling models
for NER include the CRF (Lafferty et al., 2001),
CNN-BiLSTM (Chiu and Nichols, 2016),
BiLSTM-CRF (Huang et al., 2015), and CNN-
BiLSTM-CRF (Ma and Hovy, 2016). The tradi-
tional CRF makes use of hand-crafted features
like part-of-speech tags, context words and
word capitalization. Neural NER models on the
other hand are initialized with word embeddings
like Word2Vec (Mikolov et al., 2013), GloVe
(Pennington et al., 2014), and FastText
(Bojanowski et al., 2017). More recently, pre-
trained language models such as BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019), and
LUKE (Yamada et al., 2020) have been applied to
produce state-of-the-art results for the NER task.
Multilingual variants of these models like mBERT
and XLM-RoBERTa (Conneau et al., 2020) make
it possible to train NER models for several lan-
guages using transfer learning. Language-specific
parameters and adaptation to unlabeled data of
the target language have yielded further gains
(Pfeiffer et al., 2020a,b).

3 Focus Languages

Table 1 provides an overview of the languages
considered in this work, their language family,
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Language Family Speakers Region

Amharic Afro-Asiatic-Ethio-Semitic 33M East

Hausa Afro-Asiatic-Chadic 63M West

Igbo Niger-Congo-Volta-Niger 27M West

Kinyarwanda Niger-Congo-Bantu 12M East

Luganda Niger-Congo-Bantu 7M East

Luo Nilo Saharan 4M East

Nigerian-Pidgin English Creole 75M West

Swahili Niger-Congo-Bantu 98M Central
& East

Wolof Niger-Congo-Senegambia 5M West &
NW

Yorùbá Niger-Congo-Volta-Niger 42M West

Table 1: Language, family, number of speakers
(Eberhard et al., 2020), and regions in Africa.

number of speakers and the regions in Africa
where they are spoken. We chose to focus on these
languages due to the availability of online news
corpora, annotators, and most importantly because
they are widely spoken native African languages.
Both region and language family might indicate
a notion of proximity for NER, either because of
linguistic features shared within that family, or be-
cause data sources cover a common set of locally
relevant entities. We highlight language specifics
for each language to illustrate the diversity of this
selection of languages in Section 3.1, and then
showcase the differences in named entities across
these languages in Section 3.2.

3.1 Language Characteristics

Amharic (amh) uses the Fidel script consisting
of 33 basic scripts ( (hä) (lä) (mä) (šä)...),
each of them with at least 7 vowel sequences (such
as (hä) (hu) (h̄i) (ha) (h̄e) (hi)
(ho)). This results in more than 231 characters or
Fidels. Numbers and punctuation marks are also
represented uniquely with specific Fidels ( (1),

(2), ... and (.), !(!), (;),).

Hausa (hau) has 23–25 consonants, depending
on the dialect and five short and five long vowels.
Hausa has labialized phonemic consonants, as in
/gw/ (e.g., ‘agwagwa’). As found in some African
languages, implosive consonants also exist in
Hausa (e.g., ‘b, ‘d, etc., as in ‘barna’). Simi-
larly, the Hausa approximant ‘r’ is realized in two
distinct manners: roll and trill, as in ‘rai’ and
‘ra’ayi’, respectively.

Igbo (ibo) is an agglutinative language, with
many frequent suffixes and prefixes (Emenanjo,
1978). A single stem can yield many word-forms
by addition of affixes that extend its original mean-
ing (Onyenwe and Hepple, 2016). Igbo is also
tonal, with two distinctive tones (high and low)
and a down-stepped high tone in some cases. The
alphabet consists of 28 consonants and 8 vowels
(A, E, I, I., O, O. , U, U. ). In addition to the Latin
letters (except c), Igbo contains the following
digraphs: (ch, gb, gh, gw, kp, kw, nw, ny, sh).

Kinyarwanda (kin) makes use of 24 Latin
characters with 5 vowels similar to English and
19 consonants excluding q and x. Moreover, Kin-
yarwanda has 74 additional complex consonants
(such as mb, mpw, and njyw) (Government, 2014).
It is a tonal language with three tones: low (no
diacritic), high (signaled by ‘‘/’’), and falling
(signaled by ‘‘∧’’). The default word order is
subject-verb-object.

Luganda (lug) is a tonal language with
subject-verb-object word order. The Luganda al-
phabet is composed of 24 letters that include 17
consonants (p, v, f, m, d, t, l, r, n, z, s, j, c, g),
5 vowel sounds represented in the five alphabeti-
cal symbols (a, e, i, o, u), and 2 semi-vowels (w,
y). It also has a special consonant ng′.

Luo (luo) is a tonal language with 4 tones
(high, low, falling, rising), although the tonality is
not marked in orthography. It has 26 Latin conso-
nants without Latin letters (c, q, v, x, and z) and ad-
ditional consonants (ch, dh, mb, nd, ng’, ng, ny, nj,
th, sh). There are nine vowels (a, e, i, o, u, , ,

, ) which are distinguished primarily by ad-
vanced tongue root (ATR) harmony (De Pauw
et al., 2007).

Nigerian-Pidgin (pcm) is a largely oral,
national lingua franca with a distinct phonology
from English, its lexifier language. Portuguese,
French, and especially indigenous languages form
the substrate of lexical, phonological, syntactic,
and semantic influence on Nigerian-Pidgin (NP).
English lexical items absorbed by NP are often
phonologically closer to indigenous Nigerian lan-
guages, notably in the realization of vowels. As
a rapidly evolving language, the NP orthography
is undergoing codification and indigenization
(Offiong Mensah, 2012; Onovbiona, 2012;
Ojarikre, 2013).
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Table 2: Example of named entities in different languages. PER , LOC , and DATE are in colours
purple, orange, and green, respectively.

Swahili (swa) is the most widely spoken lan-
guage on the African continent. It has 30 letters
including 24 Latin letters without characters (q
and x) and six additional consonants (ch, dh, gh,
ng’, sh, th) unique to Swahili pronunciation.

Wolof (wol) has an alphabet similar to that of
French. It consists of 29 characters, including all
letters of the French alphabet except h, v, and z.
It also includes the characters (‘‘ng’’, lower-
case: ) and Ñ’ (‘‘gn’’ as in Spanish). Accents are
present, but limited in number (À, É, Ë, Ó). How-
ever, unlike many other Niger-Congo languages,
Wolof is not a tonal language.

Yorùbá (yor) has 25 Latin letters without the
Latin characters (c, q, v, x, and z) and with
additional letters (e. , gb, s., o. ). Yorùbá is a tonal
language with three tones: low (‘‘\’’), middle
(‘‘−’’, optional) and high (‘‘/’’). The tonal marks
and underdots are referred to as diacritics and
they are needed for the correct pronunciation of a
word. Yorùbá is a highly isolating language and
the sentence structure follows subject-verb-object.

3.2 Named Entities
Most of the work on NER is centered around
English, and it is unclear how well existing mod-
els can generalize to other languages in terms of
sentence structure or surface forms. In Hu et al.’s
(2020) evaluation on cross-lingual generalization
for NER, only two African languages were con-
sidered and it was seen that transformer-based
models particularly struggled to generalize to

named entities in Swahili. To highlight the differ-
ences across our focus languages, Table 2 shows
an English2 example sentence, with color-coded
PER, LOC, and DATE entities, and the correspond-
ing translations. The following characteristics of
the languages in our dataset could pose challenges
for NER systems developed for English:

• Amharic shares no lexical overlap with the
English source sentence.

• While ‘‘Zhang’’ is identical across all
Latin-script languages, ‘‘Kano’’ features ac-
cents in Wolof and Yorùbá due to its
localization.

• The Fidel script has no capitalization, which
could hinder transfer from other languages.

• Igbo, Wolof, and Yorùbá all use diacritics,
which are not present in the English alphabet.

• The surface form of named entities (NE) is
the same in English and Nigerian-Pidgin, but
there exist lexical differences (e.g., in terms
of how time is realized).

• Between the 10African languages,‘‘Nigeria’’
is spelled in 6 different ways.

• Numerical ‘‘18’’: Igbo, Wolof, and Yorùbá
write out their numbers, resulting in different
numbers of tokens for the entity span.

2Although the original sentence is from BBC Pidgin
https://www.bbc.com/pidgin/tori-51702073.
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Language Data Source Train/ dev/ test # PER ORG LOC DATE % of Entities #
Anno. in Tokens Tokens

Amharic DW & BBC 1750/ 250/ 500 4 730 403 1,420 580 15.13 37,032
Hausa VOA Hausa 1903/ 272/ 545 3 1,490 766 2,779 922 12.17 80,152
Igbo BBC Igbo 2233/ 319/ 638 6 1,603 1,292 1,677 690 13.15 61,668
Kinyarwanda IGIHE news 2110/ 301/ 604 2 1,366 1,038 2,096 792 12.85 68,819
Luganda BUKEDDE news 2003/ 200/ 401 3 1,868 838 943 574 14.81 46,615
Luo Ramogi FM news 644/ 92/ 185 2 557 286 666 343 14.95 26,303
Nigerian-Pidgin BBC Pidgin 2100/ 300/ 600 5 2,602 1,042 1,317 1,242 13.25 76,063
Swahili VOA Swahili 2104/ 300/ 602 6 1,702 960 2,842 940 12.48 79,272
Wolof Lu Defu Waxu & Saabal 1,871/ 267/ 536 2 731 245 836 206 6.02 52,872
Yorùbá GV & VON news 2124/ 303/ 608 5 1,039 835 1,627 853 11.57 83,285

Table 3: Statistics of our datasets including their source, number of sentences in each split, number
of annotators, number of entities of each label type, percentage of tokens that are named entities, and
total number of tokens.

4 Data and Annotation Methodology

Our data were obtained from local news sources,
in order to ensure relevance of the dataset for
native speakers from those regions. The dataset
was annotated using the ELISA tool (Lin et al.,
2018) by native speakers who come from the
same regions as the news sources and volunteered
through the Masakhane community.3 Annotators
were not paid but are all included as authors of this
paper. The annotators were trained on how to per-
form NER annotation using the MUC-6 annotation
guide.4 We annotated four entity types: Personal
name (PER), Location (LOC), Organization (ORG),
and date & time (DATE). The annotated entities
were inspired by the English CoNLL-2003 Corpus
(Tjong Kim Sang, 2002). We replaced the MISC
tag with the DATE tag following Alabi et al.
(2020) as the MISC tag may be ill-defined and
cause disagreement among non-expert annotators.
We report the number of annotators as well as
general statistics of the datasets in Table 3. For
each language, we divided the annotated data into
training, development, and test splits consisting of
70%, 10%, and 20% of the data, respectively.

A key objective of our annotation procedure was
to create high-quality datasets by ensuring high
annotator agreement. To achieve high agreement
scores, we ran collaborative workshops for each
language, which allowed annotators to discuss any
disagreements. ELISA provides an entity-level
F1-score and also an interface for annotators to
correct their mistakes, making it easy to achieve

3https://www.masakhane.io.
4https://cs.nyu.edu/∼grishman/muc6.html.

Dataset Token Entity Disagreement
Fleiss’ κ Fleiss’ κ from Type

amh 0.987 0.959 0.044
hau 0.988 0.962 0.097
ibo 0.995 0.983 0.071
kin 1.000 1.000 0.000
lug 0.997 0.990 0.023
luo 1.000 1.000 0.000
pcm 0.989 0.966 0.048
swa 1.000 1.000 0.000
wol 1.000 1.000 0.000
yor 0.990 0.964 0.079

Table 4: Inter-annotator agreement for our datasets
calculated using Fleiss’ kappa (κ) at the token and
entity level. Disagreement from type refers to the
proportion of all entity-level disagreements, which
are due only to type mismatch.

inter-annotator agreement scores between 0.96
and 1.0 for all languages.

We report inter-annotator agreement scores in
Table 4 using Fleiss’ kappa (Fleiss, 1971) at both
the token and entity level. The latter considers
each span an annotator proposed as an entity. As
a result of our workshops, all our datasets have
exceptionally high inter-annotator agreement. For
Kinyarwanda, Luo, Swahili, and Wolof, we report
perfect inter-annotator agreement scores (κ = 1).
For each of these languages, two annotators an-
notated each token and were instructed to discuss
and resolve conflicts among themselves. The Ap-
pendix provides a detailed entity-level confusion
matrix in Table 11.

1120

https://www.masakhane.io
https://cs.nyu.edu/~grishman/muc6.html


5 Experimental Setup

5.1 NER Baseline Models

To evaluate baseline performance on our dataset,
we experiment with three popular NER mod-
els: CNN-BiLSTM-CRF, multilingual BERT
(mBERT), and XLM-RoBERTa (XLM-R). The
latter two models are implemented using the
HuggingFace transformers toolkit (Wolf et al.,
2019). For each language, we train the models on
the in-language training data and evaluate on its
test data.

CNN-BiLSTM-CRF This architecture was pro-
posed for NER by Ma and Hovy (2016). For
each input sequence, we first compute the vec-
tor representation for each word by concatenating
character-level encodings from a CNN and vector
embeddings for each word. Following Rijhwani
et al. (2020), we use randomly initialized word
embeddings since we do not have high-quality
pre-trained embeddings for all the languages in
our dataset. Our model is implemented using the
DyNet toolkit (Neubig et al., 2017).

mBERT We fine-tune multilingual BERT
(Devlin et al., 2019) on our NER corpus by adding
a linear classification layer to the pre-trained trans-
former model, and train it end-to-end. mBERT
was trained on 104 languages including only
two African languages: Swahili and Yorùbá. We
use the mBERT-base cased model with 12-layer
Transformer blocks consisting of 768-hidden size
and 110M parameters.

XLM-R XLM-R (Conneau et al., 2020) was
trained on 100 languages including Amharic,
Hausa, and Swahili. The major differences be-
tween XLM-R and mBERT are (1) XLM-R was
trained on Common Crawl while mBERT was
trained on Wikipedia; (2) XLM-R is based on
RoBERTa, which is trained with a masked lan-
guage model (MLM) objective while mBERT was
additionally trained with a next sentence predic-
tion objective. We make use of the XLM-R base
and large models for the baseline models. The
XLM-R-base model consisting of 12 layers, with
a hidden size of 768 and 270M parameters. On the
other hand, the XLM-R-large has 24 layers, with
a hidden size of 1024 and 550M parameters.

MeanE-BiLSTM This is a simple BiLSTM
model with an additional linear classifier. For
each input sequence, we first extract a sentence
embedding from mBERT or XLM-R language
model (LM) before passing it into the BiLSTM
model. Following Reimers and Gurevych (2019),
we make use of the mean of the 12-layer output
embeddings of the LM (i.e., MeanE). This has
been shown to provide better sentence represen-
tations than the embedding of the [CLS] token
used for fine-tuning mBERT and XLM-R.

Language BERT The mBERT and the XLM-R
models only support two and three languages un-
der study, respectively. One effective approach
to adapt the pre-trained transformer models to
new domains is ‘‘domain-adaptive fine-tuning’’
(Howard and Ruder, 2018; Gururangan et al.,
2020)—fine-tuning on unlabeled data in the new
domain, which also works very well when adapt-
ing to a new language (Pfeiffer et al., 2020a; Alabi
et al., 2020). For each of the African languages,
we performed language-adaptive fine-tuning on
available unlabeled corpora mostly from JW300
(Agić and Vulić, 2019), indigenous news sources,
and XLM-R Common Crawl corpora (Conneau
et al., 2020). The Appendix provides the details of
the unlabeled corpora in Table 10. This approach
is quite useful for languages whose scripts are not
supported by the multi-lingual transformer mod-
els like Amharic where we replace the vocabulary
of mBERT by an Amharic vocabulary before we
perform language-adaptive fine-tuning, similar to
Alabi et al. (2020).

5.2 Improving the Baseline Models

In this section, we consider techniques to improve
the baseline models such as utilizing gazetteers,
transfer learning from other domains, and lan-
guages, and aggregating NER datasets by regions.
For these experiments, we focus on the PER,
ORG, and LOC categories, because the gazetteers
from Wikipedia do not contain DATE entities and
some source domains and languages that we trans-
fer from do not have the DATE annotation. We
apply these modifications to the XLM-R model
because it generally outperforms mBERT in our
experiments (see Section 6).

5.2.1 Gazetteers for NER
Gazetteers are lists of named entities col-
lected from manually crafted resources such as
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GeoNames or Wikipedia. Before the widespread
adoption of neural networks, NER methods used
gazetteers-based features to improve performance
(Ratinov and Roth, 2009). These features are
created for each n-gram in the dataset and are
typically binary-valued, indicating whether that
n-gram is present in the gazetteer.

Recently, Rijhwani et al. (2020) showed that
augmenting the neural CNN-BiLSTM-CRF model
with gazetteer features can improve NER perfor-
mance for low-resource languages. We conduct
similar experiments on the languages in our
dataset, using entity lists from Wikipedia as
gazetteers. For Luo and Nigerian-Pidgin, which
do not have their own Wikipedia, we use entity
lists from English Wikipedia.

5.2.2 Transfer Learning

Here, we focus on cross-domain transfer from
Wikipedia to the news domain, and cross-lingual
transfer from English and Swahili NER datasets
to the other languages in our dataset.

Domain Adaptation from WikiAnn We make
use of the WikiAnn corpus (Pan et al., 2017),
which is available for five of the languages in our
dataset: Amharic, Igbo, Kinyarwanda, Swahili,
and Yorùbá. For each language, the corpus con-
tains 100 sentences in each of the training,
development and test splits except for Swahili,
which contains 1K sentences in each split. For
each language, we train on the corresponding
WikiAnn training set and either zero-shot transfer
to our respective test set or additionally fine-tune
on our training data.

Cross-lingual Transfer For training the cross-
lingual transfer models, we use the CoNLL-20035

NER dataset in English with over 14K training
sentences and our annotated corpus. The reason
for CoNLL-2003 is because it is in the same news
domain as our annotated corpus. We also make
use of the languages that are supported by the
XLM-R model and are widely spoken in East and
West Africa like Swahili and Hausa. The English
corpus has been shown to transfer very well to
low-resource languages (Hedderich et al., 2020;

5We also tried OntoNotes 5.0 by combining FAC & ORG
as ‘‘ORG’’ and GPE & LOC as ‘‘LOC’’ and others as ‘‘O’’
except ‘‘PER’’, but it gave lower performance in zero-shot
transfer (19.38 F1) while CoNLL-2003 gave 37.15 F1.

Lauscher et al., 2020). We first train on either the
English CoNLL-2003 data or our training data in
Swahili, Hausa, or Nigerian-Pidgin before testing
on the target African languages.

5.3 Aggregating Languages by Regions

As previously illustrated in Table 2, several en-
tities have the same form in different languages
while some entities may be more common in the
region where the language is spoken. To study the
performance of NER models across geographical
areas, we combine languages based on the region
of Africa that they are spoken in (see Table 1):
(1) East region with Kinyarwanda, Luganda, Luo,
and Swahili; (2) West Region with Hausa, Igbo,
Nigerian-Pidgin, Wolof, and Yorùbá languages,
(3) East and West regions—all languages except
Amharic because of its distinct writing system.

6 Results

6.1 Baseline Models

Table 5 gives the F1-score obtained by CNN-
BiLSTM-CRF, mBERT, and XLM-R models on
the test sets of the ten African languages when
training on our in-language data. We addition-
ally indicate whether the language is supported by
the pre-trained language models (✓). The per-
centage of entities that are of out-of-vocabulary
(OOV; entities in the test set that are not present in
the training set) is also reported alongside results
of the baseline models. In general, the datasets
with greater numbers of OOV entities have lower
performance with the CNN-BiLSTM-CRF model,
while those with lower OOV rates (Hausa, Igbo,
Swahili) have higher performance. We find that
the CNN-BiLSTM-CRF model performs worse
than fine-tuning mBERT and XLM-R models
end-to-end (FTune). We expect performance to
be better (e.g., for Amharic and Nigerian-Pidgin
with over 18 F1 point difference) when using
pre-trained word embeddings for the initialization
of the BiLSTM model rather than random initial-
ization (we leave this for future work as discussed
in Section 7).

Interestingly, the pre-trained language mod-
els (PLMs) have reasonable performance even
on languages they were not trained on such as
Igbo, Kinyarwanda, Luganda, Luo, and Wolof.
However, languages supported by the PLM tend
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Lang.
% OOV CNN- XLM-R lang. lang.

In In in Test BiLSTM mBERT-base XLM-R-base Large BERT XLM-R
mBERT? XLM-R? Entities CRF MeanE / FTune MeanE / FTune FTune FTune FTune

amh ✗ ✓ 72.94 52.08 0.0 / 0.0 63.57 / 70.62 76.18 60.89 77.97
hau ✗ ✓ 33.40 83.52 81.49 / 86.65 86.06 / 89.50 90.54 91.31 91.47
ibo ✗ ✗ 46.56 80.02 76.17 / 85.19 73.47 / 84.78 84.12 86.75 87.74
kin ✗ ✗ 57.85 62.97 65.85 / 72.20 63.66 / 73.32 73.75 77.57 77.76
lug ✗ ✗ 61.12 74.67 70.38 / 80.36 68.15 / 79.69 81.57 83.44 84.70
luo ✗ ✗ 65.18 65.98 56.56 / 74.22 52.57 / 74.86 73.58 75.59 75.27
pcm ✗ ✗ 61.26 67.67 81.87 / 87.23 81.93 / 87.26 89.02 89.95 90.00
swa ✓ ✓ 40.97 78.24 83.08 / 86.80 84.33 / 87.37 89.36 89.36 89.46
wol ✗ ✗ 69.73 59.70 57.21 / 64.52 54.97 / 63.86 67.90 69.43 68.31
yor ✓ ✗ 65.99 67.44 74.28 / 78.97 67.45 / 78.26 78.89 82.58 83.66

avg – – 57.50 69.23 64.69 / 71.61 69.62 / 78.96 80.49 80.69 82.63
avg (excl. amh) – – 55.78 71.13 71.87 / 79.88 70.29 / 79.88 80.97 82.89 83.15

Table 5: NER model comparison, showing F1-score on the test sets after 50 epochs averaged over
5 runs. This result is for all 4 tags in the dataset: PER, ORG, LOC, DATE. Bold marks the top score
(tied if within the range of SE). mBERT and XLM-R are trained in two ways (1) MeanE: mean output
embeddings of the 12 LM layers are used to initialize BiLSTM + Linear classifier, and (2) FTune:
LM fine-tuned end-to-end with a linear classifier. Lang. BERT & Lang XLM-R (base) are models
fine-tuned after language adaptive fine-tuning.

to have better performance overall. We observe
that fine-tuned XLM-R-base models have sig-
nificantly better performance on five languages;
two of the languages (Amharic and Swahili) are
supported by the pre-trained XLM-R. Similarly,
fine-tuning mBERT has better performance for
Yorùbá since the language is part of the PLM’s
training corpus. Although mBERT is trained on
Swahili, XLM-R-base shows better performance.
This observation is consistent with Hu et al. (2020)
and could be because XLM-R is trained on more
Swahili text (Common Crawl with 275M tokens)
whereas mBERT is trained on a smaller corpus
from Wikipedia (6M tokens6).

Another observation is that mBERT tends to
have better performance for the non-Bantu Niger-
Congo languages (i.e., Igbo, Wolof, and Yorùbá)
while XLM-R-base works better for Afro-Asiatic
languages (i.e., Amharic and Hausa), Nilo-
Saharan (i.e., Luo), and Bantu languages like
Kinyarwanda and Swahili. We also note that the
writing script is one of the primary factors influ-
encing the transfer of knowledge in PLMs with
regard to the languages they were not trained on.
For example, mBERT achieves an F1-score of 0.0
on Amharic because it has not encountered the
script during pre-training. In general, we find the
fine-tuned XLM-R-large (with 550M parameters)
to be better than XLM-R-base (with 270M pa-

6https://github.com/mayhewsw/multilingual
-data-stats.

rameters) and mBERT (with 110 parameters) in
almost all languages. However, mBERT models
perform slightly better for Igbo, Luo, and Yorùbá
despite having fewer parameters.

We further analyze the transfer abilities of
mBERT and XLM-R by extracting sentence em-
beddings from the LMs to train a BiLSTM model
(MeanE-BiLSTM) instead of fine-tuning them
end-to-end. Table 5 shows that languages that are
not supported by mBERT or XLM-R generally
perform worse than CNN-BiLSTM-CRF model
(despite being randomly initialized) except for
kin. Also, sentence embeddings extracted from
mBERT often lead to better performance than
XLM-R for languages they both do not support
(like ibo, kin, lug, luo, and wol).

Lastly, we train NER models using language
BERT models that have been adapted to each
of the African languages via language-specific
fine-tuning on unlabeled text. In all cases,
fine-tuning language BERT and language XLM-R
models achieves a 1%−7% improvement in
F1-score over fine-tuning mBERT-base and
XLM-R-base respectively. This approach is still
effective for small sized pre-training corpora pro-
vided they are of good quality. For example, the
Wolof monolingual corpus, which contains less
than 50K sentences (see Table 10 in the Ap-
pendix) still improves performance by over 4%
F1. Further, we obtain over 60% improvement in
performance for Amharic BERT because mBERT
does not recognize the Amharic script.
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Method amh hau ibo kin lug luo pcm swa wol yor avg
CNN-BiLSTM-CRF 50.31 84.64 81.25 60.32 75.66 68.93 62.60 77.83 61.84 66.48 68.99
+ Gazetteers 49.51 85.02 80.40 64.54 73.85 65.44 66.54 80.16 62.44 65.49 69.34

Table 6: Improving NER models using gazetteers. The result is only for 3 Tags: PER, ORG, & LOC.
Models trained for 50 epochs. Result is an average over 5 runs.

Method amh hau ibo kin lug luo pcm swa wol yor avg
XLM-R-base 69.71 91.03 86.16 73.76 80.51 75.81 86.87 88.65 69.56 78.05 77.30
WikiAnn zero-shot 27.68 – 21.90 9.56 – – – 36.91 – 10.42 –
eng-CoNLL zero-shot – 67.52 47.71 38.17 39.45 34.19 67.27 76.40 24.33 39.04 37.15
pcm zero-shot – 63.71 42.69 40.99 43.50 33.12 – 72.84 25.37 35.16 36.81
swa zero-shot – 85.35* 55.37 58.44 57.65* 42.88* 72.87* – 41.70 57.87* 52.32
hau zero-shot – – 58.41* 59.10* 59.78 42.81 70.74 83.19* 42.81* 55.97 53.14*
WikiAnn + finetune 70.92 – 85.24 72.84 – – – 87.90 – 76.78 –
eng-CoNLL + finetune – 89.73 85.10 71.55 77.34 73.92 84.05 87.59 68.11 75.77 75.30
pcm + finetune – 90.78 86.42 71.69 79.72 75.56 – 87.62 67.21 78.29 76.48
swa + finetune – 91.50 87.11 74.84 80.21 74.49 86.74 – 68.47 80.68 77.63
hau + finetune – – 86.84 74.22 80.56 75.55 88.03 87.92 70.20 79.44 77.80
combined East Langs. – – – 75.65 81.10 77.56 – 88.15 – – –
combined West Langs. – 90.88 87.06 – – – 87.21 – 69.70 80.68 –
combined 9 Langs. – 91.64 87.94 75.46 81.29 78.12 88.12 88.10 69.84 80.59 78.87

Table 7: Transfer learning result (i.e., F1-score). Three tags:PER,ORG, &LOC. WikiAnn,eng-CoNLL,
and the annotated datasets are trained for 50 epochs. Fine-tuning is only for 10 epochs. Results are
averaged over 5 runs and the total average (avg) is computed over ibo, kin, lug, luo, wol, and
yor languages. The overall highest F1-score is in bold, and the best F1-score in zero-shot settings is
indicated with an asterisk (*).

6.2 Evaluation of Gazetteer Features

Table 6 shows the performance of the CNN-
BiLSTM-CRF model with the addition of gazet-
teer features as described in Section 5.2.1. On
average, the model that uses gazetteer features
performs better than the baseline. In general, lan-
guages with larger gazetteers, such as Swahili
(16K entities in the gazetteer) and Nigerian-Pidgin
(for which we use an English gazetteer with 2M
entities), have more improvement in performance
than those with fewer gazetteer entries, such as
Amharic and Luganda (2K and 500 gazetteer
entities, respectively). This indicates that having
high-coverage gazetteers is important for the
model to take advantage of the gazetteer features.

6.3 Transfer Learning Experiments

Table 7 shows the result for the different transfer
learning approaches, which we discuss individu-
ally in the following sections. We make use of
XLM-R-base model for all the experiments in this

Source Language PER ORG LOC

eng-CoNLL 36.17 27.00 50.50
pcm 21.50 65.33 68.17
swa 55.00 69.67 46.00
hau 52.67 57.50 48.50

Table 8: Average per-named entity F1-score for
the zero-shot NER using the XLM-R model. The
average is computed over ibo, kin, lug, luo,
wol, yor languages.

sub-section because the performance difference if
we use XLM-R-large is small (<2%) as shown in
Table 5 and because it is faster to train.

6.3.1 Cross-domain Transfer
We evaluate cross-domain transfer from
Wikipedia to the news domain for the five lan-
guages that are available in the WikiAnn (Pan
et al., 2017) dataset. In the zero-shot setting, the
NER F1-score is low: less than 40 F1-score for all
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Language CNN-BiLSTM mBERT-base XLM-R-base
all 0-freq 0-freq Δ long long Δ all 0-freq 0-freq Δ long long Δ all 0-freq 0-freq Δ long long Δ

amh 52.89 40.98 −11.91 45.16 −7.73 – – – – – 70.96 68.91 −2.05 64.86 −6.10
hau 83.70 78.52 −5.18 66.21 −17.49 87.34 79.41 −7.93 67.67 −19.67 89.44 85.48 −3.96 76.06 −13.38
ibo 78.48 70.57 −7.91 53.93 −24.55 85.11 78.41 −6.70 60.46 −24.65 84.51 77.42 −7.09 59.52 −24.99
kin 64.61 55.89 −8.72 40.00 −24.61 70.98 65.57 −5.41 55.39 −15.59 73.93 66.54 −7.39 54.96 −18.97
lug 74.31 67.99 −6.32 58.33 −15.98 80.56 76.27 −4.29 65.67 −14.89 80.71 73.54 −7.17 63.77 −16.94
luo 66.42 58.93 −7.49 54.17 −12.25 72.65 72.85 0.20 66.67 −5.98 75.14 72.34 −2.80 69.39 −5.75
pcm 66.43 59.73 −6.70 47.80 −18.63 87.78 82.40 −5.38 77.12 −10.66 87.39 83.65 −3.74 74.67 −12.72
swa 79.26 64.74 −14.52 44.78 −34.48 86.37 78.77 −7.60 45.55 −40.82 87.55 80.91 −6.64 53.93 −33.62
wol 60.43 49.03 −11.40 26.92 −33.51 66.10 59.54 −6.56 19.05 −47.05 64.38 57.21 −7.17 38.89 −25.49
yor 67.07 56.33 −10.74 64.52 −2.55 78.64 73.41 −5.23 74.34 −4.30 77.58 72.01 −5.57 76.14 −1.44

avg (excl. amh) 69.36 60.27 −9.09 50.18 −19.18 79.50 74.07 −5.43 59.10 −20.40 79.15 73.80 −5.36 63.22 −15.94

Table 9: F1 score for two varieties of hard-to-identify entities: zero-frequency entities that do not appear
in the training corpus, and longer entities of four or more words.

languages, with Kinyarwanda and Yorùbá having
less than 10 F1-score. This is likely due to the
number of training sentences present in WikiAnn:
There are only 100 sentences in the datasets of
Amharic, Igbo, Kinyarwanda, and Yorùbá. Al-
though the Swahili corpus has 1,000 sentences,
the 35 F1-score shows that transfer is not very
effective. In general, cross-domain transfer is a
challenging problem, and is even harder when
the number of training examples from the source
domain is small. Fine-tuning on the in-domain
news NER data does not improve over the
baseline (XLM-R-base).

6.3.2 Cross-Lingual Transfer

Zero-shot In the zero-shot setting we evaluated
NER models trained on the English eng-
CoNLL03 dataset, and on the Nigerian-Pidgin
(pcm), Swahili (swa), and Hausa (hau) anno-
tated corpus. We excluded the MISC entity in the
eng-CoNLL03 corpus because it is absent in our
target datasets. Table 7 shows the result for the
(zero-shot) transfer performance. We observe that
the closer the source and target languages are geo-
graphically, the better the performance. The pcm
model (trained on only 2K sentences) obtains sim-
ilar transfer performance as the eng-CoNLL03
model (trained on 14K sentences). swa performs
better than pcm and eng-CoNLL03 with an im-
provement of over 14 F1 on average. We found
that, on average, transferring from Hausa provided
the best F1, with an improvement of over 16% and
1% compared to using the eng-CoNLL and swa
data, respectively. Per-entity analysis in Table 8
shows that the largest improvements are obtained
for ORG. The pcm data were more effective in

transferring to LOC and ORG, while swa and hau
performed better when transferring to PER. In
general, zero-shot transfer is most effective when
transferring from Hausa and Swahili.

Fine-tuning We use the target language corpus
to fine-tune the NER models previously trained on
eng-CoNLL, pcm, and swa. On average, there is
only a small improvement when compared to the
XLM-R base model. In particular, we see signifi-
cant improvement for Hausa, Igbo, Kinyarwanda,
Nigerian-Pidgin, Wolof, and Yorùbá using either
swa or hau as the source NER model.

6.4 Regional Influence on NER

We evaluate whether combining different lan-
guage training datasets by region affects the per-
formance for individual languages. Table 7 shows
that all languages spoken in West Africa (ibo,
wol, pcm, yor) except hau have slightly better
performance (0.1–2.6 F1) when we train on
their combined training data. However, for the
East-African languages, the F1 score only im-
proved (0.8–2.3 F1) for three languages (kin,
lug, luo). Training the NER model on all
nine languages leads to better performance on all
languages except Swahili. On average over six
languages (ibo, kin, lug, luo, wol, yor), the
performance improves by 1.6 F1.

6.5 Error Analysis

Finally, to better understand the types of entities
that were successfully identified and those that
were missed, we performed fine-grained analy-
sis of our baseline methods mBERT and XLM-R
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using the method of Fu et al. (2020), with re-
sults shown in Table 9. Specifically, we found
that across all languages, entities that were not
contained in the training data (zero-frequency en-
tities), and entities consisting of more than three
words (long entities) were particularly difficult in
all languages; compared to the F1 score over all
entities, the scores dropped by around 5 points
when evaluated on zero-frequency entities, and
by around 20 points when evaluated on long
entities. Future work on low-resource NER or
cross-lingual representation learning may further
improve on these hard cases.

7 Conclusion and Future Work

We address the NER task for African languages
by bringing together a variety of stakeholders to
create a high-quality NER dataset for ten African
languages. We evaluate multiple state-of-the-art
NER models and establish strong baselines. We
have released one of our best models that can
recognize named entities in ten African languages
on HuggingFace Model Hub.7 We also investi-
gate cross-domain transfer with experiments on
five languages with the WikiAnn dataset, along
with cross-lingual transfer for low-resource NER
using the English CoNLL-2003 dataset and other
languages supported by XLM-R. In the future,
we plan to use pretrained word embeddings such
as GloVe (Pennington et al., 2014) and fastText
(Bojanowski et al., 2017) instead of random ini-
tialization for the CNN-BiLSTM-CRF, increase
the number of annotated sentences per language,
and expand the dataset to more African languages.
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A Appendix

A.1 Annotator Agreement

To shed more light on the few cases where annota-
tors disagreed, we provide entity-level confusion
matrices across all ten languages in Table 11.
The most common disagreement is between
organizations and locations.

A.2 Model Hyperparameters for
Reproducibility

For fine-tuning mBERT and XLM-R, we used the
base and large models with maximum sequence
length of 164 for mBERT and 200 for XLM-R,

batch size of 32, learning rate of 5e-5, and number
of epochs 50. For the MeanE-BiLSTM model,
the hyperparameters are similar to fine-tuning the
LM except for the learning rate that we set to
be 5e-4, the BiLSTM hyperparameters are: input
dimension is 768 (since the embedding size from
mBERT and XLM-R is 768) in each direction
of LSTM, one hidden layer, hidden layer size of
64, and drop-out probability of 0.3 before the last
linear layer. All the experiments were performed
on a single GPU (Nvidia V100).

A.3 Monolingual Corpora for Language
Adaptive Fine-tuning

Table 10 shows the monolingual corpus we used
for the language adaptive fine-tuning. We provide
the details of the source of the data, and their
sizes. For most of the languages, we make use of
JW3008 and CC-1009. In some cases CC-Aligned
(El-Kishky et al., 2020) was used, in such a case,
we removed duplicated sentences from CC-100.
For fine-tuning the language model, we make
use of the HuggingFace (Wolf et al., 2019) code
with learning rate 5e-5. However, for the Amharic
BERT, we make use of a smaller learning rate
of 5e-6 since the multilingual BERT vocabu-
lary was replaced by Amharic vocabulary, so
that we can slowly adapt the mBERT LM to
understand Amharic texts. All language BERT
models were pre-trained for 3 epochs (‘‘ibo’’,
‘‘kin’’,‘‘lug’’,‘‘luo’’, ‘‘pcm’’,‘‘swa’’,‘‘yor’’) or
10 epochs (‘‘amh’’, ‘‘hau’’,‘‘wol’’) depending on
their convergence. The models can be found on
HuggingFace Model Hub.10

8https://opus.nlpl.eu/.
9http://data.statmt.org/cc-100/.

10https://huggingface.co/Davlan.
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Language Source Size (MB) No. sentences

amh CC-100 (Conneau et al., 2020) 889.7MB 3,124,760

hau CC-100 318.4MB 3,182,277

ibo JW300 (Agić and Vulić, 2019), CC-100, CC-Aligned (El-Kishky et al.,
2020), and IgboNLP (Ezeani et al., 2020)

118.3MB 1,068,263

kin JW300, KIRNEWS (Niyongabo et al., 2020), and BBC Gahuza 123.4MB 726,801

lug JW300, CC-100, and BUKEDDE News 54.0MB 506,523

luo JW300 12.8MB 160,904

pcm JW300, and BBC Pidgin 56.9MB 207,532

swa CC-100 1,800MB 12,664,787

wol OPUS (Tiedemann, 2012) (excl. CC-Aligned), Wolof Bible (MBS, 2020),
and news corpora (Lu Defu Waxu, Saabal, and Wolof Online)

3.8MB 42,621

yor JW300, Yoruba Embedding Corpus (Alabi et al., 2020), MENYO-20k
(Adelani et al., 2021), CC-100, CC-Aligned, and news corpora (BBC
Yoruba, Asejere, and Alaroye).

117.6MB 910,628

Table 10: Monolingual corpora, their sources, size, and number of sentences.

DATE LOC ORG PER

DATE 32,978 – – –
LOC 10 70,610 – –
ORG 0 52 35,336 –
PER 2 48 12 64,216

Table 11: Entity-level confusion matrix between
annotators, calculated over all ten languages.
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