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Abstract

Self-attention has recently been adopted for
a wide range of sequence modeling problems.
Despite its effectiveness, self-attention suffers
from quadratic computation and memory re-
quirements with respect to sequence length.
Successful approaches to reduce this complex-
ity focused on attending to local sliding win-
dows or a small set of locations independent
of content. Our work proposes to learn dy-
namic sparse attention patterns that avoid
allocating computation and memory to attend
to content unrelated to the query of interest.
This work builds upon two lines of research:
It combines the modeling flexibility of prior
work on content-based sparse attention with
the efficiency gains from approaches based on
local, temporal sparse attention. Our model,
the Routing Transformer, endows self-attention
with a sparse routing module based on on-
line k-means while reducing the overall com-
plexity of attention to O(n'5d) from O(n?d)
for sequence length n and hidden dimension
d. We show that our model outperforms com-
parable sparse attention models on language
modeling on Wikitext-103 (15.8 vs 18.3
perplexity), as well as on image generation on
ImageNet-64 (3.43 vs 3.44 bits/dim) while
using fewer self-attention layers. Additionally,
we set a new state-of-the-art on the newly
released PG-19 data-set, obtaining a test
perplexity of 33.2 with a 22 layer Routing
Transformer model trained on sequences of
length 8192. We open-source the code for
Routing Transformer in Tensorflow.!

1 Introduction

Generative models of sequences have witnessed
rapid progress driven by the application of atten-
"https://github.com/google-research

/google-research/tree/master/routing
_transformer.
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tion to neural networks. In particular, Bahdanau
et al. (2015), Cho et al. (2014), and Vaswani et al.
(2017) relied on attention to drastically improve
the state-of-the art in machine translation. Subse-
quent research (Radford et al., 2018; Devlin et al.,
2019; Liu et al., 2019; Yang et al., 2019) demon-
strated the power of self-attention in learning
powerful representations of language to address
several natural language processing tasks. Self-
attention also brought impressive progress for
generative modeling outside of language, for
example, image (Parmar et al., 2018; Menick and
Kalchbrenner, 2018; Child et al., 2019) and music
generation (Huang et al., 2018; Child et al., 2019).

Self-attention operates over sequences in a
step-wise manner: At every time-step, attention
assigns an attention weight to each previous input
element (representation of past time-steps) and
uses these weights to compute the representation
of the current time-step as a weighted sum of the
past input elements (Vaswani et al., 2017). Self-
attention (Shaw et al., 2018) is a particular case
of attention (Bahdanau et al., 2015; Chorowski
et al., 2015; Luong et al., 2015).

Self-attention is commonly used in auto-
regressive generative models. These models gen-
erate observations step-by-step, modeling the
probability of the next symbol given the previously
generated ones. At every time step, self-attentive
generative models can directly focus on any part
of the previous context. In contrast, recurrent
neural networks (RNNSs) and convolutional neural
networks (CNNs) have direct interactions with
only a local neighborhood of context around the
current time step.

This advantage, however, comes at a price:
Unlike recurrent networks or convolution net-
works, the time and space complexity of self-
attention is quadratic in n, the length of the
sequence. Specifically, for every position 7 < n,
self-attention computes weights for its whole
context of length ¢, which induces a complexity
of > .., ¢ =n(n — 1)/2. This makes it difficult
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to scale attention-based models to modeling long
sequences. However, long sequences are the norm
in many domains, including music, image, speech,
video generation, and document-level machine
translation.

Therefore, an important research direction is
to investigate sparse and memory efficient forms
of attention in order to scale to tasks with large
sequence lengths. Previous work has proposed
data independent or fixed sparsity patterns bound-
ing temporal dependencies, such as local or strided
attention. At each time step, the model attends
only to a fixed number of time steps in the past
(Child et al., 2019). Extensions to local attention
have suggested learning the length of the tem-
poral sparsity for each attention module in the
network (Sukhbaatar et al., 2019). These strat-
egies draw their inspiration from RNNs and
CNNs and bound their complexity by attend-
ing only to representations summarizing a local
neighborhood of the current time step. Their
attention matrices (matrices containing the atten-
tion weights for every pair of previous, current
time-step) are natively sparse and require instan-
tiating only non-zero entries. While these ap-
proaches have achieved good results, fixing the
sparsity pattern of a content based mechanism
such as self-attention can limit its ability to pool
in information from large contexts.

As an alternative to local attention, Correia
et al. (2019) consider content-based sparsity, an
approach allowing for arbitrary sparsity patterns.
This formulation, however, does require instan-
tiating a full dense attention matrix prior to spar-
sification through variants of Lg-sparsity or
sparsemax approximations (Blondel et al., 2019).

The present work builds upon these two lines
of research and proposes to retain the modeling
flexibility of content-based sparse attention while
leveraging the efficiency of natively sparse at-
tention matrices. Our formulation avoids sparse-
max variants and relies on clustering of attention
instead. Each attention module considers a
clustering of the space: The current time-step only
attends to context belonging to the same cluster.
In other words, the current time-step query is
routed to a limited number of context elements
through its cluster assignment. This strategy draws
inspiration from the application of spherical k-
means clustering to the Maximum Inner Product
Search (MIPS) problem.
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Our proposed model, Routing Transformer,
combines our efficient clustering-based sparse
attention with classical local attention to reach
excellent performance both for language and
image generation. These results are obtained with-
out the need to maintain attention matrices larger
than batch length which is the case with the seg-
ment level recurrence mechanism used in Dai et al.
(2019) and Sukhbaatar et al. (2019). We pres-
ent experimental results on language modeling
(enwik-8, Wikitext-103, and PG-19) and
unconditional image generation (CIFAR-10 and
ImageNet-64). Routing Transformer sets new
state-of-the-art, while having comparable or
fewer number of self-attention layers and heads,
on Wikitext-103 (15.8 vs 18.3 perplexity),
PG-19 (33.2 vs 33.6 perplexity), and on
ImageNet-64 (3.43 vs 3.44 bits/dim). We also
report competitive results on enwik-8 (0.99
vs 0.98 perplexity) and present ablations on
CIFAR-10.

2 Related Work

Attention with Temporal Sparsity: Research on
efficient attention neural models parallels the
advent of attention-based architectures. In the
context of speech recognition, Jaitly et al.
(2016) proposed the Neural Transducer, which
segments sequences in non-overlapping chunks
and attention is performed in each chunk inde-
pendently. Limiting attention to a fixed temporal
context around the current prediction has also
been explored in Chorowski et al. (2015), while
Chiu and Raffel (2018) dynamically segment the
sequence into variable sized-chunks.

Hierarchical attention strategies have also been
explored: The model first considers which part of
the inputs should be attended to before computing
full attention in a contiguous neighborhood of the
selected area (Gregor et al., 2015; Xu et al., 2015;
Luong et al., 2015). Later, hierarchical attention,
simplified by Liu et al. (2018), alternates coarse
layers (attending to the whole sequence at a lower
temporal resolution) with local layers (attending
to a neighborhood of the current prediction).

This alternating strategy is also employed by
Child et al. (2019), who introduce bounded and
strided attention, namely, attending to a fixed
context in the past at a sub-sampled temporal
resolution. This work formalizes such a strategy



using a sparse attention formalism, showing how
it relates to full attention with a specific sparsity
pattern in the attention matrix. It shows that
sparse attention is sufficient to get state-of-the-art
results in modeling long sequences over language
modeling, image generation and music generation.
Sukhbaatar et al. (2019) build upon this work and
show that it is possible to obtain further sparsity by
letting the model learn the length of the temporal
context for each attention module. This work also
makes use of the attention cache introduced in Dai
etal. (2019), a memory mechanism to train models
over temporal contexts which extend beyond the
length of the training batches.

Attention with Content-Based Sparsity: The
above work mainly relies on two efficient ideas:
attending to less elements by only considering
a fixed bounded local context in the past, and
attending to less elements by decreasing the
temporal resolution of context. These ideas do
not allow arbitrary sparsity patterns in attention
matrices. Content-based sparse attention has been
introduced to allow for richer patterns and more
expressive models. (Martins and Kreutzer (2017)
and Malaviya et al. (2018)) propose to compute
attention weights with variants of sparsemax.
Correia et al. (2019) generalize this approach
to every layer in a Transformer using entmax
which allows for more efficient inference. This
line of work allows for learning arbitrary sparsity
attention patterns from data, based on the content
of the current query and past context. However,
sparsity here cannot be leveraged to improve space
and time complexity because sparsemax/entmax
formulations require instantiating the full attention
matrix prior to sparsification. This is a drawback
compared with temporal sparsity approaches. Our
work is motivated by bridging this gap and allows
for arbitrary sparsity patterns while avoiding
having to instantiate non-zero entries of attention
matrices.

Contemporaneous to our work, Kitaev et al.
(2020) proposed to use Locality Sensitive Hashing
(LSH) using random hyperplanes to infer content
based sparsity patterns for attention: tokens that
fall into the same hash bucket, get to attend
to each other. While similar in spirit to our
approach, the approach of Kitaev et al. (2020)
keeps the randomly initialized hyperplanes fixed
throughout, while we use mini-batch spherical k-
means to learn the space-partitioning centroids.
The motivation in both approaches is to approx-

55

imate MIPS in the context of dot product
attention, for which both LSH and spherical k-
means have been used in literature. However,
typically spherical k-means is known to out-
perform LSH for MIPS (see, e.g., Auvolat et al.,
2015). This is borne out in the common task of
Imagenet—64 generation, where Reformer gets
around 3.65 bits/dim (Figure 3), while the Routing
Transformer gets 3.43 bits/dim (see Table 4 for a
comparison).

Sparse Computation beyond Attention:
Learning models with sparse representations/
activations for saving time and computation has
been addressed in the past in various contexts.
Previous work often refers to this goal as gating
for conditional computation. Gating techniques
relying on sampling and straight-through gradient
estimators are common (Bengio et al., 2013; Eigen
et al., 2013; Cho and Bengio, 2014). Conditional
computation can also be addressed with rein-
forcement learning (Denoyer and Gallinari, 2014;
Indurthi et al., 2019). Memory augmented neural
networks with sparse reads and writes have also
been proposed in Rae et al. (2016) as a way to scale
Neural Turing Machines (Graves et al., 2014). In
the domain of language modeling, a related work
is the sparsely gated Mixture-of-experts (MOE)
(Shazeer et al., 2017), where sparsity is induced
by experts and a trainable gating network controls
the routing strategy to each sub-network. Another
related work is Lample et al. (2019) who use
product quantization based key-value lookups to
replace the feed forward network in the Trans-
former. Our work differs from theirs in that we
make use of dynamic key-value pairs to infer spar-
sity patterns, while their key-value pairs are the
same across examples.

3 Self-Attentive Auto-regressive
Sequence Modeling

Auto-regressive sequence models decompose the
probability of a sequence x = (z1,...,2,) as

n

p(x) = po(a1) [ [ po(ila<).

=2

(D

In neural models, the conditional distribution
po(xi|x<;) is modeled by a neural network with
learned parameters 6 and these parameters are
typically learned to maximize the likelihood
of the training data. In particular, Transformer



architectures have shown to reach state-of-
the-art accuracy in several domains, including
language modeling (Vaswani et al., 2017; Radford
et al.,, 2018), image generation (Parmar et al.,
2018), and music generation (Huang et al.,
2018). Transformer models compose a series of
attention modules. Each module refines the input
representation by taking a weighted average of the
representations from the previous modules.

For every module, the input representation
is a sequence of n vectors x = (1,...,Zp)
from a continuous space of dimension d. Thus
one may actually treat the input sequence as a
n X d matrix X. A self-attention layer operates
on this representation. It first applies three linear
projections,

Q=XWq, K=XWg, V=XWy, (2
where (), K, and V are referred to as keys, queries,
and values, while Wg, W, and Wy, are learned
projection matrices.

The key and the query matrices determine the
n X n attention matrix A = softmax (QK T),
where the softmax operator over matrices denotes
that the softmax function has been applied to
each row. In the case of self-attention for auto-
regressive models, queries attend only over keys
from previous time-steps, that is,

A = softmax (Itr(QK ")), 3)

where ltr denotes the lower triangular operator.
The attention matrix A may be interpreted as
a matrix of weights in [0, 1] where A;; denotes
how much query position ¢ at the next layer must
pay attention to key position j at the previous
layer. Given the attention matrix A, the next layer
representation X' is then computed simply as AV'.
In summary,

Xi=> Ay 4)

j<t

In practice, Transformer (Vaswani et al., 2017)
adds several extensions to this basic self-attention
mechanism. In particular, the result X' of
performing self-attention is scaled by 1/+/d.
Moreover, each layer relies on multiple attention
heads, that is, each layer performs multiple
projections onto triplet (queries, keys, values) and
attention is performed for each head. The attention
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results from all heads are then concatenated.
This strategy allows each head to specialize on
different aspects of the input sequence. In addi-
tion, Transformer further processes the result
of attention through a learnable nonlinear trans-
formation (multilayer perceptron, mlp) followed
by a residual connection and a normalization step,
namely,

X' =layernorm(X’ + X)
X" = layernorm(mlp(X’) + X),

&)
(6)

where layernorm denotes the parameterized
normalization step from Ba et al. (2016). A full
Transformer model is therefore a chain of attention
modules (Eq. 6) preceded by an embedding
module (learnable representation for symbols and
their positions) and followed by a logistic classi-
fication module (learnable linear classifier to
predict the next symbol).

Our work is interested in the application of
the Transformer to long sequences, a challenging
problem since space and time complexity of
attention is quadratic in sequence length n. We
describe various approaches to sparse attention
including ours in the next section.

4 Efficient Content-Dependent
Sparse Attention

Attention-based models can be problematic for
long sequences. For a sequence of length n, the
full attention matrix A, as introduced in Section 3,
is n X n-dimensional and can be prohibitive
to instantiate. This motivates sparse attention
models, that is, models relying on attention
matrices which have a majority of zero entries.

For each query, a sparse attention model defines
a set of keys that can be attended to. In the
following, we introduce the set .S; as the set of key
positions that the query at position ¢ can attend to,
namely,

X =Y AV (7)

JESi

The set of all such key positions defines a
sparsity pattern S = {S; | 1 < ¢ < n}
for the entire sequence. For example, classical
causal self attention can attend to every key
prior to the current query, which translates to



S; ={j | j < i} for every i. Most previous work
on attention sparsity defined such sets purely based
on positions, independently of actual query and
key vectors. For example, local attention (Luong
et al., 2015) considers attending only to a k-
long time window prior to the current query,
Si={j|i—k <j<i}forevery i. The work of
Child et al. (2019) proposes block sparse attention
where half the heads perform local attention, and
half the heads perform strided attention given by
Si={j|i—j (mod k) =0,j < i} for every i.
The approach of Sukhbaatar et al. (2019) is also
a variant of local attention where the cardinality
of | S;| is learned from data with an L; penalty to
trade-off sparsity with modeling accuracy.

These local attention sparsity variants are ef-
fective in practice since correlation between ob-
servations naturally decrease with time for many
problems. In our experiments, we actually find that
local attention is a surprisingly strong baseline in
both image generation and language modeling: for
example, a scaled up ImageTransformer (Parmar
et al., 2018) gets 3.48 bits/dim compared to the
3.44 bits/dim reported in Child et al. (2019).
Similarly, scaled up versions of Transformer with
local attention and the relative positional encoding
scheme of Shaw et al. (2018) are able to get 19.8
perplexity on Wikitext-103, 1.10 bits per
byte on enwik-8, and 39.3 on PG-19, while
Transformer-XL (Dai et al.,, 2019) gets 18.3,
0.99, and 36.3 respectively. From an efficiency
perspective, local attention is also interesting
because sparsity patterns are regular, contiguous
in memory, and known in advance.

In this work, however, we are interested in a
more generic formulation of attention sparsity and
would like the sparsity pattern to be informed by
the data, namely, S = f(x). This approach has
several modeling advantages: It can accommodate
data without a clear ordering over observations.
For temporal data, it can also discover patterns
with greater sparsity if some types of queries have
a longer lasting effect on future observations than
others. Content-based sparse attention should,
however, be carefully implemented if we need
to avoid instantiating full attention matrices at any
point in time. For instance, Correia et al. (2019)
infer sparsity from data but their formulation
instantiates a full attention matrix before finding
its sparse counterpart. The next section explains
how a natively sparse approach can actually be
devised inspired by the MIPS problem.
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4.1 Routing Attention with Clustering

Our strategy follows the motivation we delineated
in the previous section: We model sparse attention
matrices with a low rank sparsity patterns relying
on k-means clustering. Our strategy first assigns
queries and keys to clusters. Then only queries
and keys from the same cluster are considered for
attention.

Precisely, our model clusters both keys K and
queries () using mini-batch k-means clustering on
the same set of centroid vectors p = (g, -,
ux) € RF*4, These centroid parameters are model
parameters and are shared across sequences. They
are learned online along with the rest of the
parameters, as delineated in Bottou and Bengio
(1995). Once cluster membership for queries and
keys are determined, we denote by 1(Q;) € p
the nearest centroid to (); and by p(K;) € p the
nearest centroid to K. This allows us to define
our sparse attention strategy as

> AV
G (@),
1<

X

®)

In summary, queries are routed to keys belonging
to the same cluster. To see the connection with
MIPS, we recall the setting of the MIPS problem
adapted to the case of dot-product attention. In this
problem we are given a large collection of vectors
K ={Ki,---,K,} of sizenin R? and for a given
query Q; € R?, we are interested in searching for
akey K; € K which (approximately) maximizes
Qj K j-

K = argmax Q; x. 9)
The MIPS problem is useful in the dot product
attention setting because the importance of a
particular key K, to a query (; is directly
proportional to its dot product Q] K j- Thus given
a budget of items that a query @Q; can attend to, the
optimal choice of keys K; are the ones given by
the MIPS objective in Equation 9. The motivation
for using k-means clustering, is the observation
that the MIPS problem is equivalent to the Nearest
Neighbor Search problem when the norm of every
element K; € K is constant.

Therefore, we work with queries and keys which
are unit vectors, projecting them onto the unit ball,
immediately before computing them. In practice,
instead of normalizing by the ¢, norm, we use
Layer Normalization (Ba et al., 2016) with the



scale and bias terms disabled. This has the benefit
of projecting vectors in RY to the d-ball and
prevents its entries from becoming too small.
These layer normalized keys and queries are also
used subsequently for computing the dot product
attention. Note that performing k-means algorithm
on unit vectors is equivalent to the spherical
k-means algorithm. Projecting queries and keys
to the unit ball implies that:

1Qi — K| (10)
= Qi+ IK;I* - 2Q/ K; (1)
=2-2(Q/K;). (12)

Thus if ); and K belong to the same cluster
center (i.e., u(Q;) = wp(K;) = p), then it
follows that there is some € > 0, such that
Qi — ol [|Kj — p|| < e. This implies via
triangle inequality that:

1Qi — K|l < 1|Qi — pull + (1K — pul| < 2e.
(13)

Thus, from Equation 12 it follows that, Q] K; >
1 — 2¢2. Therefore, when two time steps i > j
are assigned the same cluster due to a small
|Qi — pll , || K; — p]| distance, it also means that
their attention weight @, K is high, namely, K
is an approximate solution to the MIPS objective
of Equation 9 for query ();. This analysis shows
that our clustering routing strategy preserves large
attention weights as non-zero entries.

Because we route attention via spherical
k-means clustering, we dub our model Routing
Transformer. We give a detailed pseudo-code
implementation for the routing attention compu-
tation in Algorithm 1. A visualization of the at-
tention scheme and its comparison to local and
strided attention is given in Figure 1. The com-
putational complexity of this variant of sparse
attention is O (nkd +n?d/k). Cluster assignments
correspond to the first term, that is, it compares
n routing vectors to all k£ centroids in a space of
size d. Query/key dot products corresponds to the
second term, that is, assuming balanced clusters,
each of the n queries is compared to n/k in
its cluster through a dot product of dimension d.
Therefore the optimal choice of & is y/n as in Child
et al. (2019), thereby reducing overall memory
and computational cost to O (n'’d) instead of
O(n%d) (Vaswani et al., 2017).

In practice, we apply mini-batch k-means to
train the cluster centroids. However, in order to

Algorithm 1 Routing Attention

1: Queries, Keys and Values: Q, K,V € R"*¢
2: Centroid: p € R¥*?
3: decay: A
4: if left to right mask then
5: K+ Q
6: > Normalize to unit ball
7: @ < LayerNorm(Q) b scale, bias disabled
8: K <« LayerNorm(K) b scale, bias disabled
9: Qprod < nQ’ >k Xn
10: if not left to right mask then
11: Kprod < pK" >kxn
122 w<+n/k > attention window
13: Qide tOp-k(med, w) >k Xw
14: Qidy < sort(Qq.) > sort to preserve order
15: Kige < Qida >k X w
16: if not left to right mask then
17: Kigy < top-k(Kprod, w) >k Xw
18: Kigy < sort(K;q,) D> sortto preserve

order

19: Q' « gather(Q, Qidx) >k X wxd
20: K' « gather(K, K;q,) DkXwxd
21: V' « gather(V, K;4.) >kxwxd

2: A+ Q'(K"T >k XwXw
23: if left to right mask then
24 A <+ ltr(A)

25: A « softmax(A). >k XwXw
26: V'« einsum(kww, kwd — kwd, A, V")

27: X <+ scatter(Kyqy, V')

28: Qm < one-hot(arg max(Qprod))
29: K, < one-hot(arg max(Kproq))
30: > Update centroids

31 g A (1= \)OmQ/2+ (1= N KK /2
32: return X

>k Xn
>k Xn

infer balanced routing patterns, we define the
sets S; to be of equal size roughly n/k ~ /n,
that is, for every centroid p; we sort tokens
by distance to u; and cluster membership is
determined by this threshold (top-k). This adds an
additional O(nlogn) term to the cost, however
note that this is eclipsed by the dominating term of
O(n'd). This strategy is simple and efficient. In
particular, it guarantees that all clusters have the
same size, which is extremely important in terms
of computational efficiency on parallel hardware
like graphic cards. As a downside, this assignment
does not guarantee that each point belongs to a
single cluster. In the future, we want to investigate
using balanced variants of k-means (Banerjee and



(a) Local attention

(b) Strided attention

(c) Routing attention

Figure 1: Figures showing 2-D attention schemes for the Routing Transformer compared to local attention and
strided attention of (Child et al., 2019). The rows represent the outputs while the columns represent the inputs. For
local and strided attention, the colored squares represent the elements every output row attends to. For attention
routed as in Section 4.1, the different colors represent cluster memberships for the output token.

Ghosh, 2004; Malinen and Frinti, 2014) which is
not common in an online setting.

During training, we update each cluster centroid
1 by an exponentially moving average of all the
keys and queries assigned to it:

(1=X) (1-2X)
2 Z Qi+ 5
p(Qi)=p

A+

> K

J(Kj)=p

where ) is a decay parameter that we usually set
to 0.999. Additionally, we also exclude padding
tokens from affecting the centroids.

There is an additional nuance regarding
clustering queries and keys that comes into
play when using causal attention (i.e., left
to right masking), as is usually the case in
language models. When grouping queries and
keys belonging to a certain cluster centroid g,
we may get as members queries (); for keys
K; where time-step i« < j. This therefore re-
quires an additional masking strategy in addition
to the lower triangular mask used for causal at-
tention. One solution that avoids having to use
an additional mask, is to simply share keys and
queries. Empirically, we have found that this
works at par or better than separate keys and que-
ries together with an additional masking strategy
in the causal attention setting. For encoder self
attention and encoder-decoder cross-attention, ad-
ditional masking or sharing queries and keys is
not necessary.

S Experiments

We evaluate our sparse attention model on
various generative modeling tasks including text
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and image generation. The following sections
report our results on CIFAR-10, Wikitext—
103 (Merity et al., 2017), enwik-8 (Mahoney,
2011), ImageNet-64, as well as PG-19 (Rae
et al., 2020). We find that a scaled up version
of local attention is a surprisingly strong baseline
and that our Routing Transformer outperforms
Transformer-XL (Dai et al., 2019) and the Sparse
Transformer model of Child et al. (2019) on all
tasks. On the recently released PG—19 data-set, we
find that local attention again is a strong baseline,
with a slightly worse performance compared to
Transformer-XL (Dai et al.,, 2019). We also
find that the Routing Transformer model out-
performs both Transformer-XL (Dai et al., 2019)
and Compressive Transformer (Rae et al., 2020),
setting a new state-of-the-art result.

In all our models except the one used for
PG-19, we allocate half the heads to do local
attention and the other half to route attention as
in Equation 8. For all our experiments except
for PG-19, we use the Adam optimizer (Kingma
and Ba, 2015) with learning rate 2 x 10~* with
B1 = 0.9 and Sy = 0.98 following the learning
rate schedule described in Vaswani et al. (2017).
We train all models on 128 TPUv3 cores. The
setup used for PG-19 is described in Section 5.5.

5.1 CIFAR-10

CIFAR-10 is a widely used image data-set
that consists of 60,000 colored images of size
32 x 32. Since the sequence lengths in this case
are relatively short (3072), we use this as a toy
data-set to perform various ablations to tease
apart the effect of various hyperparameter choices



Model Routing heads Routing Layers Attention window Bits/dim  Steps/sec
Transformer 0 0 3072 2.983 5.608
Local Transformer 0 0 512 3.009 9.023
Random Transformer 4 (random) 8 (random) 512 3.076 5.448
Routing Transformer 2 2 512 3.005 7.968
Routing Transformer 4 2 512 2.986 7.409
Routing Transformer 8 2 512 2.992 6.682
Routing Transformer 2 4 512 2.995 7.379
Routing Transformer 4 4 512 2.975 6.492
Routing Transformer 8 4 512 2.991 5.385
Routing Transformer 2 8 512 2.995 6.442
Routing Transformer 4 8 512 2971 5.140
Routing Transformer 8 8 512 3.190 3.897
Routing Transformer 2 12 512 2.978 5.685
Routing Transformer 4 12 512 2.994 4.349
Routing Transformer 8 12 512 3.400 3.062
Routing Transformer 2 2 1024 2.975 7.344
Routing Transformer 4 2 1024 2.950 6.440
Routing Transformer 8 2 1024 2.982 5.192
Routing Transformer 2 4 1024 2.990 6.389
Routing Transformer 4 4 1024 2.958 5.112
Routing Transformer 8 4 1024 3.003 3.674
Routing Transformer 2 8 1024 2.991 5.057
Routing Transformer 4 8 1024 2.983 3.597
Routing Transformer 8 8 1024 3.131 2.329
Routing Transformer 2 12 1024 2.973 4.151
Routing Transformer 4 12 1024 3.005 2.788
Routing Transformer 8 12 1024 3.291 1.711

Table 1: Ablation studies of the Routing Transformer model on the CIFAR-10 data-set. All the models
have a total of 12 attention layers and 8 heads. Routing layers when present are always added at the
top of the model. A Routing Transformer model with less than 12 routing attention layers and less than
8 routing heads, has the remaining layers and heads of type local attention. A Random Transformer
model has a random attention head in place of the routing attention head. We report the performance in
bits/dim on the test set and step times are reported on a TPUV3.

on the model performance. We train 12 layer
models with a total of 8 attention heads, and
report a comparison of the effect of various hyper-
parameter choices on the performance and speed
on this data-set. In particular, the following hyper-
parameters are varied 1) the number of routing
attention heads, 2) the number of routing attention
layers, and 3) the size of the attention window.
For routing attention we use k = 6 while varying
the attention window, to see the effect on speed
and performance. All the CIFAR-10 models are
trained with a batch size of 32 and for a total of
200,000 steps. In addition, we also compare the
Routing Transformer to a Random Transformer,
where K4, is randomly chosen rather than being
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drawn from nearest neighbor search. For a fair
comparison, we take the best model from Table 1,
with an attention window of 512 and replace all
routing heads with random heads. We present the
ablation results in Table 1 and discuss it in more
detail in Section 6.

5.2 Wikitext-103

Wikitext—-103 (Merity et al., 2017) is a large
public benchmark data-set for testing long term
dependencies in word-level language models. It
contains over 100 million tokens from 28K articles
extracted from Wikipedia with an average of 3.6K
tokens per article, which makes it a reference data-
set to model long-term textual dependencies. We



train a 10 layer Routing Transformer with 16 heads
using the relative position encoding of Shaw et al.
(2018) and with attention and ReLLU dropout rate
of 0.3 each. For routing attention as in Section 4.1
we choose k = 16 and attention window to be 256
during both training and evaluation. We describe
our results in Table 2 and compare it to other
recent work on sparse or recurrent attention such
as Adaptive Inputs (Baevski and Auli, 2019) and
TransformerXL (Dai et al., 2019) as well as a local
attention with relative position encoding baseline
(Huang et al., 2018). We find that local attention
is a great inductive bias for sparse attention and
is better than the adaptive methods proposed in
Baevski and Auli (2019); Sukhbaatar et al. (2019).
Moreover, our Routing Transformer model is able
to get a test perplexity of 15.8 improving on
the 18.3 obtained by TransformerXL (Dai et al.,
2019) while having fewer self-attention layers, and
without the need for segment level recurrence.

5.3 enwik-8

The enwik—-8 (Mahoney, 2011) is a data-set to
benchmark text compression algorithms in the
context of the Hutter prize. This data-set consists
of the first 100M bytes of unprocessed Wikipedia.
It is typically used to evaluate character-level
language models. Similar to the prior work of
Dai et al. (2019) and Child et al. (2019) we use a
sequence length n = 8192 and benchmark our
results against various baselines including local
attention. We train a 24 layer model with 8
attention heads with an attention and ReLU
dropout rate of 0.4 each and using the relative
position encoding of Shaw et al. (2018). For
routing attention as in Section 4.1 we set k = 32
and attention window 256. We report perplexity of
0.99 like TransformerXL and Sparse Transformer,
slightly under 0.98 from Adaptive Transformer.

5.4 ImageNet 64x64

In order to evaluate the ability of our model to
capture long term dependencies on a modality
other than text, we report results on the
ImageNet 64 x 64 data-set as used in Child et al.
(2019). For auto-regressive image generation, this
data-set consists of images of 64 x 64 x 3 bytes
represented as long sequences of length 12,288
presented in raster scan, red-green-blue order. We
train a 24 layer model with 16 attention heads, with
half the heads performing local attention, and the
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other half routing attention as in Section 3. For
routing attention we set k£ = 8, attention window
2048, batch size 1, and train our model for roughly
70 epochs as in Child et al. (2019). We compare
our model to a scaled-up ImageTransformer model
with local attention (Parmar et al., 2018) and the
SparseTransformer model of Child et al. (2019).

We find that local attention (Parmar et al.,
2018) is a strong baseline for image generation,
obtaining 3.48 bits/dim when scaled up to 24
layers and 16 heads, compared to later work like
Sub-scale Pixel Networks (SPN) (Menick and
Kalchbrenner, 2018). Our Routing Transformer
model achieves a performance of 3.425 bits/dim
(see Table 4) compared to the previous state-
of-the-art of 3.437 bits/dim (Child et al., 2019),
thereby showing the advantage of the content
based sparsity formulation of Section 4.1.

55 PG-19

PG-19 is a new data-set released by Rae et al.
(2020) which is larger and longer than previous
language modeling data-sets. The data-set is
created from approximately 28,000 Project
Gutenberg books published before 1919, con-
sisting of 1.9 billion tokens and comprises an
average context size of roughly 69,000 words.
This is text that is 10x longer in context than
all prior data-sets such as Wikitext-103, with
minimal pre-processing and an open vocabulary
that makes it extremely challenging for long text
modeling tasks. We use a subword vocabulary of
size approximately 98,000 and report perplexities
normalized by the token counts reported in Rae
et al. (2020). On this data-set we train a 22 layer
Routing Transformer model with 8 heads with a
sequence length of 8192 and set a new state-of-
the-art result on this data-set, improving on both
Compressive Transformers (Rae et al., 2020), as
well as Transformer-XL (Dai et al., 2019). For
this data-set we change our training setup in three
ways. Firstly, we use only 2 routing heads instead
of sharing it equally with local heads. Secondly,
we use routing heads only in the last two layers
of the model instead of having them present in
every layer. This is motivated by our empirical
finding that long range attention is only needed
in the last few layers - see also Rae and Razavi
(2020). Finally, we use the Adafactor optimizer
(Shazeer and Stern, 2018) which is more memory
efficient than Adam in training larger models.
We use a learning rate constant of 0.01 with a



Model Layers Heads Perplexity
LSTMs (Grave et al., 2017) — — 40.8
QRNNSs (Merity et al., 2018) — — 33.0
Adaptive Transformer (Sukhbaatar et al., 2019) 36 8 20.6
Local Transformer 16 16 19.8
Adaptive Input (Baevski and Auli, 2019) 16 16 18.7
TransformerXL (Dai et al., 2019) 18 16 18.3
Routing Transformer 10 16 15.8

Table 2: Results on language modeling on Wikitext-103 data-set. Local
Transformer refers to Transformer (Vaswani et al., 2017) with relative position
encoding (Shaw et al., 2018) together with local attention. Perplexity is reported

on the test set.

Model Layers Heads Bits per byte
T64 (Al-Rfou et al., 2019) 64 2 1.13
Local Transformer 24 8 1.10
TransformerXL (Dai et al., 2019) 24 8 0.99
Sparse Transformer (Child et al., 2019) 30 8 0.99
Adaptive Transformer (Sukhbaatar et al., 2019) 24 8 0.98
Routing Transformer 12 8 0.99

Table 3: Results on language modeling on enwik-8 data-set. Local Transformer refers to
Transformer (Vaswani et al., 2017) with relative position encoding (Shaw et al., 2018) together
with local attention. Bits per byte (bpc) is reported on the test set.

Model Layers Heads Bits/dim
Glow (Kingma and Dhariwal, 2018) — — 3.81
PixelCNN (Van den Oord et al., 2016) — — 3.57
PixeISNAIL (Chen et al., 2018) — — 3.52
SPN (Menick and Kalchbrenner, 2018) — - 3.52
ImageTransformer (Parmar et al., 2018) 24 16 3.48
Sparse Transformer (Child et al., 2019) 48 16 3.44
Reformer (Kitaev et al., 2020) — — 3.65
Routing Transformer 24 16 343

Table 4: Results on image generation on ImageNet— 64 in bits/dim.

linear warmup over 10,000 steps followed by a
rsqrt_-normalized_decay. We do not make use
of any dropout, or weight decay. The hidden
dimension of our model is 1032 and the batch size
is 8192 tokens.

From Table 5, we see that Local Transformer
again sets a very strong baseline, with a 24-layer
local attention model obtaining a test set perplexity
of 39.3, while a 36-layer Transformer-XL gets
36.3. Moreover, a 22-layer Routing Transformer
model improves on the 36-layer Compressive
Transformer, obtaining a test set perplexity of
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33.2 compared to 33.6, while being able to gen-
erate sequences of length 8192.

6 Analysis

6.1 Local vs Global

As reported in Section 5, a scaled up version of
local attention is a strong baseline for efficient
attention over long sequences. From Table 1 we
see that local attention is slightly worse than full
attention - 3.009 vs 2.983 bits per dim. Adding 2



Model Layers Heads Perplexity
Local Transformer 24 8 39.3
TransformerXL (Dai et al., 2019) 36 - 36.3
Compressive Transformer (Rae et al., 2020) 36 — 33.6
Routing Transformer 22 8 33.2

Table 5: Results on language modeling on PG-19 data-set. Local Transformer refers to
Transformer (Vaswani et al., 2017) with relative position encoding (Shaw et al., 2018)
together with local attention. Perplexity is normalized by the number of tokens reported
in (Rae et al., 2020) and is reported on the test set.

JSD(local||local) JSD(local||routing) JSD(routing||routing)

layer O 0.0038 + 0.0018
layer 1 0.3071 + 0.1217
layer 2 0.2164 £+ 0.0803
layer 3 0.1163 + 0.0336
layer 4 0.1840 £ 0.0562
layer 5 0.2284 4+ 0.0225
layer 6 0.1901 £ 0.0525
layer 7 0.1566 £ 0.0685
layer 8 0.1638 + 0.0739
layer 9 0.2095 + 0.0560

0.4706 £ 0.0319
0.6674 + 0.0153
0.5896 + 0.0249
0.6047 £ 0.0181
0.6266 + 0.0062
0.6463 £ 0.0155
0.6471 + 0.0040
0.5798 £ 0.0235
0.5993 + 0.0148
0.6127 £ 0.0053

0.1579 £ 0.0576
0.5820 + 0.0104
0.4015 £ 0.0121
0.4144 4+ 0.0264
0.4191 £ 0.0879
0.4687 + 0.0449
0.5175 4 0.0469
0.4350 £ 0.0139
0.4268 + 0.0291
0.3581 £ 0.0019

Table 6: Jensen-Shannon divergence between the attention distributions of a random local
attention head and a random head that routes attention as in Section 4.1 per layer on the
Wikitext-103 data-set. We report means and standard deviations computed over 10 runs
and use the natural logarithm so that divergences are upper-bounded by 0.6931.

routing layers with 4 heads almost closes the gap
with the performance of full attention, achieving
2.986 bits per dim. Adding more routing layers
and heads improves performance up to a point,
with the best performing model with an attention
window of 512 having 4 routing layers and 4
routing heads, and achieving 2.975 bits per dim.
Increasing the attention window from 512 to 1024
uniformly results in improvement in every setting.
The best model on CIFAR-10 has an attention
window of 1024 with 4 routing layers and 4 routing
heads. Interestingly, the best Routing Transformer
models perform better than full attention, but not
by a large enough amount to rule out noise. More
importantly, Table 1 shows the importance of
local attention in building intermediate represen-
tations, with a model with only routing attention
layers and heads with attention windows of 512
and 1024 achieving 3.400 and 3.291 bits per dim
respectively.

Thus Table 1 shows us the importance of local
representations, as well as the benefit of adding
a few routing layers and heads to enforce a more
global representation. Because attention weights
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are a probability distribution on the entire set of
tokens, we evaluate the difference in attention
patterns between local and routing attention by
computing the Jensen-Shannon divergence bet-
ween the two kinds of attention distributions for a
random subset of heads in our network on the
Wikitext—-103 data-set. The divergence is
computed over the entire sequence length of 4096.
We average over 10 runs and report means and
standard deviations of the JSD in Table 6. Note
that the JSD is always non-negative and is upper-
bounded by 0.6931 when computed using the
natural logarithm. We observe that the divergence
between the different local heads is always very
low compared to the divergence between local
and routing attention heads, which is almost
always very close to the upper-bound of 0.6931.
Divergence between different routing attention
heads falls somewhere in between, being closer
to the upper-bound. This shows that the attention
distribution inferred by the routing attention of
Section 4.1 is highly non-local in nature and
different heads specialize in attending to very
different parts of the input.



Model Dataset Seq. length Layers Heads Attention window Steps/sec
Local Transformer PG-19 8192 24 8 512 1.231
Routing Transformer PG-19 8192 22 8 512 0.7236

Table 7: Step time comparison between Local Transformer and Routing Transformer on a TPUv3

for the PG-19 data-set.

Qualitatively, from the ablations in Table 1,
we hypothesize that the reason for the strong
performance of the Routing Transformer is due
to the fact that it combines building local
representations over several layers, together with
enforcing global consistency for every token.
This is achieved via an approximate MIPS over
the entire set of tokens (see Section 4.1), and
selecting pairs that have a high dot product for
attention. This allows various entities such as
gender, nouns, dates and names of places to be
consistent throughout the entire sequence, since
on expectation the dot product similarity between
similar entities are high, while for differing enti-
ties they are expected to be low. Essentially, we
conjecture that for every time step, the prediction
depends on a small support of high value tokens:
Local attention facilitates local consistency and
fluency, while a full dot product attention would
facilitate global consistency. However, for long
sequences, since full attention is infeasible, we
believe that using spherical k-means to perform
a MIPS search over the global set of tokens
and performing attention between these high dot
product items is a good approximation to full
dot product attention. The importance of the
MIPS search to select high dot product items is
highlighted from the ablation in Table 1, where we
see that a Random Transformer performs worse
compared to a Local Transformer and a Routing
Transformer with the same configuration (3.076
vs 3.009 vs 2.971 bits/dim).

6.2 Recurrence vs Sparse Attention

We also note that sparse attention is an
orthogonal approach to that of Transformer-
XL and Compressive Transformer, which train
on small sequences and by performing careful
cross attention over cached previous chunks
hope to generalize to longer sequences. By
contrast, we directly train on long sequences from
the beginning—for example, the Compressive
Transformer trains on chunks of size 512 for
PG-19, while we train on sequences of length

64

8192. The benefit of the Transformer-XL like
approach is that it is less memory consuming
and thus is able to scale to 36 layers. Sparse
attention (including local attention) on the other
hand is more memory expensive since it trains
directly on long sequences and therefore can scale
to fewer layers for the same problem. However,
as we demonstrate, it is competitive with the
Transformer-XL like approaches even when using
fewer layers and is guaranteed to generalize to the
long sequence length that it was trained on.

6.3 Wall-Clock Time

We compare the step times for training the various
sparse attention models on the CIFAR-10 data-
set in Table 1 as well as on the PG—-19 data-set in
Table 7. For PG-19 we report only a comparison
between the Local Transformer and the Routing
Transformer, since sequence lengths are 8192 and
performing full attention is infeasible. All the
step time comparisons are made on a TPUv3,
with the same number of cores and batch sizes
to facilitate a fair comparison. As we see from
Table 1, local attention is much faster than
full attention, training at 9.023 steps per second
compared to 5.608 steps per second. The Routing
Transformer models on CIFAR-10 have step
times that depend on the number of routing heads,
with the best performing model with the same
attention budget as local attention (i.e., an attention
window of 512), which has 8 routing layers and 4
routing heads, training at 5.140 steps per second.
Other Routing Transformer models are faster
while still matching full attention, for example, 2
routing layers with 4 routing heads trains at 7.409
steps per second. Therefore, Local Transformer is
roughly between 1.22 — 1.76x faster than the best
performing Routing Transformers. On the other
hand Transformer is between 0.76 — 1.09x faster
than the best Routing Transformers.

On PG-19, we see from Table 7 that the Local
Transformer is roughly 1.7x faster compared to
the Routing Transformer, similar to the trend on
CIFAR-10. This trade-off with respect to speed



compared to the Local Transformer is due to the
lack of support for sparse operations on the TPU;
on the GPU various sparse kernels have been pro-
posed which promise to significantly speed up
training of these models (Gale et al., 2020). Note
that our goal in this work is a memory efficient
version of sparse attention that can well approx-
imate full attention for long sequences; wall-clock
time efficiency is only a secondary goal.

7 Conclusion

Transformer models constitute the state-of-the-
art in auto-regressive generative models for
sequential data. Their space-time complexity is,
however, quadratic in sequence length, due to their
attention modules. Our work proposes a sparse
attention model, the Routing Transformer. It
relies on content-based sparse attention motivated
by non-negative matrix factorization. Compared
with local attention models, it does not require
fixed attention patterns but enjoys similar space-
time complexity. In contrast with prior work on
content-based sparse attention, it does not require
computing a full attention matrix but still selects
sparsity patterns based on content similarity.

Our experiments over text and image generation
draw two main conclusions. First, we show that
a scaled up version of local attention establishes
a strong baseline on modern benchmark, even
compared to recent state-of-the-art models.
Second, we show that the Routing Transformer re-
defines the state-of-the-art in large long sequence
benchmarks of Wikitext-103, PG-19 and
ImageNet-64, while being very close to do so
on enwik—8 as well. Our analysis also shows that
routing attention modules offer complementary at-
tention patterns when compared to local attention.

Overall, our work contributes an -efficient
attention mechanism that applies to the modeling
of long sequences and redefines the state of the
art for auto-regressive generative modeling. Our
approach could prove useful in domains where
the inputs are naturally sparse, such as 3D point
clouds, social networks, or protein interactions.
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