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Abstract

In this paper, we evaluate the translation of
negation both automatically and manually,
in English–German (EN–DE) and English–
Chinese (EN–ZH). We show that the ability of
neural machine translation (NMT) models to
translate negation has improved with deeper
and more advanced networks, although the
performance varies between language pairs
and translation directions. The accuracy of
manual evaluation in EN→DE, DE→EN,
EN→ZH, and ZH→EN is 95.7%, 94.8%,
93.4%, and 91.7%, respectively. In addition,
we show that under-translation is the most
significant error type in NMT, which contrasts
with the more diverse error profile previously
observed for statistical machine translation.
To better understand the root of the under-
translation of negation, we study the model’s
information flow and training data. While
our information flow analysis does not reveal
any deficiencies that could be used to detect
or fix the under-translation of negation, we
find that negation is often rephrased during
training, which could make it more difficult
for the model to learn a reliable link between
source and target negation. We finally conduct
intrinsic analysis and extrinsic probing tasks
on negation, showing that NMT models can
distinguish negation and non-negation tokens
very well and encode a lot of information about
negation in hidden states but nevertheless leave
room for improvement.

1 Introduction

Negation is an important linguistic phenomenon in
machine translation, as errors in translating nega-
tion may change the meaning of source sentences
completely. There are many studies on negation
in statistical machine translation (SMT) (Collins

et al., 2005; Li et al., 2009; Wetzel and Bond,
2012; Baker et al., 2012; Fancellu and Webber,
2014, 2015), but studies on negation in neu-
ral machine translation (NMT) are quite limited
and results are partly conflicting. For example,
Bentivogli et al. (2016) find that negation is still
challenging, whereas Bojar et al. (2018) show
that NMT models almost make no mistakes on
negation using 130 sentences with negation from
three language pairs as the evaluation set. Hence,
it is still not clear how well NMT models perform
on the translation of negation.

In this paper, we present both automatic
and manual evaluation of negation in NMT, in
English–German (EN–DE) and English–Chinese
(EN–ZH). The automatic evaluation is based on
contrastive translation pairs and studies transla-
tion from English into German/Chinese (EN→
DE/ZH). The manual evaluation targets transla-
tion in all four translation directions. We find that
the modeling of negation in NMT has improved
with deeper and more advanced networks. The
contrastive evaluation shows that deleting nega-
tion from references is more confusing to NMT
models compared to inserting negation into ref-
erences. For the manual evaluation, NMT models
make fewer mistakes on negation in EN–DE, than
in EN–ZH, and there are more errors on negation
in DE/ZH→EN than in EN→DE/ZH. Moreover,
under-translation is the most prominent error type
in three out of four directions.

The black-box nature of neural networks makes
it hard to interpret how NMT models handle the
translation of negation. In Ding et al. (2017),
neither attention weights nor layer-wise rele-
vance propagation can explain why negation is
under-translated. We are interested in whether the
information about negation is not well passed to
the decoder. Thus, we investigate the negation
information flow in NMT models by raw attention
weights and attention flow (Abnar and Zuidema,
2020). We demonstrate that the under-translation
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of cues is not caused simply by a lack of negation
information transferred to the decoder. We further
explore the mismatch between source and target
sentences—negation cues appearing only on the
source side or only on the target side. We find that
there are roughly 17.4% mismatches in the training
data in ZH–EN. These mismatches could confuse
NMT models and make the learning harder. We
suggest to distill or filter training data by removing
the sentence pairs with mismatches to make the
learning easier. In addition, we conduct intrinsic
analysis and extrinsic probing tasks, to explore
how much information about negation has been
learned by NMT models. The intrinsic analysis
based on cosine similarity shows that NMT models
can distinguish negation and non-negation tokens
very well. The probing results on negation detec-
tion reveal that NMT can encode a lot of infor-
mation about negation in hidden states but still
leaves much room for improvement. Moreover,
encoder hidden states capture more information
about negation than decoder hidden states.

2 Related Work

2.1 Negation in MT

Fancellu and Webber (2015) conduct a detailed
manual error analysis and consider three catego-
ries of errors, deletion, insertion, and reordering.
They find that negation scope is most challenging
and reordering is the most frequent error type in
SMT. Here we study the performance of NMT
models on translating negation.

Bentivogli et al. (2016) and Beyer et al. (2017)
find that NMT is superior to SMT in translating
negation. Bentivogli et al. (2016) observe that
placing the German negation cue nicht correctly
during translation is a challenge for NMT models,
which is determined by the focus of negation
and need to detect the focus correctly. Bojar
et al. (2018) evaluate MT models on negation,
translating from English into Czech, German, and
Polish, using 61, 36, 33 sentences, respectively,
with negation as the test sets. They find that NMT
models almost make no mistakes on negation
compared to SMT—NMT models only make two
mistakes in the English–Czech test set. In this
paper, we will conduct manual evaluation on four
directions with larger evaluation sets, to get a
more comprehensive picture of the performance
on translating negation.

Sennrich (2017) evaluates subword-level and
character-level NMT models on the polarity set
of LingEval97 and finds that negation is still a
challenge for NMT, via scoring contrastive trans-
lation pairs. More specifically, the deletion of
negation cues causes more errors. Ataman et al.
(2019) show that character-level models perform
better than subword-level models on negation.
Instead, we evaluate NMT models with different
neural networks to learn their abilities to translate
negation, by scoring contrastive translate pairs.

Ding et al. (2017) find that neither attention
weights nor layer-wise relevance propagation can
explain under-translation errors on a negation
instance. Thus, understanding the mechanism of
dealing with negation is still a challenge for NMT.
Most recently, Hossain et al. (2020) study the
translation of negation on 17 translation direc-
tions. They show that negation is still a challenge
to NMT models and find that there are fewer
negation-related errors when the language is simi-
lar to English, with respect to the typology of nega-
tion. In our work, we conduct both automatic and
manual evaluation on negation, and explore the
information flow of negation to answer whether
under-translation errors are caused by a lack of
negation information transferred to the decoder.

2.2 Negation in Other Areas of NLP

Negation projection is the task of projecting nega-
tions from one language to another language,
which can alleviate the workload of annotating
negation. Liu et al. (2018) find that using word
alignment to project negation does not help the
annotation process. They also provide the NegPar
corpus, an EN–ZH parallel corpus annotated for
negation. Here we apply probing classifiers to
directly generate negation annotations on Chinese
using hidden states.

Negation detection is the task of recognizing
negation tokens, which can estimate the ability of
a model to learn negation. Fancellu et al. (2018)
utilize LSTMs, dependency LSTMs, and graph
convolutional networks (GCN) to detect negation
scope, using part-of-speech tags, dependency tags,
and negation cues as features. Recently, the pre-
trained contextualized representations have been
widely used in various NLP tasks. Khandelwal
and Sawant (2020) employ BERT (Devlin et al.,
2019) for negation detection, including nega-
tion cue detection, scope detection, and event
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detection. Sergeeva et al. (2019) apply ELMo
(Peters et al., 2018) and BERT to negation scope
detection and achieve new state-of-the-art results
on two negation data sets. Instead of pursuing
better results, here we aim to probe how much
information about negation has been encoded in
hidden states in a negation detection task.

3 Background

3.1 Negation

Negation in text generally has four components:
cues, events, scope, and focuses. The cues are the
words expressing negation. An event is the lexical
component that a cue directly refers to. The scope
is the part of the meaning that is negated and the
focus is the most explicitly negated part of the
scope (Huddleston and Pullum, 2002; Morante
and Daelemans, 2012).

NegPar is a parallel EN–ZH corpus anno-
tated for negation. The English part is based
on ConanDoyle-neg (Morante and Daelemans,
2012), a collection of four Sherlock Holmes
stories. Some scope-related phenomena are re-
annotated for consistency. The annotations are
extended onto its Chinese translations. Here are
two annotation examples:

English: There was no response .

Chinese: mei you ren da ying .
[no have people answer reply.]

In these examples, no and mei marked in bold are
the cues; response and da ying enclosed in boxes
are the events; the underlined words belong to the
negation scope. In NegPar, negation events are
subsets of negation scope, and negation focuses
are not annotated. Table 1 shows detailed statistics
of NegPar. Note that a negation instance may not
have all the three components. Moreover, not
all parallel sentence pairs have negation in both
source and target sentences. For more details,
please refer to Liu et al. (2018).

Due to the lack of parallel data annotated for
negation, most of the negated sentences in the
previous studies are selected randomly. In Neg-
Par, not only negation cues, but also events and
scope are annotated, which is beneficial to evalu-
ating NMT models on negation and exploring the
ability of NMT models to translate negation.

Train Dev Test Total

English
Cue 984 173 264 1,421
Event 616 122 173 911
Scope 887 168 249 1,304

Chinese
Cue 1,209 231 339 1,779
Event 756 163 250 1,169
Scope 1,160 227 338 1,725

Table 1: Statistics of negation components in
NegPar.

Deletion Insertion

deleting nicht (not) inserting nicht
replacing kein (no) with ein (a) replacing ein with kein
deleting un- inserting un-

Table 2: Six ways to reverse the polarity of sen-
tences from the polarity category of LingEval97.

3.2 Contrastive Translation Pairs

Since we evaluate NMT models explicitly on
negation, BLEU (Papineni et al., 2002) as a met-
ric of measuring overall translation quality is not
helpful. We conduct the targeted evaluation with
contrastive test sets in which human reference
translations are paired with one or more con-
trastive variants, where a specific type of error is
introduced automatically.

NMT models are conditional language models
that assign a probability P (T |S) to a given source
sentence S and the target sentence T . If a model
assigns a higher probability to the correct target
sentence than to a contrastive variant that contains
an error, we consider it as a correct decision. The
accuracy of a model on such a test set is the per-
centage of cases where the correct target sentence
is scored higher than all contrastive variants.

LingEval97 (Sennrich, 2017) has over 97,000
EN→DE contrastive translation pairs featuring
different linguistic phenomena. In this paper, we
focus on the polarity category, which is related
to negation and consists of 26,803 instances. For
contrastive variants, the polarity of translations are
reversed by inserting or deleting negation cues.
Table 2 illustrates how the polarity is reversed.

3.3 Attention Flow

In Transformer models, the hidden state of each
token is getting more contextualized as we move
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to higher layers. Thus, the raw attention weights
are not the actual attention to the input tokens.

Recently, Abnar and Zuidema (2020) have
proposed attention flow to approximate the infor-
mation flow. Attention flow considers not only the
attention weights to the previous layer but also to
all the lower layers. Formally, in the self-attention
networks, given a directed graph G = (V,E),
where V is the set of nodes, and E is the set of
edges; each hidden state or word embedding from
different layers is a node; the attention weight
is the value of an edge. Given a source node s
and a target node t, the attention flow is the flow
of edges between s and t, where the flow value
should not exceed the capacity of each edge and
input flow should be equal to output flow for
the intermediate nodes in the path s to t. They
apply a maximum flow algorithm to find the flow
between s and t in a flow network.

In short, the attention flow utilizes the min-
imum value of the attention weights in each
path, and also employs the residual connections
of attention weights. They find that the patterns
of attention flow get more distinctive in higher
layers compared to the raw attention. Moreover,
attention flow yields higher correlations with the
importance scores of input tokens obtained by
the input gradients, compared to using the raw
attention weights. Abnar and Zuidema (2020)
explore the attention flow of the encoder self-
attention in the case of pre-trained language mod-
els. Here we compute the attention flow from
decoder layers to source word embeddings, in the
context of NMT.

4 Evaluation

In this section, we present the results of both
automatic and manual evaluation on negation in
EN–DE and EN–ZH, to get a more comprehensive
picture of the performance on translating negation.

4.1 NMT Models

We use the Sockeye (Hieber et al., 2017) toolkit to
train NMT models. For EN→DE, we train RNN-,
CNN-, and Transformer-based models, follow-
ing the settings provided by Tang et al. (2018).
For the other directions, we only train Trans-
former models. Table 3 shows the more detailed
settings.

Neural network depth 8/6 (EN–DE/ZH)
Kernel size of CNNs 3
Trans. Att. head 8
Learning rate (initial) 2e-04
Embedding&hidden unit size 512
Mini-batch size (token) 4,096
Dropout (Trans./RNN&CNN) 0.1/0.2
RNN encoder 1 biLSTM + 6 uniLSTM
Optimizer Adam (Kingma and Ba, 2015)
Checkpoint frequency 4,000
Label smoothing 0.1
Early stopping 32

Table 3: Settings for training NMT models.

EN→DE DE→EN EN→ZH ZH→EN

RNN CNN Trans. Trans. Trans. Trans.

25.2 25.3 27.6 34.3 33.9 23.5

Table 4: BLEU scores of NMT models with dif-
ferent architectures on the test sets (newstest-
2017). Trans. is short for Transformer.

The training data is from the WMT17 shared
task (Bojar et al., 2017).1 There are about 5.9
million and 24.7 million sentence pairs in the
training set of EN–DE and EN–ZH, respectively,
after preprocessing with Moses scripts. Note that
the training data on EN–ZH is from the official
preprocessed data.2 The Chinese segmentation is
based on Jieba.3 We learn a joint BPE model with
32K subword units (Sennrich et al., 2016) for
EN–DE, and two BPE models with 32K subword
units for Chinese and English, respectively. We
employ the single model that has the best perplex-
ity on the validation set for the evaluation, without
any ensembles. Table 4 shows the BLEU scores of
the trained NMT models on newstest2017, which
are computed by sacrebleu (Post, 2018).4

Since these NMT models are trained with
single sentences, feeding an input with multiple
sentences into these models is likely to get an
incomplete translation. To avoid these errors, we
feed the sentence with negation cues into NMT
models individually for the manual evaluation.

4.2 Automatic Evaluation

For the automatic evaluation, we let NMT models
score contrastive translation pairs, in EN→DE
and EN→ZH.

1http://www.statmt.org/wmt17/translation
-task.html.

2http://data.statmt.org/wmt18/translation
-task/preprocessed/zh-en/.

3https://github.com/fxsjy/jieba.
4https://github.com/mjpost/sacrebleu.
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Figure 1: Performance of NMT models on scoring contrastive translations, in EN→DE, using the polarity category
of LingEval97. The first three groups are on negation deletion, deleting nicht, kein, and affixes, while the last three
groups are on negation insertion.

4.2.1 EN→DE

Sennrich (2017) has evaluated subword-level
and character-level RNN-based models. Here we
evaluate NMT models with different architectures,
RNN-, CNN-, and Transformer-based models.
The test set is the polarity category of LingEval97.
Figure 1 displays the accuracy of NMT models.

Our NMT models are superior to the models
in Sennrich (2017), except that CNN is inferior
in the group nicht del. Generally, we see that the
performance on negation is getting better with the
evolution of NMT models, with the Transformer
consistently scoring best, and substantially better
(by up to 8 percentage points) than the shallow
RNN (Sennrich, 2017). The accuracy of the
Transformer varies from 93.2% to 99.8%,
depending on the group, which we consider quite
strong.

It is interesting that NMT models make fewer
mistakes when inserting negation cues into the
reference compared to deleting negation cues
from the reference, which means that positive
contrastive variants are more confusing to NMT
models. This is consistent with the results in
Fancellu and Webber (2015), that SMT models
make more errors when generating positive
sentences than generating negative sentences, in
terms of insertion/deletion errors. We will explore
under-translation errors in the following sections.

4.2.2 EN→ZH

Following the polarity category in LingEval97, we
create a contrastive evaluation set for negation on
EN→ZH, using the development and test sets from

the WMT shared translation task 2017–2020.5

The contrastive evaluation set also has two
sub-categories: negation deletion and negation
insertion. We first select the five most popular
Chinese negation cues – ‘‘bu’’, ‘‘mei’’, ‘‘wu’’,
‘‘fei’’, and ‘‘bie’’. Then, we manually delete
the negation cue from the reference or insert a
negation cue into the reference, without affecting
the grammaticality. The negation deletion and
negation insertion categories have 2,005 and
3,062 instances with contrastive translations,
respectively.

As Transformer models are superior to RNN-
and CNN-based models, here we only evaluate
Transformer models. The accuracy on negation
deletion and negation insertion categories is
92.1% and 99.0%, respectively. We can see
that Transformer models perform quite well on
EN→ZH, but not as well as on EN→DE. In
accord with the finding in EN→DE, Transformer
models here in EN→ZH also perform worse on
the negation deletion category.

4.3 Manual Evaluation

We have evaluated NMT models on negation
with contrastive translation pairs. However,
scoring contrastive translation pairs is not the
same as evaluating the translations directly. The
contrastive translations only insert or delete a
negation cue compared to the references, which
is quite different from the generation of NMT
models. In addition, the automatic evaluation only
gives us the general performance on negation
without any details on how negation is translated.

5https://github.com/tanggongbo/negation
-evaluation-nmt.
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Category Description

Correct cues are translated into cues correctly
Rephrased cues are translated correctly but not into a cue
Reordered cues are translated but modify wrong constituents (incorrect scope/focus)
Incorrect cues are translated but the event is translated incorrectly or the meaning is reversed
Dropped cues are not translated at all

Table 5: Descriptions of the five translation categories.

Correct Rephrased Reordered Incorrect Dropped Accuracy

EN→DE 258 (92.8%) 8 ( 2.9%) 2 (0.7%) 3 (1.1%) 7 (2.5%) 95.7%
DE→EN 232 (92.8%) 5 ( 2.0%) 2 (0.8%) 11 (4.4%) 0 (0.0%) 94.8%

EN→ZH 393 (90.0%) 15 ( 3.4%) 3 (0.7%) 10 (2.3%) 16 (3.7%) 93.4%
ZH→EN 451 (80.1%) 65 (11.6%) 3 (0.5%) 21 (3.7%) 23 (4.1%) 91.7%

Table 6: Manual evaluation results in EN–DE and EN–ZH. Accuracy is the sum of correct
and rephrased.

Thus, we further conduct manual evaluation on
EN–DE and EN–ZH.

Due to the lack of parallel data annotated for
negation, most of the negated sentences in previ-
ous studies have no annotations and are selected
randomly. In NegPar, not only negation cues, but
also events and scope, are annotated, which is ben-
eficial for evaluating NMT models on negation
and exploring the ability of NMT models to learn
negation. These annotations allow us to evaluate
negation from the perspectives of cues, events,
and scope, rather than negation cues only. Thus,
for EN–ZH, we conduct the manual evaluation
based on NegPar, using both the development set
and the test set. For EN–DE, we evaluate 250
sentences with negation cues that are randomly
selected from LingEval97 in each direction.

Given the strong performance of Transformer
models in the automatic evaluation, we focus
on this architecture for the manual evaluation.
We classify the translations of negation into five
categories: Correct, Rephrased, Reordered, Incor-
rect, and Dropped, depending on whether the cue,
event and the scope are translated correctly. More
detailed descriptions are provided in Table 5.

Table 6 gives the absolute frequency and per-
centage of each translation category in all the
translation directions.6 The accuracy of translat-
ing negation is the sum of correct and rephrased,

6https://github.com/tanggongbo/negation
-evaluation-nmt provides the details.

and the accuracy in EN→DE, DE→EN, EN→ZH,
and ZH→EN is 95.7%, 94.8%, 93.4%, and 91.7%,
respectively. We can see that NMT models per-
form better at translating negation in DE–EN than
in ZH–EN. In addition, under-translation errors
are the main errors in three out of four directions
while reordering errors only account for less than
1% in all directions. This contrasts with the results
reported for SMT by Fancellu and Webber (2015),
where reordering was a more severe problem
than under-translation. It is reasonable because
NMT models are conditional language models,
and have fewer word order errors, compared to
SMT models (Bentivogli et al., 2016), thus there
are fewer reordering errors on translating negation.
We can tell that the main error types with respect
to negation have shifted from SMT to NMT.

4.3.1 EN–DE
As Table 6 shows, most of the translations belong
to correct. The accuracy in EN→DE is 0.9%
greater than that in DE→EN. 2.5% negation
cues are not translated in EN→DE, while all
the negation cues are translated by NMT models
in DE→EN. However, there are more sentences
where the negation events are not translated
correctly in DE→EN. Compared to Bojar et al.
(2018), our evaluation results for EN-DE are 4.3%
lower. One possible reason for the difference is
that our evaluation is based on a larger data set;
another possible reason is that we also consider
the translation of negation events and scope.
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Category Source Translation Reference

Correct would do him no harm
bu hui shang hai ta
(not able to harm him)

dui ta bu hui you shen me hai chu
(to him no able have any harm)

Rephrased
bu xi fei yong
(no spare expense use) able to spend enough money spare no expense

Reordered
yi ge xing qi bu jian mian
(a week no meet)

��
no

���
one could meet for a week be invisible for a week

Incorrect spare no expense ��
bu

���
yao

���
hua

���
qian mai

(not spend money to buy)
bu xi fei yong
(not spare expense)

Dropped
bu xing , Mo li luo zhi dao le

(not fortunate, Murillo know truth already)
��������
fortunately, Murillo knew that Unhappily, Murillo heard of

Table 7: Translation examples (segments) from different categories. These segments are a subset of
negation scope. The word in bold in the source is the cue. Words with dashed lines below are correct
translations and words with wavy lines below are incorrect translations.

4.3.2 EN–ZH

Similar to the results in EN–DE, the accuracy in
translating from English is greater than in translat-
ing into English. The accuracy in ZH→EN is 1.7%
lower than in EN→ZH. There are more instances
of negation that are rephrased in the translations
in ZH→EN, without any negation cues in the
translations. The NMT model in ZH→EN also
makes more under-translation errors.

Table 7 further provides some translation
examples. In the category Rephrased, negation
cues are not directly translated into negation cues.
Instead, the negation is paraphrased in a positive
translation. In the Rephrased example, although
there is no cue in the translation, the meaning is
paraphrased by translating bu xi [no spare] into
spend. In the Reordered example, the cue bu in
the source is supposed to modify jian [meet],
but the translation of the cue is placed before
one, modifying the subject one instead of meet.
In addition, even though the negation cues are
translated, the negation events could be translated
incorrectly, which can also have a severe impact
on the translation. For the fourth example, there is
a cue in the translation but spare in the source is
translated into spend, which reverses the meaning
completely. For the last example, the cue bu [no]
is skipped and only the event xing [fortunate] gets
translated.

We further check the under-translation errors
of negation cues and find that some of them
are caused by multi-word expressions (idioms),
especially when translating Chinese into English.
For example, wu [no] in wu bing shen yin [no
disease groan cry] is not translated. Fancellu and

Webber (2015) have shown that the cues will not
be under-translated if they are separate units in
SMT. Thus, these words are then segmented into
separate characters and the input is fed into NMT
models again. This does fix a few errors. The wu
[no] in wu bing shen yin gets translated but the
second bu [not] in bu gao bu ai [not tall not short]
is still not translated. Note that we only changed
the segmentation during inference which is sub-
optimal. We aim to show that the segmentation
also could cause under-translation errors.

5 Interpretation

There are few studies on interpreting NMT models
with respect to negation. Since Table 6 has shown
that NMT models in EN–ZH suffer from more
errors on negation, and since NegPar provides
annotations of negation, we focus on interpreting
NMT models in EN–ZH. NMT models consist of
several components and we are interested in the
information flow of negation to answer whether
the under-translation is caused by not passing
enough negation information to decoders, as well
as exploring the ability of NMT models to learn
negation.

5.1 Under-Translation Errors

Under-translation is the most frequent error type
in our evaluation. If a negation cue is not translated
by NMT models, either the negation information is
not passed to the decoder properly, or the decoder
does not utilize such information for negation
generation. We employ raw attention weights and
attention flow to explore the information flow.
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5.1.1 Attention Distribution

Encoder-decoder attention weights can be viewed
as the degree of contribution to the current
word prediction. They have been utilized to
locate unknown words and to estimate the confi-
dence of translations (Jean et al., 2015; Gulcehre
et al., 2016; Rikters and Fishel, 2017). However,
previous studies have found that attention weights
cannot explain the under-translation of negation
cues (Ding et al., 2017). In this section, we
first focus on the under-translated negation cues,
checking the negation information that is passed
to the decoder by the encoder-decoder attention.
We compare the attention weights paid to negation
cues, when they are under-translated and when
they are translated into reference translations.

We extract attention distributions from each
attention layer when translating sentences from
the development set. Each attention layer has mul-
tiple heads and we average7 the attention weights
from all the heads. We utilize constrained decod-
ing (Post and Vilar, 2018) to generate reference
translations to get gold attention distribution. We
find that source negation cues attract much less
attention compared to when they are translated into
references. Thus, we hypothesize that sufficient
information about negation has not been passed
to the decoder, and we can utilize the attention
distribution to detect under-translated cues.

Now we further explore the attention distribu-
tion of under-translated and correctly translated
cues, without using the gold attention distribution.
We compute the Spearman correlation (ρ) between
the weights and categories. If |ρ| is close to 1, then
categories have a high correlation with attention
weights. However, the largest |ρ| in EN→ZH and
ZH→EN is 0.15 and 0.23, respectively, which
means that there is almost no correlation between
attention weights and categories. We inspect the
weights and find that the weights to correctly
translated cues range from 0.01 to 0.68, which
cover most of the weights to dropped cues. This
means that we cannot detect under-translated cues
by raw attention weights.

As raw attention weights in Transformer are
not the actual attention to input tokens, in the next
section, we will apply attention flow, which has

7We also used maximum weights to avoid misleading
conclusions when using average weights if the negation
is modeled by a specific head, and we obtained the same
conclusion.

EN→ZH ZH→EN

Layer Group Attention flow |ρ| Attention flow |ρ|

2 ✓ 0.89 0.04 0.80 0.15
✗ 0.90 0.70

4 ✓ 0.89 0.06 0.85 0.08
✗ 0.91 0.84

6 ✓ 0.77 0.06 0.82 0.07
✗ 0.78 0.72

Table 8: Attention flow values from different
decoder layers to source cues, and the absolute
value of Spearman correlation (ρ) between
attention flow and the cue’s category. ✓ represents
the correctly translated cues and ✗ represents the
under-translated cues.

been shown to have higher correlation with the
input gradients, to measure the negation flow.

5.1.2 Attention Flow
We compute the attention flow to negation cues
belonging to different groups; the input nodes are
the hidden states from decoder layers; the output
node is the word embedding of the negation cue.
We utilize the maximum attention flow from the
decoder to represent the attention flow to each
source cue, and report the average value of all the
attention flow. Table 8 shows the attention flow
values from different decoder layers to source
cues, and the absolute value of Spearman correla-
tion (ρ) between attention flow and the cue’s cate-
gory. The attention flow values range from 0.70 to
0.91 for all the cues, which means that most of the
cue information has been passed to the decoder
and that the under-translation is not caused by not
passing negation information to the decoder.

In addition, the attention flow values in
Dropped and Correct are almost the same in
EN→ZH and the correlation is smaller than 0.1.
In ZH→EN, the attention flow is more distinct in
the two cue groups, but the correlation values are
still smaller than 0.15. Compared to raw attention
weights, attention flow can provide more accu-
rate information flow to the decoder, but neither
raw attention weights nor attention flow exhibit
any correlation between under-translation and the
amount of negation information passed to the
decoder.

Our analysis indicates that under-translation of
negation cues may still occur even though there
is information flow from the source negation cue
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EN
ZH

has cue no cue

has cue 2.60M (10.5%) 0.15M ( 0.6%)
no cue 4.16M (16.8%) 17.84M (72.1%)

Table 9: Statistics of sentence pairs with and
without cues in ZH–EN, including absolute
number and ratio. ‘‘M’’ is short for million.
Numbers in bold denote sentence pairs with
cue-mismatch.

to the decoder. This indicates that methods to
manipulate the attention flow, such as coverage
models or context gates (Tu et al., 2016, 2017)
may not be sufficient to force the model to pro-
duce negation cues. Our results also indicate that
under-translation of negation cues may not be
easily detectable via an analysis of attention.

5.1.3 Training Data Considerations
To further investigate why a model would fail
to learn the seemingly simple correspondence (in
the language pairs under consideration) between
source and target side negation cues, we turn
to an analysis of the parallel training data. Our
manual analysis of the test sets has shown a
sizeable amount (2–11%) of rephrasing where the
translation of a negation is correct, but avoids
grammatical negation. We hypothesize that such
training examples could weaken the link between
grammatical negation cues in the source and
target, and favor their under-translation.

We perform an automatic estimate of cue-
matches and cue-mismatches between source
and target in the training data based on a short
list of negation words.8 Table 9 displays the
amount of cue-match and cue-mismatch sentence
pairs. There are 17.4% sentence pairs with cue-
mismatch,9 predominantly in ZH→EN, which
agrees with the high amount of rephrasing we
observed in our manual evaluation (Table 6).

8English negation words: no, non, not, ’t, nothing, without,
none, never, neither. Chinese negation characters: bu, mei,
wu, fei, bie, wei, fou, wu.

9Note that this is only a simple approximation. We
aim to demonstrate the sizeable mismatched training data
rather than the accurate distribution. We manually checked
100 randomly selected sentence pairs, of which 30% are
classified incorrectly. These errors are caused by ignoring
English words with negative prefixes/suffixes or viewing any
Chinese words with negative characters as negative words,
such as unknown in English and nan fei [South Africa] in
Chinese.

Such cue-mismatch sentence pairs, along with
cue-match pairs, can make the learning harder and
cause under-translation errors when there is no
paraphrase to compensate for the dropped nega-
tion cue. Thus, one possible solution is to distill
or filter training data to remove cue-mismatch
sentence pairs to make the learning easier.

5.2 Intrinsic Investigation

We are also interested in exploring whether NMT
models can distinguish negation and non-negation
tokens, and therefore conduct an intrinsic inves-
tigation on hidden states—by computing the
cosine similarity between tokens with different
negation tags. Since NMT models can translate
most negation instances correctly, we hypothesize
that the hidden states are capable of distinguish-
ing negation from non-negation tokens. We inves-
tigate hidden states from both encoders and
decoders. As the hidden state in the last decoder
layer is used for predicting the translation, we
only explore the decoder hidden states at the 6th
layer. We use Simce to represent the cosine simi-
larity between negation cues and negation events,
Simcs to represent the cosine similarity between
negation cues and tokens belonging to negation
scope, and Simco to represent the cosine sim-
ilarity between negation cues and non-negation
tokens. We simply use the mean representation
for tokens that are segmented into subwords.

Figure 2 shows the cosine similarity between
negation cues and events, scope, and non-negation
tokens, using hidden states from encoders and
decoders. Simce is substantially higher than
Simcs, and Simcs is higher than Simco. This
result reveals that negation events are closer to
negation cues compared to tokens belonging to
the negation scope. We can also infer that NMT
models can tell negation and non-negation tokens
apart as Simco is distinctly lower than Simce and
Simcs. However, even the highest Simce is only
around 0.5, which means that the representations
of negation components are quite different.

In the encoder, Simce, Simcs, and Simco have
the same trend that the similarity is higher in
upper layers. In addition, we can tell that nega-
tion cues interact with events and scope, but also
non-negation tokens. Compared to the negation
representations from encoders, the negation repre-
sentations from decoders are less distinct because
they are closer to each other. Simce, Simcs, and
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Figure 2: Cosine similarity between negation cues and events, scope, and non-negation tokens in ZH–EN, using
hidden states from different layers. ENCi represents hidden states from the ith encoder layer and DEC6 denotes
hidden states from the 6th decoder layer.

Simco are higher when using the hidden states
from the 6th decoder layer (DEC6) than when
using the 6th encoder layer (ENC6). We attribute
this to the fact that hidden states in decoders
are more contextualized because they consider
contextual information from both the source and
the target.

5.3 Probing NMT Models on Negation
We have shown that NMT models can distinguish
negation and non-negation tokens in the previous
section, but how much information about negation
has been captured by NMT models is still unclear.
In this section we will investigate the ability to
model negation in an extrinsic way, namely, prob-
ing hidden states on negation in a negation projec-
tion task (Liu et al., 2018) and a negation detection
task (Fancellu et al., 2018). In the negation projec-
tion task, instead of projecting English negation
annotations to Chinese translations using word
alignment, we use probing classifiers trained on
Chinese to directly generate the negation annota-
tions. In the negation detection task in English, we
employ simple classifiers rather than specifically
designed models to detect each token. In brief,
given a hidden state, we train classifiers to predict
its negation tag, cue, event, scope, or others.

5.3.1 Settings
The probing task on negation cues is a
binary classification task, the output space is
{cue, others}, while the classifiers for event and
scope are tri-class classification tasks with an
output space {cue, event/scope, others}, because
only predicting event/scope is challenging to these
classifiers.

The probing classifiers in this section are feed-
forward neural networks (MLP) with only one
hidden layer, using ReLU non-linear activation.
The size of the hidden layer is set to 512 and we use
the Adam learning algorithm. The classifiers are
trained using cross-entropy loss. Each classifier
is trained on the training set for 100 epochs and
tuned on the development set. We select the model
that performs best (F1 score) on the development
set and apply it to the test set. In addition, we train
5 times with different seeds for each classifier and
report average results. We use precision, recall,
and F1 score as evaluation metrics.

5.3.2 Negation Projection

Table 10 shows the projection results of negation
cues, scope, and events, on both development and
test sets. ENC/DEC refers to using hidden states
from encoders or decoders. ENC achieves the best
result on all the negation projection tasks and is
significantly better than the word alignment based
method in Liu et al. (2018). ENC also performs
better than DEC, which means that negation is
better modeled in encoder hidden states than in
decoder hidden states.

In addition, we investigate hidden states from
different encoder layers. Figure 4 shows the F1
scores on the development set, using hidden
states from different encoder layers. We can
see that hidden states from lower layers perform
better in negation cue projection, while hidden
states from upper layers are better in negation
event/scope projection. One possible explanation
is that negation cues in upper layers are fused
with other negation information, which confuses
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Cues Scope Events

Data Model P R F1 P R F1 P R F1

Dev
Liu et al. (2018) 0.49 0.42 0.45 0.64 0.44 0.50 0.40 0.27 0.32

ENC 0.915 0.665 0.770 0.814 0.530 0.642 0.598 0.335 0.429
DEC 0.754 0.488 0.592 0.738 0.489 0.588 0.487 0.272 0.348

Test
Liu et al. (2018) 0.478 0.382 0.425 0.583 0.312 0.406 0.338 0.180 0.235

ENC 0.892 0.581 0.704 0.743 0.496 0.595 0.496 0.285 0.362
DEC 0.686 0.362 0.474 0.656 0.456 0.538 0.470 0.225 0.304

Table 10: Precision (P), recall (R), and F1 scores of the negation projection tasks in EN→ZH,
using NMT hidden states, comparing with the word alignment based method (Liu et al., 2018). ENC
represents the hidden states from the 1st encoder layer in cue projection, and represents the hidden
states from the 6th encoder layer in scope/event projection. DEC denotes the hidden states from the
6th decoder layer.

Figure 3: Results (%) on negation scope detection in English. MLP is the probing classifier; GCN is graph
convolutional network; D-LSTM is bidirectional dependency LSTM.

the classifier. However, negation events/scope in
upper layers interact more with negation cues
and non-negation tokens, which makes them more
distinctive.

5.3.3 Negation Scope Detection
Figure 3 shows the results of the negation scope
detection task. We only report the results of
using encoder hidden states that perform the best.
The MLP classifier trained on encoder hidden
states achieves 74.31%, 75.14%, and 74.72% on
precision, recall, and F1, respectively,10 and it
is distinctly inferior to the other two models.
However, methods from Fancellu et al. (2018) are
specifically designed for negation scope detection
and add extra information (negation cues, POS
tags) to supervise the model, while the MLP
classifier is designed to jointly predict negation
cues as well, only using hidden states. We can
conclude that some information about negation
scope is well encoded in hidden states, but there
is still room for improvement.

10Here we only report the result of using hidden states from
the 6th encoder layer. We also tried hidden states from other
encoder layers and decoders and obtained similar results as
in the negation projection task.

Figure 4: F1 scores of the negation projection tasks, on
the development set, using hidden states from different
encoder layers.

5.3.4 Incorrectly Translated Sentences

We further probe encoder hidden states from
correctly and incorrectly translated sentences
on negation cues and scope, to explore the
quality of hidden states from incorrectly translated
sentences. Note that we do not consider the under-
translated cues. Figure 5 exhibits the performance
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Figure 5: Results on negation cue/scope detection in ZH–EN, using encoder hidden states from sentences where
the negation is correctly translated (Correct) and incorrectly translated (Incorrect).

of negation detection on cues and scope. Correct
represents hidden states from correctly translated
sentences and Incorrect stands for hidden states
from incorrectly translated sentences. Incorrect
performs worse than Correct, especially on the ne-
gation cue detection task, which confirms the
effectiveness of using probing tasks to explore the
information about negation in hidden states.

6 Conclusion

In this paper, we have explored the ability of NMT
models to translate negation through evaluation
and interpretation. The accuracy of manual
evaluation in EN→DE, DE→EN, EN→ZH, and
ZH→EN is 95.7%, 94.8%, 93.4%, and 91.7%,
respectively. The contrastive evaluation shows
that deleting a negation cue from references is
more confusing to NMT models than inserting a
negation cue into references, which indicates that
NMT models have a bias against sentences with
negation. We show that NMT models make fewer
mistakes in EN–DE than in EN–ZH. Moreover,
there are more errors in DE/ZH→EN than in
EN→DE/ZH.

We also have investigated the information flow
of negation by computing the attention weights
and attention flow. We demonstrate that the
negation information has been well passed to the
decoder, and that there is no correlation between
the amount of negation information transferred
and whether the cues are under-translated or not.
Thus, we consider attempts to detect or even
fix under-translation of cues via an analysis or
manipulation of the attention flow to have little

promise. However, our analysis of the training data
shows that negation is often rephrased, leading
to cue mismatches which could confuse NMT
models. This suggests that distilling or filtering
training data to make grammatical negation more
consistent between source and target could reduce
this under-translation problem.

In addition, we show that NMT models can
distinguish negation and non-negation tokens very
well, and NMT models can encode substantial
information about negation in hidden states
but nevertheless leave room for improvement.
Moreover, encoder hidden states capture more
information about negation than decoder hidden
states; negation cues are better modeled in lower
encoder layers while negation events and tokens
belonging to negation scope are better modeled in
higher encoder layers.

Overall, we show that the modeling of negation
in NMT has improved with the evolution of
NMT – with deeper and more advanced networks;
the performance on translating negation varies
between language pairs and directions. We also
find that the main error types on negation have
shifted from SMT to NMT—under-translation is
the most frequent error type in NMT while other
error types such as reordering were equally or
more prominent in SMT.

We only conduct evaluation in EN–DE and
EN–ZH, and German/Chinese and English are
very similar in expressing negation. It will be
interesting to explore languages have different
characteristics on negation in the future, such as
Italian, Spanish, and Portuguese, where double
negation is very common.
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