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Abstract
This paper presents a novel unsupervised
abstractive summarization method for opin-
ionated texts. While the basic variational
autoencoder-based models assume a unimodal
Gaussian prior for the latent code of sentences,
we alternate it with a recursive Gaussian mix-
ture, where each mixture component corre-
sponds to the latent code of a topic sentence
and is mixed by a tree-structured topic distribu-
tion. By decoding each Gaussian component,
we generate sentences with tree-structured
topic guidance, where the root sentence con-
veys generic content, and the leaf sentences
describe specific topics. Experimental results
demonstrate that the generated topic sentences
are appropriate as a summary of opinionated
texts, which are more informative and cover
more input contents than those generated by
the recent unsupervised summarization model
(Bražinskas et al., 2020). Furthermore, we
demonstrate that the variance of latent Gauss-
ians represents the granularity of sentences, an-
alogous to Gaussian word embedding (Vilnis
and McCallum, 2015).

1 Introduction

Summarizing opinionated texts, such as product
reviews and online posts on Web sites, has at-
tracted considerable attention recently along with
the development of e-commerce and social media.
Although extractive approaches are widely used
in document summarization (Erkan and Radev,
2004; Ganesan et al., 2010), they often fail to pro-
vide an overview of the documents, particularly
for opinionated texts (Carenini et al., 2013; Gerani
et al., 2014). Abstractive summarization can over-
come this challenge by paraphrasing and general-
izing an entire document. Although supervised
approaches have seen significant success with the
development of neural architectures (See et al.,
2017; Fabbri et al., 2019), they are limited to
specific domains, e.g., news articles, where a large

number of gold summaries are available. How-
ever, the domain of opinionated texts is diverse;
manually writing gold summaries is therefore
costly.

This lack in gold summaries has motivated prior
work to develop unsupervised abstractive summa-
rization of opinionated texts, for example, product
reviews (Chu and Liu, 2019; Bražinskas et al.,
2020; Amplayo and Lapata, 2020). While they
generated consensus opinions by condensing in-
put reviews, two key components were absent:
topics and granularity (i.e., the level of detail). For
instance, as shown in Figure 1, a gold summary
of a restaurant review provides the overall impres-
sion and details about certain topics, such as food,
ambience, and service. Hence, a summary typi-
cally comprises diverse topics, some of which are
described in detail, whereas others are mentioned
concisely.

From this investigation, we capture the topic-
tree structure of reviews and generate topic sen-
tences, that is, sentences summarizing specified
topics. In the topic-tree structure, the root sentence
conveys generic content, and the leaf sentences
mention specific topics. From the generated topic
sentences, we extract sentences with appropriate
topics and levels of granularity as a summary. Re-
garding extractive summarization, capturing top-
ics (Titov and McDonald, 2008; Isonuma et al.,
2017; Angelidis and Lapata, 2018) and topic-tree
structure (Celikyilmaz and Hakkani-Tur, 2010,
2011) is useful for detecting salient sentences. To
the best of our knowledge, this is the first study
to use the topic-tree structure in unsupervised ab-
stractive summarization.

The difficulty of generating sentences with tree-
structured topic guidance lies in controlling the
granularity of topic sentences. Wang et al. (2019)
generated a sentence with designated topic guid-
ance, assuming that the latent code of an input
sentence can be represented by a Gaussian mixture
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Figure 1: Outline of our approach. (1) The latent distribution of review sentences is represented as a recursive
GMM and trained in an autoencoding manner. Then, (2) the topic sentences are inferred by decoding each
Gaussian component. An example of a restaurant review and its corresponding gold summary are displayed.

model (GMM), where each Gaussian component
corresponds to the latent code of a topic sentence.
While they successfully generated a sentence relat-
ing to a designated topic by decoding each mixture
component, modelling the sentence granularity in
a latent space to generate topic sentences with mul-
tiple granularities remains to be realized.

To overcome this challenge, we model the sen-
tence granularity by the variance size of the latent
code. We assume that general sentences have more
uncertainty and are generated from a latent distri-
bution with a larger variance, analogous to Gauss-
ian word embedding (Vilnis and McCallum, 2015).
Based on this assumption, we represent the latent
code of topic sentences with Gaussian distribu-
tions, where the parent Gaussian receives a larger
variance and represents a more generic topic sen-
tence than its children, as shown in Figure 1. To
obtain the latent code characterized above, we
introduce a recursive Gaussian mixture prior to
modeling the latent code of input sentences in
reviews. A recursive GMM consists of Gaussian
components that correspond to the nodes of the
topic-tree, and the child priors are set to the in-
ferred parent posterior. Because of this configu-
ration, the Gaussian distribution of higher topics
receives a larger variance and conveys more gen-
eral content than lower topics.

The contributions of our work are as follows:

• We propose a novel unsupervised abstractive
opinion summarization method by generating
sentences with tree-structured topic guidance.

• To model the sentence granularity in a latent
space, we specify a Gaussian distribution as
the latent code of a sentence and demonstrate
that the granularity depends on the variance
size.

• Experiments demonstrate that the generated
summaries are more informative and cover
more input content than the recent unsu-
pervised summarization (Bražinskas et al.,
2020).

2 Preliminaries

Bowman et al. (2016) adapted the variational
autoencoder (VAE; Kingma and Welling, 2014;
Rezende et al., 2014) to obtain the density-based
latent code of sentences. They assume the gener-
ative process of documents to be as follows:

For each document index d∈{1, . . . , D}:
For each sentence index s∈{1, . . . , Sd} in d:

1. Draw a latent code of the sentence xs∈Rn:

xs ∼ p(xs) (1)

2. Draw a sentence ws:

ws|xs∼p(ws|xs)=RNN(xs) (2)

where p(ws|xs) =
∏

t p(w
t
s|w<t

s ,xs) is derived
by an recurrent neural networks (RNN) decoder.
The latent prior is a standard Gaussian: p(xs) =
N (xs|μ0,Σ0). The likelihood of a document and
its evidence lower bound (ELBO) are given by
(3) and (4), respectively:

p(W 1:Sd
)=

Sd∏
s=1

{∫
p(ws|xs)p(xs)dxs

}
(3)

Ld=

Sd∑
s=1

{
Eq(xs|ws)

[
log p(ws|xs)

]
−DKL

[
q(xs|ws)|p(xs)

]}

(4)

q(xs|ws) =N (xs|μ̂s, Σ̂s) is the variational dis-
tribution with μ̂s = fμ(ws), Σ̂s = diag[fΣ(ws)]
where fμ and fΣ are RNN encoders.
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Figure 2: Outline of our model. We set a recursive Gaussian mixture as the latent prior of review sentences and
obtain the latent posteriors of topic sentences by decomposing the posteriors of review sentences.

By representing sentences by Gaussians rather
than vectors, the decoded sentence from the in-
termediate latent code between two sentences is
grammatical and has a coherent topic with the two
sentences. Extending their work, we construct the
prior as a recursive GMM and infer the topic sen-
tences by decoding each Gaussian component.

3 RecurSum: Recursive Summarization

In this section, we explain our model, RecurSum.
Figure 2 shows the outline. The latent code of
review sentences is obtained as a recursive GMM
(3.1), and topic sentences are inferred by decoding
each Gaussian component (3.2). A summary is
then created by extracting the appropriate topic
sentences (3.3). We introduce additional compo-
nents to improve the quality of topic sentences
(3.4) and explain why general/specific content is
conveyed by the root/leaf topics, referring to the
analogy with Gaussian word embedding (3.5).

3.1 Generative Model of Reviews
We assume the generative process of reviews to
be as follows. We refer to the set of sentences in
multiple reviews of a specific product as instance.
Compared to Bowman et al. (2016), we explicitly
model the topic of review sentences as follows:

For each instance index d∈{1, . . . , D}:
For each sentence index s∈{1, . . . , Sd} in d:

1. Draw a topic of the sentence zs∈{1, . . . ,K}:

zs ∼ Mult(θ) (5)

2. Draw a latent code of the sentence xs∈Rn:

xs|zs ∼
∏K

k=1
p(xs|zs=k)δ(zs=k) (6)

3. Draw a review sentence ws:

ws|xs∼p(ws|xs)=RNN(xs) (7)

where the topic distribution is tree-structured, and
its prior is set to be uniform. In (6), we assume a
recursive GMM as the latent prior of a review sen-
tence (δ is a Dirac delta). Each mixture component
corresponds to the latent distribution of a sentence
conditioned on a specific topic, p(xs|zs=k):

p(xs|zs=1) = N (xs|μ0,Σ0) (8)
p(xs|zs=k) = q(xs|zs=par(k))

= N (xs|μ̂d,par(k), Σ̂d,par(k)) (k �= 1)

(9)

where par(k) denotes the parent of the k-th topic.
q(xs|zs=par(k)) is the approximated latent pos-
terior of the parent topic sentence as derived later
in Section 3.2. We assume that the latent posterior
of the parent sentence is appropriate as the latent
prior of its child sentences.

Under our generative model, the likelihood of
an instance and its ELBO are given by (10) and
(11), respectively:

p(W 1:Sd
)=

Sd∏
s=1

∫
p(ws|xs)p(xs|zs)p(zs)dxsdzs

(10)
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Ld=

Sd∑
s=1

{
Eq(xs|ws)

[
log p(ws|xs)

]

−Eq(xs|ws)q(zs|ws)

[
log q(xs|ws)−log p(xs|zs)

]
−Eq(zs|ws)

[
log q(zs|ws)−log p(zs)

]}

=

Sd∑
s=1

{
Eq(xs|ws)

[
log p(ws|xs)

]
−DKL

[
q(zs|ws)|p(zs)

]}

−
K∑
k=1

Sd∑
s=1

{
θ̂s,kDKL

[
q(xs|ws)|p(xs|zs=k)

]}

(11)

where q(xs|ws)=N (xs|μ̂s, Σ̂s) is the latent pos-
terior of a sentence s, inferred by an RNN encoder.
θ̂s,k= q(zs=k|ws) is the variational topic distri-
bution and inferred by the tree-structured neural
topic model (TSNTM; Isonuma et al., 2020).
More details are provided in Appendix A.1.

3.2 Inference of Topic Sentences
From the latent posterior of review sentences, we
infer the latent posterior of each topic sentence
using the M-step of the EM algorithm. We define
the variational distribution of the latent code of
a topic sentence as (12) and compute the Gaus-
sian parameters as (13) and (14) that maximize∑Sd

s=1Eq(xs|ws)q(zs|ws)

[
log q(xs|zs)

]
as follows:

q(xs|zs)=
∏K

k=1
N (xs|μ̂d,k, Σ̂d,k)

δ(zs=k)

(12)

μ̂d,k=

∑Sd

s=1 θ̂s,kEq(xs|ws)[xs]∑Sd

s=1 θ̂s,k
=

∑Sd

s=1 θ̂s,kμ̂s∑Sd

s=1 θ̂s,k
(13)

Σ̂d,k=

∑Sd

s=1 θ̂s,kEq(xs|ws)[(xs−μ̂d,k)(xs−μ̂d,k)
�]∑Sd

s=1 θ̂s,k

=

∑Sd

s=1 θ̂s,k{Σ̂s+(μ̂s−μ̂d,k)(μ̂s−μ̂d,k)
�}∑Sd

s=1 θ̂s,k
(14)

From these latent posteriors, we generate the topic
sentences for each instance using the respective
mean rather than a sample: ŵd,k∼p(wd,k|μ̂d,k)=
RNN(μ̂d,k). Similar to Bražinskas et al. (2020);
Chu and Liu (2019), we assume that the average
latent code represents the common contents of the
corresponding topic, while specific contents are
distributed apart from the mean. Therefore, de-
coding the mean rather than a sample would be
desirable for generating a summary.

3.3 Extraction of Summary Sentences
Next, we create a summary by extracting appropri-
ate sentences from the generated topic sentences.

As gold summaries are not available for training,
we need a measure to evaluate candidate sum-
maries using only input reviews. As reported in
Chu and Liu (2019), the ROUGE scores (Lin,
2004) between a candidate summary and the input
reviews effectively measure the extent to which
the summary encapsulates the reviews. Based on
this assumption, we search the topic sentences by
maximizing the ROUGE-1 F-measure with the
review sentences in an instance. We use a beam
search and keep multiple highest-score candidates
for each step. Similar to Carbonell and Goldstein
(1998), to eliminate the redundancy of summary
sentences, we do not add a sentence with a high
word overlap (ROUGE-1 precision) against the
sentences already included in the summary. The
hyperparameters are tuned based on the validation
set, as described in Section 4.2.

After selecting the summary sentences, we sort
them in the depth-first order according to the topic-
tree structure—that is, we begin at the root node
and explore as far as possible along each branch
before backtracking. Barzilay and Lapata (2008)
advocate that adjacent sentences in the coherent
text tend to have similar contents. As we assume
that sentences linked by parent-child relations are
topically coherent, the generated summary is ex-
pected to be locally coherent by extracting child
sentences after their parent sentence.

3.4 Additional Model Components

The basic components of our model have been
explained in the previous sections. This section in-
troduces three additional components to improve
the quality of topic sentences. In ablation studies
(Section 5.2), we will see the effect of these com-
ponents on summarization performance.

Discriminator To ensure that each topic sen-
tence has a specific topic, we introduce a discri-
minator following Hu et al. (2017) and Tang et al.
(2019). We approximate the sample of the topic
sentence by using the Gumbel-softmax trick (Jang
et al., 2017; Maddison et al., 2017) and reuse
the TSNTM to estimate the topic distribution of
the sample, q(zd,k|ŵd,k). By maximizing the like-
lihood of the specified topic as (15), the discrim-
inator forces the generated k-th topic sentence to
be coherent with topic k.

Ldisc
d =

∑K

k=1
log q(zd,k=k|ŵd,k) (15)
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Figure 3: Analogy with Gaussian word embedding.

Attention We use the attention-based RNN de-
coder (Luong et al., 2015) to efficiently reflect
input sentence information into output topic sen-
tences. Given the hidden state of the t-th word in
an output sentence ht

o and the i-th word in an in-
put review sentence hi

s, we calculate the attention
distribution over all the words in the input review
sentences to compute the word probability.

a(ht
o,h

i
s) =

exp(ht�
o hi

s)∑
s′
∑

i′ exp(h
t�
o hi′

s′)
(16)

cto =
∑

s′

∑
i′
a(ht

o,h
i′

s′)h
i′

s′ (17)

p(wt
o|w<t

o , μ̂o) = softmax(W [ht
o; c

t
o]) (18)

Nucleus Sampling During the inference, we use
nucleus sampling (Holtzman et al., 2019) to de-
code the topic sentences. Holtzman et al. (2019)
reported that maximization-based decoding meth-
ods such as beam search tend to generate bland,
incoherent, and repetitive text in open-ended text
generation. As we will see in the ablation experi-
ments, nucleus sampling is effective in generating
diverse and informative topic sentences.

3.5 Analogy with Gaussian
Word Embedding

Here, we explain why a general sentence is gener-
ated from the root topic, while more specific con-
tent is conveyed by the sentences generated by the
leaf topics, referring to Gaussian word embedding.

Gaussian word embedding (Vilnis and
McCallum, 2015) represents words as Gaussian
distributions and captures the hierarchical rela-
tions among the words. As shown in Figure 3, by
representing words as densities over a latent space
and minimizing the KL-divergence of the distri-
butions, they detect that common words such as
‘‘animal’’ obtain a larger variance than more spe-
cific words, such as ‘‘dog’’ and ‘‘cat’’. This can
be explained by the fact that general words have
more uncertainty in their meaning (i.e.,‘‘animal’’
sometimes denotes ‘‘dog’’ and other times ‘‘cat’’).

Similarly, our model minimizes the upper
bound of the KL-divergence of the latent dis-
tribution between a parent topic sentence and
its children. In (19), we show that the x-related
term in the ELBO (11) is an upper bound of
the KL-divergence of the latent posteriors be-
tween parent-child topic sentences (derived in
Appendix A.3).

∑Sd

s=1 θ̂s,kDKL

[
q(xs|ws)|p(xs|zs=k)

]
≥
∑Sd

s=1
θ̂s,kDKL

[
q(xs|zs=k)|p(xs|zs=k)

]

=
∑Sd

s=1
θ̂s,kDKL

[
q(xs|zs=k)|q(xs|zs=par(k))

]
(19)

since p(xs|zs=k)=q(xs|zs=par(k)) as defined
in (9). Similar to Gaussian word embedding, max-
imizing the ELBO forces the latent distribution of
a parent to be close to that of its children, and the
parent receives a larger variance than its children.
This property ensures that the parent-child topics
have a coherent topic, and more general content is
conveyed by the root topic sentences. Intuitively, a
general sentence, such as ‘‘I love this restaurant’’,
includes several topics, such as ‘‘food’’ and ‘‘ser-
vice’’, and has a large uncertainty of semantics.
Thus, we assume that a generic sentence is repre-
sented by the mean of the latent distribution with a
larger variance, whereas a more specific sentence
is generated from the distribution with a smaller
variance.

Similar to Vilnis and McCallum (2015), we
observed that the eigenvalues of the full covari-
ance of topic sentences (14) become extremely
small during training. To maintain a reasonably
sized and positive semi-definite covariance, we
add a hard constraint to the diagonal covariance
of the review sentences as Σ̂s,ii←max(λ, Σ̂s,ii)

since log |Σ̂d,k| ≥ (
∑

s θ̂s,k log |Σ̂s|)/(
∑

s θ̂s,k)≥
n log λ, as derived in Appendix A.3.

4 Experiments

4.1 Datasets

In our experiments, we used the Yelp Data-
set Challenge1 and Amazon product reviews
(McAuley et al., 2015). By pre-processing the
reviews similarly as in Chu and Liu (2019) and
Bražinskas et al. (2020), we obtained the dataset
as shown in Table 1. Regarding the training set,

1https://www.yelp.com/dataset.

949

https://www.yelp.com/dataset


Dataset Yelp Amazon

Training 173,088 280,692
Validation 100 84
Test 100 96

Table 1: Number of instances (pairs of eight re-
views and a gold summary) in the datasets. The
training set does not contain gold summaries.

we removed products2 with fewer than 8 reviews
and reviews in which the maximum number of
sentences exceeds 50. To prevent the dataset
from being dominated by a small number of
products, we created 12 and 2 instances for each
product in Yelp and Amazon, respectively. Then,
we randomly selected 8 reviews to construct an
instance. Regarding the validation/test set of Yelp,
we randomly split 200 instances provided by Chu
and Liu (2019)3 into validation and test sets. For
Amazon, we used the same validation and test sets
provided by Bražinskas et al. (2020).4 These gold
summaries were created by Amazon Mechanical
Turk (AMT) workers, who summarized 8 reviews
for each product. The vocabulary comprises words
that appear more than 16 times in the training set.
The vocabulary sizes are 31,748 and 30,732 for
Yelp and Amazon, respectively.

4.2 Implementation Details
We set the hyperparameters as follows, which
maximize the ROUGE-L in the validation set
of Yelp and use the same hyperparameters on-
Amazon.5 The dimensions of word embeddings
and the latent code of the sentences are 200 and 32,
respectively. The encoder and decoder are single-
layer bi-directional and uni-directional GRU-
RNN (Chung et al., 2014) with 200-dimensional
hidden units for each direction. The threshold of
nucleus sampling is 0.4. We train our model using
Adam (Kingma and Ba, 2014) with a learning rate
of 5.0×10−3, a batch size of 8, and a dropout rate
of 0.2. The initial Gumbel-softmax temperature is
set to 1 and decreased by 2.5×10−5 per training
step. Similar to Bowman et al. (2016) and Yang
et al. (2017), we avoid posterior collapse by in-
creasing the weight of the KL-term by 2.5× 10−5

2We refer to businesses (e.g., a specific Starbucks branch)
in Yelp and products (e.g., iPhone X) in Amazon as products.

3https://github.com/sosuperic/MeanSum.
4https://github.com/abrazinskas/Copycat

-abstractive-opinion-summarizer.
5https://github.com/misonuma/recursum.

per training step. We set the review sentence’s
minimum covariance to λ=exp(0.5). Regarding
the tree structure, we set the number of levels to
3, and the number of branches to 4 for both the
second and third levels. The total number of topics
is 21. Regarding the summary sentence extractor
in Section 3.3, we set the maximum number of
extracted sentences as 6, the beam width as 8, and
the redundancy threshold as 0.6.

4.3 Baseline Methods
As a baseline, we use Multi-Lead-1, which extracts
the first sentence of each review. Furthermore,
we employ unsupervised extractive approaches,
LexRank (Erkan and Radev, 2004) and
Opinosis (Ganesan et al., 2010). LexRank is a
PageRank-based sentence extraction method that
constructs a graph in which sentences and their
similarity are represented by the nodes and edges,
respectively. Opinosis constructs a word-based
graph and extracts redundant phrases as a sum-
mary. As unsupervised abstractive summarization
methods, we use MeanSum (Chu and Liu, 2019),
Copycat (Bražinskas et al., 2020), and Denois-
eSum (Amplayo and Lapata, 2020). MeanSum
computes the mean of the review embeddings
and decodes it as a summary. Copycat generates
a consensus opinion by a hierarchical VAE which
is trained by generating a new review given a
set of other reviews of a product. DenoiseSum6

creates synthetic reviews by adding noise to
original reviews and generates a summary by
removing non-salient information as noise.

As an upper bound of extraction methods, we
also report the performance of Oracle, which ex-
tracts the topic sentences such that they obtain the
highest ROUGE-L against each gold summary.
As the average number of sentences in the gold
summaries is approximately four, we extract four
topic sentences to generate a summary.

4.4 Semi-automatic Evaluation of
Summaries

Following Chu and Liu (2019) and Bražinskas
et al., 2020, we use the ROUGE-1/2/L F1-scores
(Lin, 2004) as semi-automatic evaluation metrics.

Table 2 shows the rouge scores of our model,
RecurSum, and the baselines for the test sets. In

6As complete code is not available, we report the result
of different test splits from ours, which are used in their
sample of output summaries. https://github.com
/rktamplayo/DenoiseSum.
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Yelp Amazon

Model ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L
Multi-Lead-1 27.42 3.74 14.34 30.32 5.85 15.96
LexRank (Erkan and Radev, 2004) 26.40 3.19 14.35 31.42 5.31 16.70
Opinosis (Ganesan et al., 2010) 25.80 2.92 14.57 28.90 4.11 16.33
MeanSum (Chu and Liu, 2019) 28.66 3.73 15.77 30.16 4.51 17.76
Copycat (Bražinskas et al., 2020) 28.95 4.80 17.76 31.84 5.79 20.00
DenoiseSum (Amplayo and Lapata, 2020) 29.77 5.02 17.63 – – –
RecurSum (Our Model) 33.24 5.15 18.01 34.91 6.33 18.91
RecurSum (Oracle) 35.59 7.93 28.63 37.17 9.85 30.19

Table 2: ROUGE F1-scores of the test set (%). Boldface shows the highest score excluding the
oracle, and underlined scores are not regarded as statistically significant (p < 0.05) by approximate
randomization test as compared to the highest score.

Yelp Amazon
Model Fluency Coherence Informative. Redundancy Fluency Coherence Informative. Redundancy
LexRank −16.88 −13.51 −0.64 −6.83 −18.18 −15.07 14.11 −4.76
MeanSum 5.63 −16.18 −13.73 0.70 2.74 −14.69 −13.70 1.32
Copycat 15.07 7.88 −7.19 4.00 14.65 9.80 −17.65 6.85
RecurSum −2.56 19.46 24.44 2.78 0.70 17.72 17.39 −2.99

Table 3: Human evaluation scores on the quality of the summaries. The scores are computed by using
the best-worst scaling (%) and range from −100 (unanimously worst) to +100 (unanimously best).
Boldface denotes the highest score, and underlined scores are not regarded as statistically significant
(p < 0.05) by Tukey HSD test as compared to the highest score.

most metrics on both datasets, our model outper-
forms MeanSum and achieves competitive per-
formance compared with the recent unsupervised
summarization model, Copycat. Regarding the or-
acle, our model significantly outperforms the other
models. This result suggests that our model can
improve the performance by using more sophis-
ticated extraction methods. Although we have also
attempted to use the integer linear programming-
based method (Gillick and Favre, 2009), it did
not improve the performance. Developing such
extraction techniques is beyond the scope of the
current study, which focuses on topic structure,
and is deferred to future work.

4.5 Human Evaluation of Summaries

We conducted a human evaluation using AMT.
Following Bražinskas et al. (2020) and Amplayo
and Lapata (2020), we randomly selected 50
instances from each test set and asked AMT
workers7 to complete the following three tasks:

7To obtain reliable answers, we set the worker require-
ments to 98% approval rate, 1000+ accepted tasks, and
locations in the US, UK, Canada, Australia, and New Zealand.

Quality of the Summaries We presented four
system summaries in random order and asked six
AMT workers to rank the summzarization quality
referring to the gold summary. We compute each
system’s score as the percentage of times selected
as the best minus those are selected as the worst
by using the best-worst scaling (Louviere et al.,
2015; Kiritchenko and Mohammad, 2016).

Following Bražinskas et al. (2020) and
Amplayo and Lapata (2020), we use the following
four criteria: Fluency: the summary is gram-
matically correct, easy to read, and understand;
Coherence: the summary is well structured
and organized; Informativeness: the summary
mentions specific aspects of the product; and
Redundancy: the summary has no unnecessary
repetitive words or phrases.

Table 3 shows the human evaluation scores of
four systems. In terms of coherence and infor-
mativeness, RecurSum achieves the highest score
among all approaches across the two datasets. This
result indicates the effectiveness of considering
topics and structure in unsupervised abstractive
opinion summarization. With regard to fluency,
Copycat is superior to our model because our
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Yelp Amazon
Copycat RecurSum Copycat RecurSum

Full 47.79 47.43 45.64 44.74
Partial 41.59 40.00 40.94 38.95
No 10.62 12.57 13.42 16.32

Table 4: Human evaluation scores on the faith-
fulness of the summaries (%). The difference of
each system’s frequency distribution is not re-
garded as statistically significant (p < 0.05) by
χ2 test.

model sometimes makes a grammatical or ref-
erential error, which has a negative impact on
fluency, as will be shown later in Section 5.1.

Faithfulness of the Summaries Abstractive
summarization sometimes invents content that is
unfaithful to the input texts (Maynez et al., 2020).
The next study assesses whether the contents men-
tioned in the generated summaries are included in
the input reviews. We use the same summary sets
as in the quality evaluation and split them into
sentences. For each summary sentence, we asked
the AMT workers to judge whether the content
is fully mentioned (Full), some of the content is
mentioned (Partial), or no content is mentioned
(No) in the reviews.

Table 4 shows the percentage of each answer.
The frequency distribution is not regarded as sta-
tistically significant by the χ2 test (p < 0.05).
This result indicates that our model correctly re-
flects the content in the input reviews as well as
Copycat.

Coverage of the Summaries Another desirable
property of summaries is that they cover more con-
tent mentioned in the input reviews. As reported
in Bražinskas et al. (2020), Copycat and Mean-
Sum achieve relatively low scores for the human
evaluation of opinion consensus, which captures
the coverage of common opinions in the input
reviews. In contrast, as RecurSum explicitly gen-
erates summary sentences for each topic, it could
cover more input content across diverse topics. To
assess this assumption, we conducted the opposite
study from the faithfulness evaluation. Similar to
the faithfulness evaluation, we split reviews into
sentences. For each review sentence, we asked
the AMT workers to rate the extent to which the
generated summaries cover the input content.

Table 5 shows the percentage of fully-covered
(Full), partially-covered (Partial), and un-covered

Yelp Amazon
Copycat RecurSum Gold Copycat RecurSum Gold

Full 23.94 31.05 34.52 29.15 33.31 38.41
Partial 30.02 37.73 40.91 29.15 36.53 39.63
No 46.04 31.22 24.58 41.71 30.16 21.96

Table 5: Human evaluation scores on the cov-
erage of the summaries (%). The difference of
the frequency distribution between Copycat and
RecurSum is statistically significant (p < 0.05)
by χ2 test.

(No) sentences. In addition to the two models, we
also included gold summaries as the upper bounds.
For both datasets, RecurSum covers more number
of common opinions by capturing diverse topics.

5 Discussion

5.1 Analyzing Generated Summaries

In this section, we discuss the strengths and weak-
nesses of our method by presenting examples of
the generated summaries and tree structures.

In Figure 4 (a), we present a summary of a
review of shoes in Amazon. RecurSum generates
topic sentences about fitness and size (12, 121),
similar to Copycat. In addition, our model also
mentions color and use (11, 111, 112), which
is also described in the gold summary. While
we cannot grasp that the shoes are appropriate
for weddings from Copycat’s summary, Recur-
Sum covers such topics and provides more useful
information.

Figure 4 (b) shows the generated summaries on
a coffee shop review in Yelp. While both Recur-
Sum and Copycat present a positive review about
the taste of bubble tea (tea with tapioca), Recur-
Sum also focuses on the dessert (12, 121), similar
to the gold summary. While Copycat also refers to
friendly staff, they are not mentioned in the input
review. Our model successfully does not extract
topic sentences about staff by measuring content
overlap with the input reviews. However, Recur-
Sum sometimes makes grammatical or referential
errors such as ‘‘It’s a little bit of the best bubble
tea’’. These errors cause the inferior performance
of RecurSum in terms of fluency.

Figure 4 (c) shows the summary of an Amazon
review on a table chair set. RecurSum accurately
captures opinions about the table (11, 111, 112)
and chair (12, 121). The topic sentences on the
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Figure 4: Generated topic sentences of (a) an Amazon review of heeled shoes, (b) a Yelp review of a coffee shop,
and (c) an Amazon review of table chair set. Topic sentences selected as a summary are highlighted in italic.

bottom level elaborate on the parent sentences, re-
ferring to the easy assembly (111), the appropriate
use of table (112), and the quality of chair (121).
By inferring topics in the tree structure, Recur-
Sum can offer summary sentences over multiple
granularities of topics.

5.2 Ablation Study of Model Components

We report the results of the ablation study to
investigate how individual components affect
summarization performance. In addition to the
ROUGE scores, we also report self-BLEU scores
(Zhu et al., 2018) to investigate the diversity of
the generated summaries. Self-BLEU is computed
by calculating the BLEU score of each generated
summary with all other generated summaries in
the test set as references. A higher self-BLEU
implies that the generated summaries are not di-
versified, that is, the model tends to generate a
generic summary similar to the other summaries.
Table 6 shows the performances of model variants
on Yelp dataset.

w/o Disc denotes our model without a discrimi-
nator. The ROUGE scores are significantly lower

Model Variants R-1 R-2 R-L B-3 B-4
w/o Discriminator 30.52 3.50 16.43 54.18 30.42
w/o Attention 30.62 4.87 17.01 66.11 50.89
w/o Nucleus 31.71 5.10 17.70 69.13 55.81
Full 33.24 5.15 18.01 64.30 48.37

Table 6: Ablation study of RecurSum on Yelp.
R-1/2/L denote ROUGE-1/2/L, respectively.
B-3/4 denote self-BLEU3/4, respectively.

than the full model. Without the discriminator, the
topic distribution becomes sparse (i.e., most of the
review sentences are assigned to some specific
topics). Therefore, the model obtains incoherent
topics and generates unfaithful summaries for the
input review. Discriminator penalizes this situa-
tion by assigning an appropriate topic to topically
different sentences. This mechanism makes the
generated topic sentences topically coherent and
improves ROUGE scores.

w/o Attention indicates our model without an
attention mechanism. Although the generated sen-
tences are faithful to the input review, they are
often generic and miss some specific details of the
content. By adding the attention mechanism, the
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generated summary effectively reflects the content
of the input reviews and provides more detailed
information. Although the copy-mechanism (See
et al., 2017) has also been reported to be useful
in previous summarization models (Bražinskas
et al., 2020; Amplayo and Lapata, 2020), it de-
grades the performance of our model. While their
models use different input-output pairs (reviews
vs. pseudo-summary), our model uses the same
input-output pairs in an autoencoder manner and
tends to fully copy the input sentences. Thus, our
model fails to obtain a meaningful latent code.

w/o Nucleus denotes our model using a
beam-search decoder (beam width = 5) instead
of nucleus sampling when decoding topic sen-
tences in inference. As reported by Holtzman et al.
(2019), we also confirmed that the beam-search
decoder tends to generate bland or repetitive text
and sometimes fails to capture product-specific
words. Owing to nucleus sampling, the decoder
generates more informative content and improves
the ROUGE-1 score with a significant decrease in
self-BLEU.

We also attempted to replace the encoder with
BERT (Devlin et al., 2019). However, fine-tuning
of pretrained components with non-pretrained
components is unstable as reported by Liu and
Lapata (2019b), and it does not contribute to the
improvement of ROUGE scores.

5.3 Analyzing Topic-Tree Structure

As generating sentences with tree-structured topic
guidance is a novel challenge, we introduce new
measures to verify that the generated sentences
exhibit the desired properties of tree structures.
Based on the work of tree-structured topic model
(Kim et al., 2012), we introduce two metrics:
hierarchical affinity and topic specialization.

Hierarchical Affinity. An important character-
istic of the tree structure is that a parent topic
sentence is more similar to its children than the
sentences descending from the other parents. To
confirm this property, we estimated the similar-
ity of sentences in parent-child pairs and non
parent-child pairs. To measure sentence similar-
ity, we used ALBERT (Lan et al., 2019), which
is a SoTA model on the semantic textual sim-
ilarity benchmark (STS-B; Cer et al., 2017). In
our experiment, we used ALBERT-base, which
achieves a 84.7 Pearson correlation coefficient
against the test sets of STS-B. As shown in

Hierarchical Affinity Yelp Amazon

Parent-child pairs 2.39 1.33
Non parent-child pairs 1.59 0.76

Table 7: Average sentence similarity of the
topic sentence pairs, ranging from 0 (different)
to 5 (similar).

Topic Specialization Yelp Amazon

First level 1.68 1.60
Second level 1.99 1.63
Third level 2.16 1.84

Table 8: Average specialization score of each
level topics, ranging from 1 (general) to 5
(specific).

Table 7, parent-child sentence pairs are more
similar than those of non parent-child pairs in
both datasets. This result indicates that the gener-
ated sentences linked by parent-child relations are
topically coherent.

Topic Specialization. In tree-structured topics,
we would expect the root topic to generate gen-
eral sentences, whereas more specific content is
conveyed by the sentences generated by the leaf
topics. To empirically test this property, we esti-
mated the average specificity of sentences at each
level of the tree-structured topics. We fine-tuned
ALBERT-base on the task of estimating the speci-
ficity of sentences (Louis and Nenkova, 2011).
We used the dataset provided by Ko et al. (2019),
which comprises the Yelp, Movie, and Tweet do-
mains. The fine-tuned model achieves a SoTA
performance of 86.2 Pearson correlation coeffi-
cient on the test sets in Yelp. As shown in Table 8,
we see that sentences with lower topics are more
specific than higher topics. This indicates that the
root sentences refer to general topics, whereas leaf
sentences describe more specific topics.

5.4 Analyzing Latent Space of Sentences

In Figure 5, we project the latent code of topic
sentences of a restaurant review onto the top two
principal component vector space. Following the
modeling assumption, the latent distributions of
child sentences are located relatively near their
parent distributions. This property ensures that the
parent and child sentences are topically coherent,
as shown in Table 7. Furthermore, we present
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Figure 5: 2-D latent space projected by principal component analysis. Each point corresponds to the mean of the
latent distribution of a topic sentence, and each circle denotes the same Mahalanobis distance from the mean.

LogDetCov Yelp Amazon

First level 28.83 27.21
Second level 26.22 26.54
Third level 23.28 24.55

Table 9: Average log determinant of covariance
matrices (LogDetCov) on each level.

the average log determinant of the covariance
matrices at each level in Table 9. We confirm that
the latent code of the topic sentences has a smaller
variance towards the leaves. This property forces
the topic sentences to be more specific as the level
becomes deeper, as described in Table 8.

6 Related Work

6.1 Text Generation with Topic Guidance

The VAE is intensively used to obtain disentan-
gled latent code of sentences (Bowman et al.,
2016; Hu et al., 2017; Tang et al., 2019). Closely
related to our work, Wang et al. (2019) specify the
prior as a GMM, where each mixture component
corresponds to the latent code of a topic sentence
and is mixed with the topic distribution inferred
by the flat neural topic model (Miao et al., 2017).

In contrast, we address a novel challenge to
generate topic sentences with tree-structured topic
guidance, where the root sentence refers to a
general topic, whereas the leaf sentences describe
more specific topics. We adopt the tree-structured
neural topic model (Isonuma et al., 2020) to infer
the topic distribution of sentences and introduce a
recursive Gaussian mixture prior for modeling the
latent distribution of sentences in a document.

6.2 Unsupervised Summary Generation

Owing to the success of supervised abstractive
summarization by neural architectures (Nallapati
et al., 2016; See et al., 2017; Liu and Lapata,
2019a), unsupervised sentence compression (Fevry
and Phang, 2018; Baziotis et al., 2019), and un-
supervised summary generation (Isonuma et al.,
2019) have recently drawn attention.

Recently, specifically for opinionated texts,
several abstractive multi-document summariza-
tion methods have been developed, such as
MeanSum, Copycat, and DenoiseSum, as ex-
plained in Section 4.3. Concurrently with our
work, Angelidis et al. (2021) use quantitized
transformers enabling aspect-based extractive
summarization, and Amplayo et al. (2020) incor-
porate the aspect and sentiment distributions into
the unsupervised abstractive summarization. Our
method incorporates topic-tree structure into unsu-
pervised abstractive summarization and generates
summaries consisting of multiple granularities of
topics.

7 Conclusion

In this paper, we proposed a novel unsuper-
vised abstractive opinion summarization method
by generating topic sentences with tree-structured
topic guidance. Experimental results demon-
strated that the generated summaries are more
informative and cover more input content than
those generated by the recent unsupervised sum-
marization (Bražinskas et al., 2020). Additionally,
we demonstrated that the variance of latent Gaus-
sians represents the granularity of sentences,
analogous to Gaussian word embedding (Vilnis
and McCallum, 2015). This property will be use-
ful not only for summarization but also for other
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tasks that need to consider the granularity of the
contents.
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A Appendices

A.1 Inference of Topic Distribution
To approximate the tree-structured topic distribu-
tion of a sentence, we use a tree-structured neural
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Figure 6: Example of a path distribution (blue) and level
distribution (red). Both the sum of a path distribution
over each level and the sum of a level distribution over
each path are equal to 1.

topic model (TSNTM; Isonuma et al., 2020),
which transforms a sentence into a tree-structured
topic distribution using neural networks. While
their model is based on the nested Chinese restau-
rant process (nCRP; Griffiths et al., 2004), we
make a minor change to use the nested hierar-
chical Dirichlet process (nHDP; Paisley et al.,
2014). The nHDP generates a sentence-specific
path distribution πs and level distribution φs as

νs,k∼Beta(1, γ), πs,k=πs,par(k)νs,k
∏

j∈Sib(k)

(1− νs,j)

(20)

ηs,k∼Beta(α, β), φs,k=ηs,k
∏

j∈Anc(k)

(1− ηs,j)

(21)

θs,k=πs,k · φs,k (22)

where Sib(k) and Anc(k) are the sets of the k-th
topic’s preceding-siblings and ancestors, respec-
tively. As described in Figure 6, πs,k denotes the
probability that a sentence s selects a path from
the root to the k-th topic. φs,k denotes the proba-
bility that a sentence s does not select the ancestral
topics j ∈ Anc(k) but remains in the k-th topic
along the path. By multiplying these two prob-
abilities, we obtain θs,k; the probability that a
sentence s selects the topic k. The nHDP does
not make a significant difference in the summa-
rization performance from the nCRP. However,
the nHDP permits different lengths of each path,
whereas the nCRP restricts each path length to be
the same.

Following Isonuma et al. (2020), we use
the doubly recurrent neural networks (DRNN;
Alvarez-Melis and Jaakkola, 2017) to transform a
sentence embedding ys = RNN(ws) to the path
distribution πs and level distribution φs. The

# of topics for each level (total) R-1 R-2 R-L

1–2–4 (7) 29.03 4.39 16.94
1–3–9 (13) 31.42 4.43 17.19
1–4–16 (21) 33.24 5.15 18.01
1–5–25 (31) 31.94 4.78 17.50
1–6–36 (43) 33.25 4.82 17.81

Table 10: Sensitivity for various number of
branches.

# of topics for each level (total) R-1 R-2 R-L

1–3 (4) 23.63 2.38 14.35
1–3–9 (13) 31.42 4.43 17.19
1–3–9–27 (40) 32.55 4.75 17.70

Table 11: Sensitivity for various number of levels.

DRNN consists of two RNN decoders over re-
spectively the ancestors and siblings. We compute
the k-th topic’s hidden state hk using (23) and
obtain the path distribution by alternating νs as
(24):

hk = tanh(W phpar(k) +W shk−1) (23)

νs,k = sigmoid(h�
k ys) (24)

where hpar(k) and hk−1 are the hidden states
of a parent and a previous sibling of the k-th
topic, respectively. Similarly, we obtain the level
distribution, φs, by computing ηs with another
DRNN.

A.2 Sensitivity for the Number of Topics

We investigated how the number of topics affects
summarization performance. Table 10 shows the
ROUGE scores on the various number of branches
with a fixed depth of 3 in topic-tree structure.
When the number of topics is small, the models
achieve a relatively low score. However, when the
number of branches≥ 4, the performance does not
significantly change for various numbers of topics.
A similar trend is confirmed in Table 10, which
shows the ROUGE scores on the various number
of levels with the fixed number of branches of 3.
These results indicate that our model is relatively
robust for the number of topics.
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A.3 Derivation of Equation (19)
Proposition: when q(xs|zs) is given by (12),
(25) holds:

∑
s
θ̂s,kDKL

[
q(xs|ws)|p(xs|zs=k)

]
−∑

s
θ̂s,kDKL

[
q(xs|zs=k)|p(xs|zs=k)

]
≥ 0

(25)

Proof: The first term of (25) is re-written as:∑
s
θ̂s,kDKL

[
q(xs|ws)|p(xs|zs=k)

]
=
∑

s
θ̂s,kDKL

[
N (μ̂s, Σ̂s)|N (μ̂d,par(k), Σ̂d,par(k))

]

=
1

2

∑
s
θ̂s,k

{
log |Σ̂d,par(k)|−log |Σ̂s|+Tr[Σ̂

−1

d,par(k)Σ̂s]

+(μ̂s−μ̂d,par(k))
�Σ̂

−1

d,par(k)(μ̂s−μ̂d,par(k))−n
}

=
1

2

∑
s
θ̂s,k

{
Cd,par(k)−log |Σ̂s|+Tr[Σ̂

−1

d,par(k)Σ̂s]

+μ̂�
s Σ̂

−1

d,par(k)μ̂s−2μ̂�
d,par(k)Σ̂

−1

d,par(k)μ̂s

}

=
1

2

∑
s
θ̂s,k

{
Cd,par(k)−log |Σ̂s|+Tr[Σ̂

−1

d,par(k)Σ̂s]

+Tr[Σ̂
−1

d,par(k)μ̂sμ̂
�
s ]−2μ̂�

d,par(k)Σ̂
−1

d,par(k)μ̂d,k

}
(26)

as
∑

s θ̂s,kμ̂d,k=
∑

s θ̂s,kμ̂s from (13).
The second term is similarly expanded as:∑

s
θ̂s,kDKL

[
q(xs|zs=k)|p(xs|zs=k)

]

=
1

2

∑
s
θ̂s,k

{
Cd,par(k)−log |Σ̂d,k|+Tr[Σ̂

−1

d,par(k)Σ̂d,k]

+Tr[Σ̂
−1

d,par(k)μ̂d,kμ̂
�
d,k]−2μ̂�

d,par(k)Σ̂
−1

d,par(k)μ̂d,k

}
(27)

Therefore, (25) is arranged as:∑
s θ̂s,kDKL

[
q(xs|ws)|p(xs|zs=k)

]
−
∑

s θ̂s,kDKL

[
q(xs|zs=k)|p(xs|zs=k)

]
=
1

2

∑
s
θ̂s,k

{
−log |Σ̂s|+log |Σ̂d,k|

+Tr
[
Σ̂

−1

d,par(k)(Σ̂s+μ̂sμ̂
�
s −Σ̂d,k−μ̂d,kμ̂

�
d,k)

]}

=
1

2

∑
s
θ̂s,k

{
−log |Σ̂s|+log |Σ̂d,k|

}
+
1

2

{
Tr
[
Σ̂

−1

d,par(k)∑
s
θ̂s,k(Σ̂s+μ̂sμ̂

�
s −Σ̂d,k−μ̂d,kμ̂

�
d,k)

]}

=
1

2

∑
s
θ̂s,k

{
− log |Σ̂s|+ log |Σ̂d,k|

}
(28)

as
∑

s θ̂s,k
{
Σ̂s + μ̂sμ̂

�
s

}
=

∑
s θ̂s,k

{
Σ̂d,k +

μ̂d,kμ̂
�
d,k

}
from (14). The given equation

eventually comes down to a comparison of the
entropy.

Since, in general, −
∫
q1(x) log q2(x) dx ≥

−
∫
q1(x) log q1(x) dx holds, we obtain (29):

∑
s
θ̂s,k

{
−
∫
q(xs|ws) log q(xs|zs=k) dxs

}

≥
∑

s
θ̂s,k

{
−
∫
q(xs|ws) log q(xs|ws) dxs

}
(29)

As the right term is a weighted sum of the normal
distribution entropy, it can be rewritten as:

∑
s
θ̂s,k

{
−
∫
q(xs|ws) log q(xs|ws) dxs

}

=
1

2

∑
s
θ̂s,k

{
log |Σ̂s|+n log 2π + n

}
(30)

Meanwhile, we can expand the left term as:

∑
s
θ̂s,k

{
−
∫
q(xs|zs=k) log q(xs|ws) dxs

}

=
1

2

∑
s
θ̂s,k

{
log |Σ̂d,k|+n log 2π

+Eq(xs|ws)[(xs−μ̂d,k)
�Σ̂

−1

d,k(xs−μ̂d,k)]
}
(31)

The last term in (31) is expressed as:

∑
s
θ̂s,k

{
Eq(xs|ws)

[
(xs−μ̂d,k)

�Σ̂
−1

d,k(xs−μ̂d,k)
]}

=
∑

s
θ̂s,k

{
Eq(xs|ws)[Tr(Σ̂

−1

d,k(xs−μ̂d,k)(xs−μ̂d,k)
�)]

}

=Tr
[
Σ̂

−1

d,k

∑
s
θ̂s,k

{
Eq(xs|ws)[(xs−μ̂d,k)(xs−μ̂d,k)

�]
}]

=Tr
[
Σ̂

−1

d,k

∑
s
θ̂s,kΣ̂d,k

]

=
∑

s
θ̂s,k n

(32)

Thus, by combining (29), (30), (31), (32),∑
s θ̂s,k

{
log |Σ̂d,k|

}
≥

∑
s θ̂s,k

{
log |Σ̂s|

}
holds

and implies (25).
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