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Abstract

Text classification is a widely studied problem
and has broad applications. In many real-world
problems, the number of texts for training
classification models is limited, which renders
these models prone to overfitting. To address
this problem, we propose SSL-Reg, a data-
dependent regularization approach based on
self-supervised learning (SSL). SSL (Devlin
et al., 2019a) is an unsupervised learning
approach that defines auxiliary tasks on input
data without using any human-provided labels
and learns data representations by solving
these auxiliary tasks. In SSL-Reg, a supervised
classification task and an unsupervised SSL
task are performed simultaneously. The SSL
task is unsupervised, which is defined purely
on input texts without using any human-
provided labels. Training a model using an
SSL task can prevent the model from being
overfitted to a limited number of class labels
in the classification task. Experiments on 17
text classification datasets demonstrate the
effectiveness of our proposed method. Code
is available at https://github.com
/UCSD-AI4H/SSReg.

1 Introduction

Text classification (Korde and Mahender, 2012;
Lai et al., 2015; Wang et al., 2017; Howard
and Ruder, 2018) is a widely studied problem
in natural language processing and finds broad
applications. For example, given clinical notes
of a patient, judge whether this patient has heart
diseases. Given a scientific paper, judge whether
it is about NLP. In many real-world text clas-
sification problems, texts available for training
are oftentimes limited. For instance, it is difficult
to obtain many clinical notes from hospitals due
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to concern of patient privacy. It is well known
that when training data is limited, models tend to
overfit to training data and perform less well on
test data.

To address overfitting problems in text classi-
fication, we propose a data-dependent regularizer
called SSL-Reg based on self-supervised learning
(SSL) (Devlin et al., 2019a; He et al., 2019; Chen
et al., 2020) and use it to regularize the training
of text classification models, where a supervised
classification task and an unsupervised SSL task
are performed simultaneously. SSL (Devlin et al.,
2019a; He et al., 2019; Chen et al., 2020) is
an unsupervised learning approach that defines
auxiliary tasks on input data without using any
human-provided labels and learns data repre-
sentations by solving these auxiliary tasks. For
example, BERT (Devlin et al., 2019a) is a typical
SSL approach where an auxiliary task is defined
to predict masked tokens and a text encoder is
learned by solving this task. In existing SSL
approaches for NLP, an SSL task and a target task
are performed sequentially. A text encoder is first
trained by solving an SSL task defined on a large
collection of unlabeled texts. Then this encoder is
used to initialize an encoder in a target task. The
encoder is finetuned by solving the target task.
A potential drawback of performing SSL task
and target task sequentially is that text encoder
learned in SSL task may be overridden after being
finetuned in target task. If training data in the
target task is small, the finetuned encoder has a
high risk of being overfitted to training data.

To address this problem, in SSL-Reg we per-
form SSL task and target tasks (which is classi-
fication) simultaneously. In SSL-Reg, an SSL
loss serves as a regularization term and is opti-
mized jointly with a classification loss. SSL-Reg
enforces a text encoder to jointly solve two tasks:
an unsupervised SSL task and a supervised text
classification task. Due to the presence of the SSL
task, models are less likely to be biased to the
classification task defined on small-sized training
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data. We perform experiments on 17 datasets,
where experimental results demonstrate the
effectiveness of SSL-Reg in alleviating overfitting
and improving generalization performance.

The major contributions of this paper are:

• We propose SSL-Reg, which is a data-
dependent regularizer based on SSL, to re-
duce the risk that a text encoder is biased to
a data-deficient classification task on small-
sized training data.

• Experiments on 17 datasets demonstrate the
effectiveness of our approaches.

The rest of this paper is organized as follows.
Section 2 reviews related works. Section 3 and 4
present methods and experiments. Section 5 con-
cludes the paper and discusses future work.

2 Related Works

2.1 Self-supervised Learning for NLP

SSL aims to learn meaningful representations of
input data without using human annotations. It
creates auxiliary tasks solely using input data and
forces deep networks to learn highly effective
latent features by solving these auxiliary tasks.
In NLP, various auxiliary tasks have been pro-
posed for SSL, such as next token prediction
in GPT (Radford et al.), masked token prediction
in BERT (Devlin et al., 2019a), text denoising in
BART (Lewis et al., 2019), contrastive learning
(Fang et al., 2020), and so on. These models have
achieved substantial success in learning language
representations. The GPT model (Radford et al.) is
a language model based on Transformer (Vaswani
et al., 2017). Different from Transformer, which
defines a conditional probability on an output
sequence given an input sequence, GPT defines a
marginal probability on a single sequence. In GPT,
conditional probability of the next token given a
historical sequence is defined using a Transformer
decoder. Weight parameters are learned by max-
imizing likelihood on token sequences. BERT
(Devlin et al., 2019a) aims to learn a Trans-
former encoder for representing texts. BERT’s
model architecture is a multi-layer bidirectional
Transformer encoder. In BERT, Transformer uses
bidirectional self-attention. To train the encoder,
BERT masks some percentage of input tokens at
random, and then predicts those masked tokens by
feeding hidden vectors (produced by the encoder)

corresponding to masked tokens into an output
softmax over word vocabulary. BERT-GPT (Wu
et al., 2019) is a model used for sequence-to-
sequence modeling where a pretrained BERT is
used to encode input text and GPT is used to gen-
erate output texts. In BERT-GPT, pretraining of
BERT encoder and GPT decoder is conducted sep-
arately, which may lead to inferior performance.
Auto-Regressive Transformers (BART) (Lewis
et al., 2019) has a similar architecture as BERT-
GPT, but trains BERT encoder and GPT decoder
jointly. To pretrain BART weights, input texts are
corrupted randomly, such as token masking, token
deletion, text infilling, and so forth, then a network
is learned to reconstruct original texts. ALBERT
(Lan et al., 2019) uses parameter-reduction meth-
ods to reduce memory consumption and increase
training speed of BERT. It also introduces a self-
supervised loss that models inter-sentence coher-
ence. RoBERTa (Liu et al., 2019a) is a replication
study of BERT pretraining. It shows that BERT’s
performance can be greatly improved by carefully
tuning training processes, such as (1) training
models longer, with larger batches, over more
data; (2) removing the next sentence prediction
objective; (3) training on longer sequences, and so
on. XLNet (Yang et al., 2019) learns bidirectional
contexts by maximizing expected likelihood over
all permutations of factorization order and uses a
generalized autoregressive pretraining mechanism
to overcome the pretrain-finetune discrepancy of
BERT. T5 (Raffel et al., 2019) compared pretrain-
ing objectives, architectures, unlabeled datasets,
transfer approaches on a wide range of language
understanding tasks and proposed a unified frame-
work that casts these tasks as a text-to-text task.
ERNIE 2.0 (Sun et al., 2019) proposed a continual
pretraining framework which builds and learns
incrementally pretraining tasks through constant
multi-task learning, to capture lexical, syntactic
and semantic information from training corpora.
Gururangan et al. (2020) proposed task adaptive
pretraining (TAPT) and domain adaptive pretrain-
ing (DAPT). Given a RoBERTa model pretrained
on large-scale corpora, TAPT continues to pre-
train RoBERTa on training dataset of target task.
DAPT continues to pretrain RoBERTa on datasets
that have small domain differences with data in
target tasks. The difference between our proposed
SSL-Reg method with TAPT and DAPT is that
SSL-Reg uses a self-supervised task (e.g., mask
token prediction) to regularize the finetuning of
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RoBERTa where text classification task and self-
supervised task are performed jointly. In contrast,
TAPT and DAPT use self-supervised task for
pretraining, where text classification task and self-
supervised task are performed sequentially. The
connection between our method and TAPT is that
they both leverage texts in target tasks to perform
self-supervised learning, in addition to SSL on
large-scale external corpora. Different from SSL-
Reg and TAPT, DAPT uses domain-similar texts
rather than target texts for additional SSL.

2.2 Self-supervised Learning in General

Self-supervised learning has been widely applied
to other application domains, such as image classi-
fication (He et al., 2019; Chen et al., 2020), graph
classification (Zeng and Xie, 2021), visual ques-
tion answering (He et al., 2020a), and so forth,
where various strategies have been proposed
to construct auxiliary tasks, based on temporal
correspondence (Li et al., 2019; Wang et al.,
2019a), cross-modal consistency (Wang et al.,
2019b), rotation prediction (Gidaris et al., 2018;
Sun et al., 2020), image inpainting (Pathak et al.,
2016), automatic colorization (Zhang et al., 2016),
context prediction (Nathan Mundhenk et al.,
2018), and so on. Some recent works studied
self-supervised representation learning based on
instance discrimination (Wu et al., 2018) with
contrastive learning. Oord et al. (2018) proposed
contrastive predictive coding, which predicts
the future in latent space by using powerful
autoregressive models, to extract useful repre-
sentations from high-dimensional data. Bachman
et al. (2019) proposed a self-supervised repre-
sentation learning approach based on maximizing
mutual information between features extracted
from multiple views of a shared context. MoCo
(He et al., 2019) and SimCLR (Chen et al., 2020)
learned image encoders by predicting whether two
augmented images were created from the same
original image. Srinivas et al. (2020) proposed to
learn contrastive unsupervised representations for
reinforcement learning. Khosla et al. (2020) inves-
tigated supervised contrastive learning, where
clusters of points belonging to the same class
were pulled together in embedding space, while
clusters of samples from different classes were
pushed apart. Klein and Nabi (2020) proposed
a contrastive self-supervised learning approach
for commonsense reasoning. He et al. (2020b);

Yang et al. (2020) proposed an Self-Trans ap-
proach which applied contrastive self-supervised
learning on top of networks pretrained by transfer
learning.

Compared with supervised learning that re-
quires each data example to be labeled by humans
or semi-supervised learning which requires part of
data examples to be labeled, self-supervised learn-
ing is similar to unsupervised learning because
it does not need human-provided labels. The key
difference between SSL and unsupervised learn-
ing is that SSL focuses on learning data repre-
sentations by solving auxiliary tasks defined on
un-labeled data while unsupervised learning is
more general and aims to discover latent struc-
tures from data, such as clustering, dimension re-
duction, manifold embedding (Roweis and Saul,
2000), and so on.

2.3 Text Classification

Text classification (Minaee et al., 2020) is one
of the key tasks in natural language processing
and has a wide range of applications, such as sen-
timent analysis, spam detection, tag suggestion,
and so forth. A number of approaches have been
proposed for text classification. Many of them are
based on RNNs. Liu et al. (2016) use multi-task
learning to train RNNs, utilizing the correlation
between tasks to improve text classification per-
formance. Tai et al. (2015) generalize sequential
LSTM to tree-structured LSTM to capture the syn-
tax of sentences for achieving better classification
performance. Compared with RNN-based mod-
els, CNN-based models are good at capturing lo-
cal and position-invariant patterns. Kalchbrenner
et al. (2014) proposed dynamic CNN, which uses
dynamic k-max-pooling to explicitly capture
short-term and long-range relations of words and
phrases. Zhang et al. (2015) proposed a character-
level CNN model for text classification, which
can deal with out-of-vocabulary words. Hybrid
methods combine RNN and CNN to explore the
advantages of both. Zhou et al. (2015) proposed a
convolutional LSTM network, which uses a CNN
to extract phrase-level representations, then feeds
them to an LSTM network to represent the whole
sentence.

3 Methods

To alleviate overfitting in text classification,
we propose SSL-Reg, which is a regularization
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Figure 1: Illustration of SSL-Reg. Input texts are fed
into a text encoder. Encodings of these texts and their
corresponding labels are fed into the head of a target
task (e.g., classification) which yields a classification
loss. In a self-supervised task, inputs are encodings of
texts and outputs are constructed on original texts (e.g.,
masked tokens). The classification task and SSL task
share the same text encoder and losses of these two
tasks are optimized jointly to learn the text encoder.

approach based on self-supervised learning (SSL),
where an unsupervised SSL task and a supervised
text classification task are performed jointly.

3.1 SSL-based Regularization

SSL-Reg uses a self-supervised learning task to
regularize a text classification model. Figure 1
presents an illustration of SSL-Reg. Given train-
ing texts, we encode them using a text encoder.
Then on top of text encodings, two tasks are
defined. One is a classification task, which takes
the encoding of a text as input and predicts the
class label of this text. Prediction is conducted
using a classification head. The other task is
SSL. The loss of the SSL task serves as a data-
dependent regularizer to alleviate overfitting. The
SSL task has a predictive head. These two tasks
share the same text encoder. Formally, SSL-Reg
solves the following optimization problem:

L(c)(D,L;W(e),W(c)) + λL(p)(D,W(e),W(p))
(1)

where D represents training texts and L represents
their labels. W(e), W(c), and W(p) denote text
encoder, classification head in classification task,
and prediction head in SSL task, respectively. L(c)

denotes classification loss and L(p) denotes SSL
loss. λ is a tradeoff parameter.

At the core of SSL-Reg is using SSL to learn a
text encoder that is robust to overfitting. Our meth-
ods can be used to learn any text encoder. In this

work, we perform the study using a Transformer
encoder, while noting that other text encoders are
also applicable.

3.2 Self-supervised Learning Tasks

In this work, we use two self-supervised learning
tasks—masked token prediction (MTP) and sen-
tence augmentation type prediction (SATP)—to
perform our studies while noting that other SSL
tasks are also applicable.

• Masked Token Prediction (MTP) This task
is used in BERT. Some percentage of input
tokens are masked at random. Texts with
masked tokens are fed into a text encoder
that learns a latent representation for each
token including the masked ones. The task
is to predict these masked tokens by feeding
hidden vectors (produced by the encoder)
corresponding to masked tokens into an
output softmax over word vocabulary.

• Sentence Augmentation Type Prediction
(SATP) Given an original text o, we apply
different types of augmentation methods to
create augmented texts from o. We train a
model to predict which type of augmenta-
tion was applied to an augmented text. We
consider four types of augmentation opera-
tions used in Wei and Zou (2019), including
synonym replacement, random insertion,
random swap, and random deletion. Syn-
onym replacement randomly chooses 10%
of non-stop tokens from original texts and
replaces each of them with a randomly
selected synonym. In random insertion, for
a randomly chosen non-stop token in a text,
among the synonyms of this token, one ran-
domly selected synonym is inserted into a
random position in the text. This operation is
performed for 10% of tokens. Synonyms for
synonym replacement and random insertion
are obtained from Synsets in NLTK (Bird and
Loper, 2004) which are constructed based
on WordNet (Miller, 1995). Synsets serve as
a synonym dictionary containing groupings
of synonymous words. Some words have
only one Synset and some have several. In
synonym replacement, if a selected word
in a sentence has multiple synonyms, we
randomly choose one of them, and replace
all occurrences of this word in the sentence
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Domain Dataset Label Type Train Dev Test Classes

BIOMED
CHEMPROT relation classification 4169 2427 3469 13
RCT abstract sent. roles 180040 30212 30135 5

CS
ACL-ARC citation intent 1688 114 139 6
SCIERC relation classification 3219 455 974 7

NEWS
HYPERPARTISAN partisanship 515 65 65 2
AGNEWS topic 115000 5000 7600 4

REVIEWS
HELPFULNESS review helpfulness 115251 5000 25000 2
IMDB review sentiment 20000 5000 25000 2

Table 1: Statistics of datasets used in (Gururangan et al., 2020). Sources: CHEMPROT (Kringelum et al.,
2016), RCT (Dernoncourt and Lee, 2017), ACL-ARC (Jurgens et al., 2018), SCIERC (Luan et al., 2018),
HYPERPARTISAN (Kiesel et al., 2019), AGNEWS (Zhang et al., 2015), HELPFULNESS (McAuley et al., 2015),
IMDB (Maas et al., 2011). This table is taken from (Gururangan et al., 2020).

CoLA RTE QNLI STS-B MRPC WNLI SST-2 MNLI QQP AX
(m/mm)

Train 8551 2490 104743 5749 3668 635 67349 392702 363871 –
Dev 1043 277 5463 1500 408 71 872 9815/9832 40432 –
Test 1063 3000 5463 1379 1725 146 1821 9796/9847 390965 1104

Table 2: GLUE dataset statistics.

with this synonym. Random swap randomly
chooses two tokens in a text and swaps their
positions. This operation is performed for
10% of token pairs. Random deletion ran-
domly removes a token with a probability of
0.1. In this SSL task, an augmented sentence
is fed into a text encoder and the encoding is
fed into a 4-way classification head to predict
which operation was applied to generate this
augmented sentence.

3.3 Text Encoder

We use a Transformer encoder to perform the
study while noting that other text encoders are
also applicable. Different from sequence-to-
sequence models (Sutskever et al., 2014) that are
based on recurrent neural networks (e.g., LSTM
[Hochreiter and Schmidhuber, 1997], GRU
[Chung et al., 2014]), which model a sequence
of tokens via a recurrent manner and hence are
computationally inefficient, Transformer eschews
recurrent computation and instead uses self-
attention which not only can capture dependency
between tokens but also is amenable for parallel
computation with high efficiency. Self-attention
calculates the correlation among every pair of

tokens and uses these correlation scores to create
‘‘attentive’’ representations by taking weighted
summation of tokens’ embeddings. Transformer
is composed of building blocks, each consisting
of a self-attention layer and a position-wise feed-
forward layer. Residual connection (He et al.,
2016) is applied around each of these two sub-
layers, followed by layer normalization (Ba et al.,
2016). Given an input sequence, an encoder—
which is a stack of such building blocks—is
applied to obtain a representation for each token.

4 Experiments

4.1 Datasets

We evaluated our method on the datasets
used in Gururangan et al. (2020), which are
from various domains. For each dataset, we
follow the train/development/test split specified
in Gururangan et al. (2020). Dataset statistics are
summarized in Table 1.

In addition, we performed experiments on the
datasets in the GLUE benchmark (Wang et al.,
2018). The General Language Understanding
Evaluation (GLUE) benchmark has 10 tasks,
including 2 single-sentence tasks, 3 similarity and
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paraphrase tasks, and 5 inference tasks. For each
GLUE task, labels in development sets are pub-
licly available and those in test sets are not
released. We obtain performance on test sets by
submitting inference results to GLUE evaluation
server.1 Table 2 shows the statistics of data split
in each task.

4.2 Experimental Setup
4.2.1 Baselines
For experiments on datasets used in Gururangan
et al. (2020), text encoders in all methods are
initialized using pretrained RoBERTa (Liu et al.,
2019a). For experiments on GLUE datasets, text
encoders are initialized using pretrained BERT
(Liu et al., 2019a) or pretrained RoBERTa.
We compare our proposed SSL-Reg with the
following baselines.

• Unregularized RoBERTa (Liu et al., 2019b).
In this approach, the Transformer encoder
is initialized with pretrained RoBERTa.
Then the pretrained encoder and a clas-
sification head form a text classification
model, which is then finetuned on a tar-
get classification task. Architecture of the
classification model is the same as that in
Liu et al. (2019b). Specifically, representa-
tion of the [CLS] special token is passed to a
feedforward layer for class prediction. Non-
linear activation function in the feedforward
layer is tanh. During finetuning, no SSL-
based regularization is used. This approach is
evaluated on all datasets used in Gururangan
et al. (2020) and all datasets in GLUE.

• Unregularized BERT. This approach is the
same as unregularized RoBERTa, except that
the Transformer encoder is initialized by pre-
trained BERT (Devlin et al., 2019a) instead
of RoBERTa. This approach is evaluated on
all GLUE datasets.

• Task adaptive pretraining (TAPT)
(Gururangan et al., 2020). In this approach,
given the Transformer encoder pretrained
using RoBERTa or BERT on large-scale
external corpora, it is further pretrained by
RoBERTa or BERT on input texts in a
target classification dataset (without using
class labels). Then this further pretrained
encoder is used to initialize the encoder in

1https://gluebenchmark.com/leaderboard.

the text classification model and is finetuned
to perform classification tasks which use
both input texts and their class labels. Sim-
ilar to SSL-Reg, TAPT also performs SSL
on texts in target classification dataset. The
difference is: TAPT performs SSL task and
classification task sequentially while SSL-
Reg performs these two tasks jointly. TAPT
is studied for all datasets in this paper.

• Domain adaptive pretraining (DAPT)
(Gururangan et al., 2020). In this approach,
given a pretrained encoder on large-scale
external corpora, the encoder is further pre-
trained on a small-scale corpora whose do-
main is similar to that of texts in a target
classification dataset. Then this further pre-
trained encoder is finetuned in a classification
task. DAPT is similar to TAPT, except that
TAPT performs the second stage pretrain-
ing on texts T in the classification dataset
while DAPT performs the second stage pre-
training on external texts whose domain is
similar to that of T rather than directly on T .
The external dataset is usually much larger
than T .

• TAPT+SSL-Reg. When finetuning the clas-
sification model, SSL-Reg is applied. The
rest is the same as TAPT.

• DAPT+SSL-Reg. When finetuning the clas-
sification model, SSL-Reg is applied. The
rest is the same as DAPT.

4.2.2 Hyperparameter Settings
Hyperparameters were tuned on development
datasets.

Hyperparameter settings for RoBERTa on
datasets used in Gururangan et al. (2020). For a
fair comparison, most of our hyperparameters are
the same as those in Gururangan et al. (2020). The
maximum text length was set to 512. Text encoders
in all methods are initialized using pretrained
RoBERTa (Liu et al., 2019a) on a large-scale
external dataset. For TAPT, DAPT, TAPT+SSL-
Reg, and DAPT+SSL-Reg, the second-stage
pretraining on texts T in a target classification
dataset or on external texts whose domain is simi-
lar to that of T is based on the pretraining approach
in RoBERTa. In SSL-Reg, the SSL task is masked
token prediction. SSL loss function only considers
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Epoch Learning Regularization
Task Rate Parameter

CoLA 10 3e-5 0.2
SST-2 3 3e-5 0.05
MRPC 5 4e-5 0.05
STS-B 10 4e-5 0.1
QQP 5 3e-5 0.2
MNLI 3 3e-5 0.1
QNLI 4 4e-5 0.5
RTE 10 3e-5 0.1
WNLI 5 5e-5 2

Table 3: Hyperparameter settings for BERT on
GLUE datasets, where the SSL task is MTP.

the prediction of masked tokens and ignores the
prediction of non-masked tokens. Probability for
masking tokens is 0.15. If a token t is chosen to be
masked, 80% of the time, we replace t with a spe-
cial token [MASK]; 10% of the time, we replace
t with a random word; and for the rest 10% of the
time, we keep t unchanged. For the regularization
parameter in SSL-Reg, we set it to 0.2 for ACL-
ARC, 0.1 for SCIERC, CHEMPROT, AGNEWS, RCT,
HELPFULNESS, IMDB, and 0.01 for HYPERPARTISAN.
For ACL-ARC, CHEMPROT, RCT, SCIERC, and
HYPERPARTISAN, we trained SSL-Reg for 10 epochs;
for HELPFULNESS, 5 epochs; for AGNEWS, RCT and
IMDB, 3 epochs. For all datasets, we used a batch
size of 16 with gradient accumulation. We used
the AdamW optimizer (Loshchilov and Hutter,
2017) with a warm-up proportion of 0.06, a weight
decay of 0.1, and an epsilon of 1e-6. In AdamW,
β1 and β2 are set to 0.9 and 0.98, respectively. The
maximum learning rate was 2e-5.

Hyperparameter settings for BERT on GLUE
datasets. The maximum text length was set to
128. Since external texts whose domains are sim-
ilar to those of the GLUE texts are not available,
we did not compare with DAPT and DAPT+SSL-
Reg. For each method applied, text encoder is
initialized using pretrained BERT (Devlin et al.,
2019a) (with 24 layers) on a large-scale external
dataset. In TAPT, the second-stage pretraining
is performed using BERT. As we will show
later on, TAPT does not perform well on GLUE
datasets; therefore, we did not apply TAPT+SSL-
Reg on these datasets further. In SSL-Reg, we
studied two SSL tasks: masked token prediction
(MTP) and sentence augmentation type predic-

Epoch Learning Regularization
Task Rate Parameter

CoLA 6 3e-5 0.4
SST-2 3 3e-5 0.8
MRPC 5 4e-5 0.05
STS-B 10 4e-5 0.05
QQP 5 3e-5 0.4
MNLI 4 3e-5 0.5
QNLI 4 4e-5 0.05
RTE 8 3e-5 0.6
WNLI 5 5e-5 0.1

Table 4: Hyperparameter settings for BERT on
GLUE datasets, where the SSL task is SATP.

Epoch Learning Regularization
Task Rate Parameter

CoLA 10 1e-5 0.8
SST-2 3 1e-5 1.0
MRPC 10 1e-5 0.01
STS-B 10 2e-5 0.01
QQP 10 1e-5 0.1
MNLI 3 1e-5 0.1
QNLI 3 1e-5 0.1
RTE 10 2e-5 0.1
WNLI 10 2e-5 0.02

Table 5: Hyperparameter settings for RoBERTa
on GLUE datasets, where the SSL task is MTP.

tion (SATP). In MTP, we randomly mask 15%
of tokens in each text. Batch size was set to 32
with gradient accumulation. We use the AdamW
optimizer (Loshchilov and Hutter, 2017) with
a warm-up proportion of 0.1, a weight decay of
0.01, and an epsilon of 1e-8. In AdamW, β1 and β2
are set to 0.9 and 0.999, respectively. Other hyper-
parameter settings are presented in Table 3 and
Table 4.

Hyperparameter settings for RoBERTa on
GLUE datasets. Most hyperparameter settings
follow those in RoBERTa experiments performed
on datasets used in Gururangan et al. (2020).

We set different learning rates and different
epoch numbers for different datasets as guided by
Liu et al. (2019b). In addition, we set different
regularization parameters for different datasets.
These hyperparameters are listed in Table 5.

647



Dataset RoBERTa DAPT TAPT SSL-Reg TAPT+SSL-Reg DAPT+SSL-Reg

CHEMPROT 81.91.0 84.20.2 82.60.4 83.10.5 83.50.1 84.40.3

RCT 87.20.1 87.60.1 87.70.1 87.40.1 87.70.1 87.70.1

ACL-ARC 63.05.8 75.42.5 67.41.8 69.34.9 68.12.0 75.71.4

SCIERC 77.31.9 80.81.5 79.31.5 81.40.8 80.40.6 82.30.8

HYPERPARTISAN 86.60.9 88.25.9 90.45.2 92.31.4 93.21.8 90.73.2
AGNEWS 93.90.2 93.90.2 94.50.1 94.20.1 94.40.1 94.00.1

HELPFULNESS 65.13.4 66.51.4 68.51.9 69.40.2 71.01.0 68.31.4
IMDB 95.00.2 95.40.1 95.50.1 95.70.1 96.10.1 95.40.1

Table 6: Results on datasets used in Gururangan et al. (2020). For vanilla (unregularized) RoBERTa,
DAPT, and TAPT, results are taken from Gururangan et al. (2020). For each method on each dataset, we
run it for four times with different random seeds. Results are in ms format, where m denotes mean and
s denotes standard derivation. Following Gururangan et al. (2020), for CHEMPROT and RCT, we report
micro-F1; for other datasets, we report macro-F1.

4.3 Results

4.3.1 Results on the Datasets used in
Gururangan et al. (2020)

Performance of text classification on datasets used
in Gururangan et al. (2020) is reported in Table 6.
Following Gururangan et al. (2020), for CHEMPROT

and RCT, we report micro-F1; for other datasets,
we report macro-F1. From this table, we make
the following observations. First, SSL-Reg out-
performs unregularized RoBERTa significantly
on all datasets. We used a double-sided t-test
to perform significance tests. The p-values are
less than 0.01, which indicate strong statistical
significance. This demonstrates the effectiveness
of our proposed SSL-Reg approach in allevi-
ating overfitting and improving generalization
performance. To further confirm this, we measure
the difference between F1 scores on the training
set and test set in Table 7. A larger difference
implies more overfitting: performing well on the
training set and less well on the test set. As can
be seen, the train-test difference under SSL-Reg
is smaller than that under RoBERTa. SSL-Reg
encourages text encoders to solve an additional
task based on SSL, which reduces the risk of
overfitting to the data-deficient classification task
on small-sized training data. In Figure 2, we
compare the training dynamics of unregularized
RoBERTa and SSL-Reg (denoted by ‘‘Regular-
ized"). As can be seen, under a large regularization
parameter λ = 1, our method achieves smaller

Dataset RoBERTa SSL-Reg

CHEMPROT 13.05 13.57
ACL-ARC 28.67 25.24
SCIERC 19.51 18.23
HYPERPARTISAN 7.44 5.64

Table 7: Difference between F1 score on training
set and F1 score on test set with or without SSL-
Reg (MTP). Bold denotes a smaller difference,
which means overfitting is less severe.

differences between training accuracy and valida-
tion accuracy than unregularized RoBERTa; our
method also achieves smaller differences between
training accuracy and test accuracy than unreg-
ularized RoBERTa. These results show that our
proposed SSL-Reg indeed acts as a regularizer
which reduces the gap between performances on
training set and validation/test set. Besides, when
increasing λ from 0.1 to 1, the training accuracy
of SSL-Reg decreases considerably. This also
indicates that SSL-Reg acts as a regularizer which
penalizes training performance.

Second, on 6 out of the 8 datasets, SSL-Reg
performs better than TAPT. On the other two
datasets, SSL-Reg is on par with TAPT. This
shows that SSL-Reg is more effective than TAPT.
SSL-Reg and TAPT both leverage input texts in
classification datasets for self-supervised learn-
ing. The difference is: TAPT uses these texts to
pretrain the encoder while SSL-Reg uses these
texts to regularize the encoder during finetuning.
In SSL-Reg, the encoder is learned to perform
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Figure 2: Training dynamics of unregularized RoBERTa and SSL-Reg (denoted by ‘‘Regularized’’) on
HYPERPARTISAN and ACL-ARC. In SSL-Reg, we experimented with two values of the regularization parameter λ:
0.1 and 1.

classification tasks and SSL tasks simultaneously.
Thus the encoder is not completely biased to
classification tasks. In TAPT, the encoder is first
learned by performing SSL tasks, then finetuned
by performing classification tasks. There is a risk
that after finetuning, the encoder is largely biased
to classification tasks on small-sized training data,
which leads to overfitting.

Third, on 5 out of the 8 datasets, SSL-Reg
performs better than DAPT, although DAPT
leverages additional external data. The reasons
are two-fold: 1) similar to TAPT, DAPT performs
SSL task first and then classification task sepa-
rately; as a result, the encoder may be eventually
biased to classification task on small-sized train-
ing data; 2) external data used in DAPT still has a
domain shift with target dataset; this domain shift
may render the text encoder pretrained on external
data not suitable for target task. To verify this, we
measure the domain similarity between external
texts and target texts by calculating cosine similar-
ity between the BERT embeddings of these texts.
The similarity score is 0.14. As a reference, the
similarity score between texts in the target data-
set is 0.27. This shows that there is indeed a do-
main difference between external texts and target
texts.

Fourth, on 6 out of 8 datasets, TAPT+SSL-Reg
performs better than TAPT. On the other two
datasets, TAPT+SSL-Reg is on par with TAPT.
This further demonstrates the effectiveness of
SSL-Reg.

Fifth, on all eight datasets, DAPT+SSL-Reg
performs better than DAPT. This again shows that
SSL-Reg is effective.

Figure 3: How regularization parameter in SSL-Reg
affects text classification F1 score.

Sixth, on 6 out of 8 datasets, TAPT+SSL-Reg
performs better than SSL-Reg, indicating that it
is beneficial to use both TAPT and SSL-Reg:
first use the target texts to pretrain the encoder
based on SSL, then apply SSL-based regularizer
on these target texts during finetuning.

Seventh, DAPT+SSL-Reg performs better than
SSL-Reg on 4 datasets, but worse on the other
4 datasets, indicating that with SSL-Reg used,
DAPT is not necessarily useful.

Eighth, on smaller datasets, improvement
achieved by SSL-Reg over baselines is larger.
For example, on HYPERPARTISAN which has only
about 500 training examples, improvement of
SSL-Reg over RoBERTa is 5.7% (absolute per-
centage). Relative improvement is 6.6%. As
another example, on ACL-ARC which has about
1700 training examples, improvement of SSL-Reg
over RoBERTa is 6.3% (absolute percentage).
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CoLA SST-2 RTE QNLI MRPC
(Matthew Corr.) (Accuracy) (Accuracy) (Accuracy) (Accuracy/F1)

The median result
BERT, Lan et al. 2019 60.6 93.2 70.4 92.3 88.0/–
BERT, our run 62.1 93.1 74.0 92.1 86.8/90.8
TAPT 61.2 93.1 74.0 92.0 85.3/89.8
SSL-Reg (SATP) 63.7 93.9 74.7 92.3 86.5/90.3
SSL-Reg (MTP) 63.8 93.8 74.7 92.6 87.3/90.9

The best result
BERT, our run 63.9 93.3 75.8 92.5 89.5/92.6
TAPT 62.0 93.9 76.2 92.4 86.5/90.7
SSL-Reg (SATP) 65.3 94.6 78.0 92.8 88.5/91.9
SSL-Reg (MTP) 66.3 94.7 78.0 93.1 89.5/92.4

Table 8: Results of BERT-based experiments on GLUE development sets, where results on MNLI and
QQP are the median of five runs and results on other datasets are the median of nine runs. The size of
MNLI and QQP is very large, taking a long time to train on. Therefore, we reduced the number of runs.
Because we used a different optimization method to re-implement BERT, our median performance is
not the same as that reported in Lan et al. (2019).

Relative improvement is 10%. In contrast, on
large datasets such as RCT which contains about
180000 training examples, improvement of SSL-
Reg over RoBERTa is 0.2% (absolute percentage).
Relative improvement is 0.2%. On another large
dataset AGNEWS which contains 115000 train-
ing examples, improvement of SSL-Reg over
RoBERTa is 0.3% (absolute percentage). Relative
improvement is 0.3%. The reason that SSL-Reg
achieves better improvement on smaller datasets
is that smaller datasets are more likely to lead
to overfitting and SSL-Reg is more needed to
alleviate this overfitting.

Figure 3 shows how classification F1 score
varies as we increase regularization parameter λ
from 0.01 to 1.0 in SSL-Reg. As can be seen,
starting from 0.01, when the regularizer parameter
is increasing, F1 score increases. This is because a
larger λ imposes a stronger regularization effect,
which helps to reduce overfitting. However, if λ
becomes too large, F1 score drops. This is be-
cause the regularization effect is too strong, which
dominates classification loss. Among these 4 da-
tasets, F1 score drops dramatically on HYPER-
PARTISAN as λ increases. This is probably because
this dataset contains very long sequences. This
makes MTP on this dataset more difficult and
therefore yields an excessively strong regulariza-
tion outcome that hurts classification performance.
Compared with HYPERPARTISAN, F1 score is less

sensitive on other datasets because their sequence
lengths are relatively smaller.

4.3.2 Results on the GLUE Benchmark
Table 8 and Table 9 show results of BERT-based
experiments on development sets of GLUE. As
mentioned in (Devlin et al., 2019b), for the 24-
layer version of BERT, finetuning is sometimes
unstable on small datasets, so we run each method
several times and report the median and best per-
formance. Table 10 shows the best performance on
test sets. Following Wang et al. (2018), we report
Matthew correlation on CoLA, Pearson correla-
tion and Spearman correlation on STS-B, accuracy
and F1 on MRPC and QQP. For the rest of the
datasets, we report accuracy. From these tables, we
make the following observations. First, SSL-Reg
methods including SSL-Reg-SATP and SSL-Reg-
MTP outperform unregularized BERT (our run)
on most datasets: 1) on test sets, SSL-Reg-SATP
performs better than BERT on 7 out of 10 datasets
and SSL-Reg-MTP performs better than BERT on
9 out of 10 datasets; 2) in terms of median results
on development sets, SSL-Reg-SATP performs
better than BERT (our run) on 7 out of 9 datasets
and SSL-Reg-MTP performs better than BERT
(our run) on 8 out of 9 datasets; 3) in terms of
best results on development sets, SSL-Reg-SATP
performs better than BERT (our run) on 8 out of 9
datasets and SSL-Reg-MTP performs better than
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MNLI-m/mm QQP STS-B WNLI
(Accuracy) (Accuracy/F1) (Pearson Corr./Spearman Corr.) (Accuracy)

The median result
BERT, Lan et al. 2019 86.6/– 91.3/– 90.0/– –
BERT, our run 86.2/86.0 91.3/88.3 90.4/90.0 56.3
TAPT 85.6/85.5 91.5/88.7 90.6/90.2 53.5
SSL-Reg (SATP) 86.2/86.2 91.6/88.8 90.7/90.4 56.3
SSL-Reg (MTP) 86.6/86.6 91.8/89.0 90.7/90.3 56.3

The best result
BERT, our run 86.4/86.3 91.4/88.4 90.9/90.5 56.3
TAPT 85.7/85.7 91.7/89.0 90.8/90.4 56.3
SSL-Reg (SATP) 86.4/86.5 91.8/88.9 91.1/90.8 59.2
SSL-Reg (MTP) 86.9/86.9 91.9/89.1 91.1/90.8 57.7

Table 9: Continuation of Table 8.

BERT TAPT SSL-Reg (SATP) SSL-Reg (MTP)

CoLA (Matthew Corr.) 60.5 61.3 63.0 61.2
SST-2 (Accuracy) 94.9 94.4 95.1 95.2
RTE (Accuracy) 70.1 70.3 71.2 72.7
QNLI (Accuracy) 92.7 92.4 92.5 93.2
MRPC (Accuracy/F1) 85.4/89.3 85.9/89.5 85.3/89.3 86.1/89.8
MNLI-m/mm (Accuracy) 86.7/85.9 85.7/84.4 86.2/85.4 86.6/86.1
QQP (Accuracy/F1) 89.3/72.1 89.3/71.6 89.6/72.2 89.7/72.5
STS-B (Pearson Corr./Spearman Corr.) 87.6/86.5 88.4/87.3 88.3/87.5 88.1/87.2
WNLI (Accuracy) 65.1 65.8 65.8 66.4
AX(Matthew Corr.) 39.6 39.3 40.2 40.3

Average 80.5 80.6 81.0 81.3

Table 10: Results of BERT-based experiments on GLUE test sets, which are scored by the GLUE
evaluation server (https://gluebenchmark.com/leaderboard). Models evaluated on AX
are trained on the training dataset of MNLI.

BERT (our run) on 8 out of 9 datasets. This fur-
ther demonstrates the effectiveness of SSL-Reg
in improving generalization performance.

Second, on 7 out of 10 test sets, SSL-Reg-
SATP outperforms TAPT; on 8 out of 10 test
sets, SSL-Reg-MTP outperforms TAPT. On most
development datasets, SSL-Reg-SATP and SSL-
Reg-MTP outperform TAPT. The only exception
is: on QQP development set, the best F1 of TAPT
is slightly better than that of SSL-Reg-SATP. This
further demonstrates that performing SSL-based
regularization on target texts is more effective
than using them for pretraining.

Third, overall, SSL-Reg-MTP performs better
than SSL-Reg-SATP. For example, on 8 out of 10
test datasets, SSL-Reg-MTP performs better than

SSL-Reg-SATP. MTP works better than SATP
probably because it is a more challenging self-
supervised learning task that encourages encoders
to learn more powerful representations.

Fourth, improvement of SSL-Reg methods over
BERT is more prominent on smaller training
datasets, such as CoLA and RTE. This may be
because smaller training datasets are more likely
to lead to overfitting where the advantage of SSL-
Reg in alleviating overfitting can be better played.

Tables 11 and 12 show results of RoBERTa-
based experiments on development sets of GLUE.
From these two tables, we make observations that
are similar to those in Table 8 and Table 9. In
terms of median results, SSL-Reg (MTP) per-
forms better than unregularized RoBERTa (our
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CoLA SST-2 RTE QNLI MRPC
(Matthew Corr.) (Accuracy) (Accuracy) (Accuracy) (Accuracy/F1)

The median result
RoBERTa, Liu et al. 2019 68.0 96.4 86.6 94.7 90.9/–
RoBERTa, our run 68.7 96.1 84.8 94.6 89.5/92.3
SSL-Reg (MTP) 69.2 96.3 85.2 94.9 90.0/92.7

The best result
RoBERTa, our run 69.2 96.7 86.6 94.7 90.4/93.1
SSL-Reg (MTP) 70.2 96.7 86.6 95.2 91.4/93.8

Table 11: Results of RoBERTa-based experiments on GLUE development sets, where the median
results are the median of five runs. Because we used a different optimization method to re-implement
RoBERTa, our median performance is not the same as that reported in (Liu et al., 2019b).

MNLI-m/mm QQP STS-B WNLI
(Accuracy) (Accuracy) (Pearson Corr./ (Accuracy)

Spearman Corr.)

The median result
RoBERTa, Liu et al. 2019 90.2/90.2 92.2 92.4/– –
RoBERTa, our run 90.5/90.5 91.6 92.0/92.0 56.3
SSL-Reg (MTP) 90.7/90.7 91.6 92.0/92.0 62.0

The best result
RoBERTa, our run 90.7/90.5 91.7 92.3/92.2 60.6
SSL-Reg (MTP) 90.7/90.5 91.8 92.3/92.2 66.2

Table 12: Continuation of Table 11.

CoLA SST-2 RTE QNLI MRPC STS-B

SR+RD+RI+RS 63.6 94.0 74.8 92.2 86.8/90.6 90.6/90.3
SR+RD+RI 63.4 93.8 72.8 92.1 86.9/90.8 90.6/90.2
SR+RD 61.6 93.6 72.5 92.2 87.2/91.0 90.6/90.3

Table 13: Ablation study on sentence augmentation types in SSL-Reg (SATP), where
SR, RD, RI, and RS denotes synonym replacement, random deletion, random insertion,
and random swap respectively. Results are averaged over 5 runs with different random
initialization.

run) on 7 out of 9 datasets and achieves the same
performance as RoBERTa (our run) on the rest 2
datasets. In terms of best results, SSL-Reg (MTP)
performs better than RoBERTa (our run) on 5 out
of 9 datasets and achieves the same performance
as RoBERTa (our run) on the rest 4 datasets.
This further demonstrates the effectiveness of
our proposed SSL-Reg approach which uses an
MTP-based self-supervised task to regularize the
finetuning of RoBERTa.

In SSL-Reg (SATP), we perform an ablation
study on different types of sentence augmenta-

tion. Results are shown in Table 13, where SR,
RD, RI, and RS denote synonym replacement, ran-
dom deletion, random insertion, and random swap,
respectively. SR+RD+RI+RS means that we apply
these four types of operations to augment sen-
tences; given an augmented sentence a, we predict
which of the four types of operations was applied
to an original sentence to createa. SR+RD+RI+RS
and SR+RD hold similar meanings. From this
table, we make the following observations.

First, as the number of augmentation types
increases from 2 (SR+RD) to 3 (SR+RD+RI) then
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to 4 (SR+RD+RI+RS), the performance increases
in general. This shows that it is beneficial to
have more augmentation types in SATP. The
reason is that more types make the SATP task
more challenging and solving a more challenging
self-supervised learning task can enforce sentence
encoders to learn more powerful representations.

Second, SR+RD+RI+RS outperforms SR+RD
+RI on 5 out of 6 datasets. This demonstrates that
leveraging random swap (RS) for SATP can learn
more effective representations of sentences. The
reason is: SR, RD, and RI change the collection
of tokens in a sentence via synonym replacement,
random deletion, and random insertion; RS does
not change the collection of tokens, but changes
the order of tokens; therefore, RS is complemen-
tary to the other three operations; adding RS can
bring in additional benefits that are complemen-
tary to those of SR, RD, and RI.

Third, SR+RD+RI performs much better than
SR+RD on CoLA and is on par with SR+RD on
the rest five datasets. This shows that adding RI
to SR+RD is beneficial. Unlike synonym replace-
ment (SR) and random deletion (RD) which do
not increase the number of tokens in a sentence, RI
increases token number. Therefore, RI is comple-
mentary to SR and RD and can bring in additional
benefits.

5 Conclusions and Future Work

In this paper, we propose to use self-supervised
learning to alleviate overfitting in text classifica-
tion problems. We propose SSL-Reg, which is a
regularizer based on SSL and a text encoder is
trained to simultaneously minimize classification
loss and regularization loss. We demonstrate the
effectiveness of our methods on 17 text classi-
fication datasets.

For future work, we will use other self-
supervised learning tasks to perform regulariza-
tion, such as contrastive learning, which predicts
whether two augmented sentences stem from the
same original sentence.
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