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Abstract

In this work, we examine the ability of NER
models to use contextual information when
predicting the type of an ambiguous entity.
We introduce NRB, a new testbed carefully
designed to diagnose Name Regularity Bias of
NER models. Our results indicate that all state-
of-the-art models we tested show such a bias;
BERT fine-tuned models significantly outper-
forming feature-based (LSTM-CRF) ones on
NRB, despite having comparable (sometimes
lower) performance on standard benchmarks.

To mitigate this bias, we propose a novel
model-agnostic training method that adds learn-
able adversarial noise to some entity mentions,
thus enforcing models to focus more strongly
on the contextual signal, leading to significant
gains on NRB. Combining it with two other
training strategies, data augmentation and pa-
rameter freezing, leads to further gains.

1 Introduction

Recent advances in language model pre-training
(Peters et al., 2018; Devlin et al., 2019; Liu et al.,
2019) have greatly improved the performance of
many Natural Language Understanding (NLU)
tasks. Yet, several studies (McCoy et al., 2019;
Clark et al., 2019; Utama et al., 2020b) revealed
that state-of-the-art NLU models often make use
of surface patterns in the data that do not gen-
eralize well. Named-Entity Recognition (NER),
a downstream task that consists in identifying
textual mentions and classifying them into a
predefined set of types, is no exception.

The robustness of modern NER models has
received considerable attention recently (Mayhew
et al., 2019; Mayhew et al., 2020; Agarwal et al.,
2020a; Zeng et al., 2020; Bernier-Colborne and
Langlais, 2020). Name Regularity Bias (Lin et al.,

2020; Agarwal et al., 2020b; Zeng et al., 2020)
in NER occurs when a model relies on a signal
coming from the entity name, and disregards
evidence within the local context. Figure 1 shows
examples where state-of-the-art models (Peters
et al., 2018; Akbik et al., 2018; Devlin et al.,
2019) fail to exploit contextual information. For
instance, the entity Gonzales in the first sentence
of the figure is wrongly recognized as a per-
son, while the context clearly signals that it is a
location (city).

To better highlight this issue, we propose NRB,
a testbed designed to accurately diagnose name
regularity bias of NER models by harvesting
natural sentences from Wikipedia that contain
challenging entities, such as those in Figure 1.
This is different from previous work that evalu-
ated models on artificial data obtained by either
randomizing (Lin et al., 2020) or substituting
entities by ones from a pre-defined list (Agarwal
et al., 2020a). NRB is compatible with any anno-
tation scheme, and is intended to be used as an
auxiliary validation set.

We conduct experiments with the feature-
based LSTM-CRF architecture (Peters et al.,
2018; Akbik et al., 2018) and the BERT (Devlin
et al., 2019) fine-tuning approach trained on stan-
dard benchmarks. The best LSTM-based model
we tested is able to correctly predict 38% of the
entities in NRB. BERT-based models are perform-
ing much better (+37%), even if they (slightly)
underperform on in-domain development and test
sets. This mismatch in performance between NRB
and standard benchmarks indicates that context
awareness of models is not rewarded by existing
benchmarks, thus justifying NRB as an additional
validation set.

We further propose a novel architecture-
agnostic adversarial training procedure (Miyato

586

Transactions of the Association for Computational Linguistics, vol. 9, pp. 586–604, 2021. https://doi.org/10.1162/tacl a 00386
Action Editor: Miguel Ballesteros. Submission batch: 10/2020; Revision batch: 1/2021; Published 7/2021.

c© 2021 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

mailto:abbas.ghaddar@huawei.com
mailto:felipe@iro.umontreal.ca
mailto:ahmad.rashid@huawei.com
mailto:mehdi.rezagholizadeh@huawei.com
https://doi.org/10.1162/tacl_a_00386


Figure 1: Examples extracted from Wikipedia (title
in bold) that illustrate name regularity bias in NER.
Entities of interest are underlined, gold types are in blue
superscript, model predictions are in red subscript, and
context information is highlighted in purple. Models
used in this study disregard contextual information
and rely instead on some signal from the named-entity
itself.

et al., 2016) in which learnable noise vectors are
added to named-entity words, weakening their
signal, thus encouraging the model to pay more
attention to contextual information. Applying it
to both feature-based LSTM-CRF and fine-tuned
BERT models leads to consistent gains on NRB
(+13 points) while maintaining the same level of
performance on standard benchmarks.

The remainder of the paper is organized as
follows. We discuss related works in Section 2.
We describe how we built NRB in Section 3,
and its use in diagnosing named-entity bias of
state-of-the-art models in Section 4. In Section 5,
we present a novel adversarial training method
that we compare and combine with two simpler
ones. We further analyze these training methods
in Section 6, and conclude in Section 7.

2 Related Work

Robustness and out-of-distribution generalization
has always been a persistent concern in deep
learning applications such as computer vision
(Szegedy et al., 2013; Recht et al., 2019), speech
processing (Seltzer et al., 2013; Borgholt et al.,
2020), and NLU (Søgaard, 2013; Hendrycks
and Gimpel, 2017; Ghaddar and Langlais, 2017;
Yaghoobzadeh et al., 2019; Hendrycks et al.,
2020). One key challenge behind this issue in

NLU is the tendency of models to quickly lever-
age surface form features and annotation artifacts
(Gururangan et al., 2018), which is often referred
to as dataset biases (Dasgupta et al., 2018; Shah
et al., 2020). We discuss related works along two
axes: diagnosis and mitigation.

2.1 Diagnosing Biais

A growing number of studies (Zellers et al.,
2018; Poliak et al., 2018; Geva et al., 2019;
Utama et al., 2020b; Sanh et al., 2020) are show-
ing that NLU models rely heavily on spurious
correlations between output labels and surface
features (e.g., keywords, lexical overlap), impact-
ing their generalization performance. Therefore,
considerable attention has been paid to design
diagnostic benchmarks where models relying
on bias would perform poorly. For instance,
HANS (McCoy et al., 2019), FEVER Symmetric
(Schuster et al., 2019), and PAWS (Zhang et al.,
2019) are benchmarks that contain counterexam-
ples to well-known biases in the training data of
textual entailment (Williams et al., 2017), fact
verification (Thorne et al., 2018), and paraphrase
identification (Wang et al., 2018), respectively.

Naturally, many entity names have a strong
correlation with a single type (e.g., <Gonzales,
PER> or <Madrid, LOC>). Recent works have
noted that over-relying on entity name information
negatively impacts NLU tasks. Balasubramanian
et al. (2020) found that substituting named-entities
in standard test sets of natural language inference,
coreference resolution, and grammar error cor-
rection has a negative impact on those tasks.
In political claims detection (Padó et al., 2019),
Dayanik and Padó (2020) show that claims made
by frequently occurring politicians in the training
data are better recognized than those made by
less frequent ones.

Recently, Zeng et al. (2020) and Agarwal et al.
(2020b) conducted two separate analyses on the
decision making mechanism of NER models. Both
works found that context tokens do contribute
to system performance, but that entity names
play a major role in driving high performances.
Agarwal et al. (2020a) reported a performance
drop in NER models when entities in standard
test sets are substituted with other ones pulled
from pre-defined lists. Concurrently, Lin et al.
(2020) conducted an empirical analysis on the
robustness of NER models in the open domain
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scenario. They show that models are biased by
strong entity name regularity, and train\test over-
lap in standard benchmarks. They observe a drop
in performance of 34% when entity mentions are
randomly replaced by other mentions.

The aforementioned studies certainly demon-
strate name regularity bias. Still, in many cases
the entity mention is the only key to infer its type,
as in ‘‘James won the league’’. Thus, randomly
swapping entity names, as proposed by Lin et al.
(2020), typically introduces false positive exam-
ples, which obscures observations. Furthermore,
creating artificial word sequences introduces
a mismatch between the pre-training and the
fine-tuning phases of large-scale language models.

NER is also challenging because of compound-
ing factors such as entity boundary detection
(Zheng et al., 2019), rare words and emerging
entities (Strauss et al., 2016), document-level
context (Durrett and Klein, 2014), capitaliza-
tion mismatch (Mayhew et al., 2019), unbalance
datasets (Nguyen et al., 2020), and domain shift
(Alvarado et al., 2015; Augenstein et al., 2017).
It is unclear to us how randomizing mentions in
a corpus, as proposed by Lin et al. (2020), is
interfering with these factors.

NRB gathers genuine entities that appear in nat-
ural sentences extracted from Wikipedia. Exam-
ples are selected so that entity boundaries are easy
to identify, and their types can be inferred from the
local context, thus avoiding compounding many
factors responsible for lack of robustness.

2.2 Mitigating Bias

The prevailing approach to address dataset bias
consists in adjusting the training loss for biased
examples. A number of recent studies (Clark
et al., 2019; Belinkov et al., 2019; He et al.,
2019; Mahabadi et al., 2020; Utama et al., 2020a)
proposed to train a shallow model that exploits
manually designed biased features. A main model
is then trained in an ensemble with this pre-trained
model, in order to discourage the main model from
adopting the naive strategy of the shallow one.

Adversarial training (Miyato et al., 2016) is
a regularization method that has been shown to
improve not only robustness (Ebrahimi et al.,
2018; Bekoulis et al., 2018), but also general-
ization (Cheng et al., 2019; Zhu et al., 2019) in
NLU. It builds on the idea of adding adversarial
examples (Goodfellow et al., 2014; Fawzi et al.,

2016) to the training set, that is, small perturba-
tions of the data that can change the prediction of
a classifier. These perturbations for NLP tasks are
done at the token embedding level and are norm
bounded. Typically, adversarial training algo-
rithms can be defined as a minmax optimization
problem wherein the adversarial examples are
generated to maximize the loss, while the model
is trained to minimize it.

Belinkov et al. (2019) used adversarial training
to mitigate the hypothesis-only bias in textual
entailment models. Clark et al. (2020) adversar-
ially trained a low and a high capacity model
in an ensemble in order to ensure that the latter
model is focusing on patterns that should gen-
eralize better. Dayanik and Padó (2020) used an
extra adversarial loss in order to encourage a
political claims detection model to learn more
from samples with infrequent politician names.
Le Bras et al. (2020) proposed an adversarial tech-
nique to filter-out biased examples from training
material. Models trained on the filtered datasets
show improved out-of-distribution performances
on various computer vision and NLU tasks.

Data augmentation is another strategy for
enhancing robustness. It was successfully used in
Min et al. (2020) and Moosavi et al. (2020) to
improve textual entailment performances on the
HANS benchmark. The former approach proposes
to append original training sentences with their
corresponding predicate-arguments triplets gen-
erated by a semantic role labelling tagger; while
the latter generates new examples by applying
syntactic transformations to the original training
instances.

Zeng et al. (2020) created new examples by
randomly replacing an entity by another one of
the same type that occurs in the training data.
New examples are considered valid if the type
of the replaced entity is correctly predicted by
a NER model trained on the original dataset.
Similarly, Dai and Adel (2020) explored different
entity substitution techniques for data augmen-
tation tailored to NER. Both studies conclude
that data augmentation techniques based on entity
substitution improves the overall performances
on low resource biomedical NER.

Studies discussed above have the potential to
mitigate name regularity bias of NER models.
Still, we are not aware of any dedicated work that
shows it is so. In this work, we propose ways of
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mitigating name regularity bias for NER, includ-
ing an elaborate adversarial method that forces the
model to capture more signal from the context. Our
methods do not require an extra training stage, or
to manually characterize biased features. They are
therefore conceptually simpler, and can potentially
be combined to any of the discussed techniques.
Furthermore, our proposed methods are effective
under both low and high resource settings.

3 The NRB Benchmark

NRB is a diagnosing testbed exclusively dedicated
to name regularity bias in NER. To this end, it
gathers named-entities that satisfy 4 criteria:

1. Must be real-world entities within natural
sentences → We select sentences from
Wikipedia articles.

2. Must be compatible with any annotation
scheme→We restrict our focus on the 3 most
common types found in NER benchmarks:
person, location, and organization.

3. Boundary detection (segmentation) should
not be a bottleneck → We only select single
word entities that start with a capital letter.

4. Supporting evidences of the type must be
restricted to local context only (a window of
2 to 4 tokens) → We developed a primitive
context-only tagger to filter-out entities with
no close-context signal.

The strategy used to gather examples in NRB is
illustrated in Figure 2. We first select Wikipedia
articles that are listed in a disambiguation page.
Disambiguation pages group different topics that
could be referred to by the same query term.1

The query term Bromwich in Figure 2 has its own
disambiguation page that contains a link to the
city of West Bromwich, West Bromwich Albion
Football Club, and Kenny Bromwich the rugby
league player.

We associate each article in a disambiguation
page to the entity type found in its corresponding
Freebase page (Bollacker et al., 2008), consid-
ering only articles whose Freebase type can be
mapped to a person, a location, or an organization.
We assume that occurrences of the query term

1 https://en.wikipedia.org/wiki/Wikipedia
:Manual of Style/Disambiguation pages.

Figure 2: Selection of a sentence in NRB.

within the article are of this type. This assump-
tion was found accurate in previous work on
Wikipedia distant supervision for NER (Ghaddar
and Langlais, 2016, 2018). The sentence in our
example is extracted from the Kenny Bromwich
article, whose Freebase type can be mapped to a
person. Therefore, we assume Bromwich in this
sentence to be a person.

To decide whether a sentence containing a
query term is worth being included in NRB, we
rely on two NER taggers. One is a popular NER
system that provides a confidence score to each
prediction, and that acts as a weak superviser, the
other is a context-only tagger we designed specif-
ically (see Section 3.1) to detect entities with a
strong signal from their local context. A sentence
is selected if the query term is incorrectly labeled
with high confidence (score > 0.85) by the former
tagger, while the latter one labels it correctly with
high confidence (a gap of at least 0.25 in probabil-
ity between the first and second predicted types).
This is the case of the sentence in Figure 2, where
Bromwich is incorrectly labeled as an organization
by the weak supervision tagger, however correctly
labeled as a person by the context-only tagger.

3.1 Implementation

We used the Stanford CoreNLP (Manning et al.,
2014) tagger as our weak supervision tagger and
developed a simple yet efficient method to build a
context-only tagger. For this, we first applied the
Stanford tagger to the entire Wikipedia dump and
replaced all entity mentions identified by their tag.
Then, we train a 5-gram language model on the
resulting corpus using kenLM (Heafield, 2011).
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Figure 3: Illustration of a language model used as a
context-only tagger.

Figure 3 illustrates how this model is deployed
as an entity tagger: The mention is replaced by
an empty slot and the language model is queried
for each type. We rank the tags using the per-
plexity score given by the model to the resulting
sentences, then we normalize those scores to get
a probability distribution over types.

We downloaded the Wikipedia dump of June
2020, which contains 30k disambiguation pages.
These pages contain links to 263k articles, where
only 107k (40%) of them have a type in Freebase
that can be mapped to the 3 types of interest.
The Stanford tagger identified 440k entities that
match the query term of the disambiguation pages.
The thresholds discussed previously were chosen
to select around 5000 of the most challenging
examples in terms of name regularity bias. This
figure aligns with the number of entities present in
the test set of the well-studied CONLL benchmark
(Tjong Kim Sang and De Meulder, 2003).

We assessed the annotation quality by asking
a human to filter out noisy examples. A sentence
was removed if it contains an annotation error, or
if the type of the query term cannot be inferred
from the local context. Only 1.3% of the examples
where removed, which confirms the accuracy of
our automatic procedure. NRB is composed of
5275 examples, and each sentence contains a
single annotation (see Figure 1 for examples).

3.2 Control Set (WTS)

In addition to NRB, we collected a set of domain
control sentences—called WTS for WITNESS—that
contain the very same query terms selected in
NRB, but that were correctly labeled by both
the Stanford (score > 0.85) and the context-only
taggers. We selected examples with a small gap
(< 0.1) between the first and second ranked type
assigned to the query term by the latter tagger.
Thus, examples in WTS should be easy to tag.
For example, because Obama the Japanese city

(see Figure 3) is selected among the query terms
in NRB, we added an instance of Obama the
president.

Performing poorly on such examples2 indicates
a domain shift between NRB (Wikipedia) and
whatever dataset a model is trained on (we call it
the in-domain corpus). WTS is composed of 5192
sentences that have also been manually checked.

4 Diagnosing Bias

4.1 Data
To be comparable with state-of-the-art models,
we consider two standard benchmarks for NER:
CONLL-2003 (Tjong Kim Sang and De Meulder,
2003) and ONTONOTES 5.0 (Pradhan et al., 2012),
which include 4 and 18 types of named-entities,
respectively. ONTONOTES is 4 times larger than
CONLL, and both benchmarks mainly cover the
news domain. We run experiments on the official
train/dev/test splits, and report mention-level F1
scores, following previous work. Since in NRB,
there is only one entity per sentence to annotate,
a system is evaluated on its ability to correctly
identify the boundaries of this entity and its type.
When we train on ONTONOTES (18 types) and eval-
uate on NRB (3 types), we perform type mapping
using the scheme of Augenstein et al. (2017).

4.2 Systems
Following (Devlin et al., 2019), we term all
approaches that learn the encoder from scratch as
feature-based, as opposed to the ones that fine-
tune a pre-trained model for the downstream task.
We conduct experiments using 3 feature-based
and 2 fine-tuning approaches for NER:

• Flair-LSTM An LSTM-CRF model that
uses FLAIR (Akbik et al., 2018) contextualized
embeddings as main features.

• ELMo-LSTM The LSTM-CRF tagging
model of Peters et al. (2018) that uses ELMo
contextualized embeddings at the input layer.

• BERT-LSTM Similar to the previous model,
but replacing ELMo by a representation
gathered from the last four layers of BERT.

• BERT-base The fine-tuning approach
proposed by Devlin et al. (2019) using the
BERT-base model.

2That is, a system that fail to tag Obama the president as
a person.
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Model
CONLL ONTONOTES

Dev Test NRB WTS Dev Test NRB WTS
Feature-based

Flair-LSTM - 93.03 27.56 99.58 - 89.06 33.67 93.98
ELMo-LSTM 96.69 92.47 31.65 98.24 88.31 89.38 34.34 94.90
BERT-LSTM 95.94 91.94 38.34 98.08 86.12 87.28 43.07 92.04

Fine-tuning
BERT-base 96.18 92.19 75.54 98.67 87.23 88.19 75.34 94.22
BERT-large 96.90 92.86 75.55 98.51 89.26 89.93 75.41 95.06

Table 1: Mention level F1 scores of models on CONLL and ONTONOTES, as well as on NRB and WTS.

• BERT-large The fine-tuning approach using
the BERT-large model.

We used Flair-LSTM off-the-shelf,3 and re-
implemented other approaches using the default
settings proposed in the respective papers. For our
reimplementations, we used early stopping based
on performance on the development set, and report
average performance over 5 runs. For BERT-
based solutions, we adopt spanBERT (Joshi et al.,
2020) as a backbone model because it was found
by Li et al. (2020) to perform better on NER.

4.3 Results
Table 1 shows the mention level F1 score of
the systems considered. FLAIR-LSTM and BERT-
large are the best performing models on in-domain
test sets, the maximum gap with other models
being 1.1 and 2.7 on CONLL and ONTONOTES

respectively. These figures are in line with pre-
vious work. What is more interesting is the
performance on NRB. Feature-based models do
poorly, Flair-LSTM underperforms compared to
other models (F1 score of 27.6 and 33.7 when
trained on CONLL and ONTONOTES respectively).
Fine-tuned BERT models clearly perform better
(around 75), but far from in-domain results (92.9
and 89.9 on CONLL and ONTONOTES, respec-
tively). Domain shift is not a reason for those
results, since the performances on WTS are rather
high (92 or higher). Furthermore, we found that
the boundary detection (segmentation) perfor-
mance on NRB is above 99.2% across all settings.
Because errors made on NRB are neither due to
segmentation nor to domain shift, they must be
imputed to name regularity bias of models.

It is worth noting that BERT-LSTM outper-
forms ELMo-LSTM on NRB, despite underper-
forming on in-domain test sets. This may be

3https://github.com/flairNLP/flair.

because BERT was pre-trained on Wikipedia
(same domain of NRB), while ELMo embeddings
were trained on the One Billion Word corpus
(Chelba et al., 2014). Also, we observe that
switching from BERT-base to BERT-large, or
training on 4 times more data (CONLL versus
ONTONOTES) does not help on NRB. This suggests
that name regularity bias is neither a data nor a
model capacity issue.

4.4 Feature-based vs. Fine-tuning

In this section, we analyze reasons for the drastic
superiority of fined-tuned models on NRB. First,
the large gap between BERT-LSTM and BERT-
base on NRB suggests that this is not related to
the representations being used at the input layer.

Second, we tested several configurations of
ELMo-LSTM where we scale up the number of
LSTM layers and hidden units. We observed a
degradation of performance on dev, test, and NRB
sets, mostly due to over-parameterized models.
We also trained 9-, 6-, and 4-layer BERT-base
models,4 and still noticed a large advantage of
BERT models on NRB.5 This suggests that the
higher capacity of BERT alone cannot explain all
the gains.

Third, since by design, evidence on the entity
type in NRB resides within the local context, it is
unlikely that gains on this set come from the ability
of Transformers (Vaswani et al., 2017) to better
handle long dependencies than LSTM (Hochreiter
and Schmidhuber, 1997). To further validate this
statement, we fine-tuned BERT models with ran-
domly initialized weights, except the embedding
layer. We noticed that this time, the performances

4We used early exit (Xin et al., 2020) at the kth layer.
5The 4-layer model has 53M parameters and performs

52% on NRB.
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on NRB fall into the same range of those of feature-
based models, and a drastic decrease (12%–15%)
on standard benchmarks. These observations are in
keeping with results from Hendrycks et al. (2020)
on the out-of-distribution robustness of fine-
tuning pre-trained transformers, and also confirms
observations made by Agarwal et al. (2020b).

From these analyses, we conclude that the
Masked Language Model (MLM) objective
(Devlin et al., 2019) that the BERT models were
pre-trained with is a key factor driving superior
performance of the fine-tuned models on NRB. In
most cases, the target word is masked or randomly
selected, therefore the model must rely on the con-
text to predict the correct target, which is what
a model should do to correctly predict the type
of entities in NRB. We think that in fine-tuning,
training for a few epochs with a small learning
rate helps the model to preserve the contextual
behavior induced by the MLM objective.

Nevertheless, fine-tuned models recording at
best an F1 score of 75.6 on NRB do show some
name regularity bias, and fail to capture useful
local contextual information.

5 Mitigating Bias

In this section, we investigate training procedures
that are designed to enhance the contextual aware-
ness of a model, leading to better performance on
NRB without impacting in-domain performance.
These training procedures are not supposed to use
any external data. In fact, NRB is only used as
a diagnosing corpus, once the model is trained.
We propose 3 training procedures that can be
combined, two of them are architecture-agnostic,
and one is specific to fine-tuning BERT.

5.1 Entity Masking

Inspired by the masking strategy applied during
the pre-training phase of BERT, we propose a data
augmentation approach that introduces a special
[MASK] token in some of the training examples.
Specifically, we search for entities in the training
material that are preceded or followed by 3 non-
entity words. This criterion applies to 35% and
39% of entities in the training data of CONLL and
ONTONOTES, respectively. For each such entity,
we create a new training example (new sentence)
by replacing the entity by [MASK], thus forcing

the model to infer the type of masked tokens from
the context. We call this procedure mask.

5.2 Parameter Freezing
Another simple strategy, specific to fine-tuning
BERT, consists of freezing part of the net-
work. More precisely, we freeze the bottom half
of BERT, including the embedding layer. The
intuition is to preserve part of the predicting-
by-context mechanism that BERT has acquired
during the pre-training phase. This training proce-
dure is expected to enforce the contextual ability
of the model, thus adding to our analysis on the
critical role of the MLM objective in pre-training
BERT. We name this method freeze.

5.3 Adversarial Noise
We propose an adversarial learning algorithm that
makes entity type patterns in the input represen-
tation less reliable for the model, thus enforcing
it to rely more aggressively on the context. To
do so, we add a learnable adversarial noise vector
(only) to the input representation of entities. We
refer to this method as adv.

Let T = {t1, t2, . . . , tK} be a predefined set of
types such as PER, LOC, and ORG in our case.
Let x = x1, x2, . . . , xn be the input sequence of
length n, y = y1, y2, . . . , yn be the gold label
sequence following the IOB6 tagging scheme,
and y′ = y′1, y

′
2, . . . , y

′
n be a sequence obtained

by adding noise to y at the mention-level, that is,
by randomly replacing the type of mentions in y
with some noisy type sampled from T .

Let Yij(t) = yi, . . . , yj be a mention of type
t ∈ T , spanning the sequence of indices i to
j in y. We derive a noisy mention Y′

ij in y′ from
Yij(t) as follows:

Y′
ij =

⎧⎪⎪⎨
⎪⎪⎩

Yij(t
′) p ∼ U(0, 1) ≤ λ

t′ ∼ Cat
γ∈T \{t}

(γ|ξ = 1
K−1)

Yij(t) otherwise

where λ is a threshold parameter, U(0, 1) refers
to the uniform distribution in the range [0,1],
Cat(γ|ξ = 1

K−1) is the categorical distribution
whose outcomes are equally likely with the
probability of ξ, and the set T \ {t} = {t′ :
t′ ∈ T ∧ t′ 	= t} stands for the set T excluding
type t.

6Naturally applies to other schemes, such as BILOU that
Ratinov and Roth (2009) found more informative.
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Figure 4: Illustration of our adversarial method applied on the entity New York. First, we generate a noisy type
(PER), and then add a learnable noise embedding (LOC→PER) to the input representation of that entity. This
will make entity patterns (hashed rectangles) unreliable for the model, hence forcing it to collect evidences
(dotted arrow) from the context. The noise embedding matrix and the noise label projection layer weights (dotted
rectangle) are trained independently from the model parameters.

The above procedure only applies to the entities
that are preceded or followed by 3 context words.
For instance, in Figure 4, we produce a noisy type
for New York (PER), but not for John (p > λ).
Also, note that we generate a different sequence
y′ from y at each training epoch.

Next, we define a learnable noisy embedding
matrix E′ ∈ R

m×d where m = |T | × (|T | − 1) is
the number of valid type switching possibilities,
and d is the dimension of the input representations
of x. For each token with a noisy label, we add
the corresponding noisy embedding to its input
representation. For other tokens, we simply add
a zero vector of size d. As depicted in Figure 4,
the noisy type of the entity New York is PER,
therefore we add the noise embedding at index
LOC → PER to its input representation.

Then, the input representation of the sequence is
fed to an encoder followed by an output layer, such
as LSTM-CRF in Peters et al. (2018), or BERT-
Softmax in Devlin et al. (2019). First, we extend
the aforementioned models by generating an extra
logit f ′ using a projection layer parametrized by
W ′ and followed by a softmax function. As shown
in Figure 4, for each token the model produces
two logits relative to the true and noisy tags. Then,
we train the entire model to minimize two losses:
Ltrue(θ) and Lnoisy(θ

′), where θ is the original set
of parameters and θ′ = {E′,W ′} is the extra set
we added (dotted boxes in Figure 4). Ltrue(θ) is

the regular loss on the true tags, while Lnoisy(θ
′)

is the loss on the noisy tags defined as follows:

Lnoisy(θ
′) =

n∑
i=1

11 (y′i 	= yi)CE (f ′
i , y

′
i)

where CE is the cross-entropy loss function.
Both losses are minimized using gradient descent.
It is worth mentioning that λ is the only
hyper-parameter of our adv method. It controls
how often noisy embeddings are added during
training. Higher values of λ increase the amount
of uncertainty around salient patterns in the
input representation of entities, hence preventing
the model from overfitting those patterns, and
therefore pushing it to rely more on context
information. We tried values of λ between 0.3 and
0.9, and found λ = 0.8 to be the best one based
on CONLL and ONTONOTES development sets.

5.4 Results

We trained models on CONLL and ONTONOTES,
and evaluated them on their respective TEST set.7

Recall that NRB and WTS are only used as auxil-
iary diagnosing sets. Table 2 shows the impact of
our training methods when fine-tuning the BERT-
large model (the one that performs best on NRB).

First, we observe that each training method
significantly improves the performance on NRB.

7Performances on DEV show very similar trends.
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Method CONLL ONTONOTES

Test NRB WTS Test NRB WTS

BERT-lrg 92.8 75.6 98.6 89.9 75.4 95.1
+mask 92.9 82.9 98.4 89.8 77.3 96.5
+freeze 92.7 83.1 98.4 89.9 79.8 96.0
+adv 92.7 86.1 98.3 90.1 85.8 95.2
+f&m 92.8 85.5 97.8 89.9 80.6 95.9
+a&m 92.8 87.7 98.1 89.7 87.6 95.9
+a&f 92.7 88.4 98.2 90.0 88.1 95.7
+a&m&f 92.8 89.7 97.9 89.9 88.8 95.6

Table 2: Impact of training methods on
BERT-large models fine-tuned on CONLL or
ONTONOTES.

Method
CONLL ONTONOTES

Test NRB WTS Test NRB WTS

E-LSTM 92.5 31.7 98.2 89.4 34.3 94.9
+mask 92.4 40.8 97.5 89.3 38.8 95.3
+adv 92.4 42.4 97.8 89.4 40.7 95.0
+a&m 92.4 45.7 96.8 89.3 46.6 93.7

Table 3: Impact of training methods on the
ELMo-LSTM trained on CONLL or ONTONOTES.

Adding adversarial noise is notably the best
performing method on NRB, with an additional
gain of 10.5 and 10.4 F1 points over the respective
baselines. On the other hand, we observe minor
variations on in-domain test sets, as well as on
WTS. The paired sample t-test (Cohen, 1996)
confirms that these variations are not statistically
significant (p > 0.05). After all, the number of
decisions that differ between the baseline and the
best model on a given in-domain set is less than 20.

Second, we observe that combining methods
always leads to improvements on NRB; the
best configuration being when we combine all 3
methods. It is interesting to note that combining
training methods leads to a performance on NRB
which does not depend much on the training set
used: CONLL (89.7) and ONTONOTES (88.8). This
suggests that name regularity bias is a modeling
issue, and not the effect of factors such as training
data size, domain, or type granularity.

In order to validate that our training methods
are not specific to the fine-tuning approach, we
replicated the same experiments with the ELMo-
LSTM. Table 3 shows the performance of the
mask and adv procedures (the freeze method
does not apply here). The results are in line
with those observed with BERT-large: significant

gains on NRB of 14 and 12 points for CONLL
and ONTONOTES models, respectively, and no sta-
tistically significant changes on in-domain test
sets. Again, combining training methods leads to
systematic gains on NRB (13 points on average).
Differently from fine-tuning BERT, we observe a
slight drop in performance of 1.2% on WTS when
both methods are used.

The performance of ELMo-LSTM on NRB
does not rival the one obtained by fine-tuning the
BERT-large model, which confirms that BERT
is a key factor to enhance robustness, even if in-
domain performance is not necessarily rewarded
(McCoy et al., 2019; Hendrycks et al., 2020).

6 Analysis

So far, we have shown that state-of-the-art mod-
els do suffer from name regularity bias, and we
proposed model-agnostic training methods that
are able to mitigate this bias to some extent.
In Section 6.1, we provide further evidence
that our training methods force the BERT-large
model to better concentrate on contextual cues. In
Section 6.2, we replicate the evaluation protocol of
Lin et al. (2020) in order to clear out the possibility
that our training methods are only valid on NRB.
Last, we perform extensive experiments on name
regularity bias under low resource (Section 6.3)
and multilingual (Section 6.4) settings.

6.1 Attention Heads

We leverage the attention map of BERT to better
understand how our method enhances context
encoding. To this end, we calculate the average
number of attention heads that point to the entity
mentions being predicted at each layer. We con-
duct this experiment on NRB with the BERT-large
model (24 layers with 16 attention heads at each
layer) fine-tuned on CONLL.

At each layer, we average the number of
heads which have their highest attention weight
(argmax) pointing to the entity name.8 Figure 5
shows the average number of attention heads
that point to an entity mention in the BERT-
large model fine-tuned without our methods, with
the adversarial noise method (adv), and with all
three methods.

8We used the weights of the first sub-token since NRB
only contains single word entities.
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Figure 5: Average number of attention heads (y-axis)
pointing to NRB entity mentions at each layer (x-axis)
of the BERT-large model fine-tuned on CONLL.

Method π(dev) π(test)
BERT-large 23.45 25.46

+adv 31.98 31.99
+adv&mask 35.02 34.09
+adv&mask&freeze 40.39 38.62

Table 4: F1 scores of BERT-large models
fine-tuned on CONLL and evaluated on
randomly permuted versions of the dev and
test sets: π(dev) and π(test).

We observe an increasing number of heads
pointing to entity names when we get closer to
the output layer: at the bottom layers (left part of
the figure) only a few heads are pointing to entity
names, in contrast to the last 2 layers (right part)
where almost all heads do so. This observation
is in line with Jawahar et al. (2019), who show
that bottom and intermediate BERT layers mainly
encode lexical and syntactic information, whereas
top layers represent task-related information. Our
training methods lead to fewer heads at top layers
pointing to entity mentions, suggesting the model
is focusing more on contextual information.

6.2 Random Permutations
Following the protocol described in Lin et al.
(2020), we modified dev and test sets of standard
benchmarks by randomly permuting dataset-wise
mentions of entities, keeping the types untouched.
For instance, the span of a specific mention of a
person can be replaced by a span of a location,
whenever it appears in the dataset. These ran-
domized tests are highly challenging, as discussed
in Section 2, since here the context is the only
available clue to solve the task, and many false
positive examples are introduced that way.

Table 4 shows the results of the BERT-large
model fine-tuned on CONLL and evaluated on
the permuted in-domain dev and test sets. F1

Figure 6: Performance on NRB of BERT-large models
as a function of the number of sentences used to
fine-tune them.

scores are much lower here, confirming this is
a hard testbed, but they do provide evidence of
the named-regularity bias of BERT. Our training
methods improve the model F1 score by 17% and
13% on permuted dev and test sets, respectively,
an increase much in line with what we observed
on NRB.

6.3 Low Resource Setting
Similarly to Zhou et al. (2019) and Ding et al.
(2020), we simulate a low resource setting by ran-
domly sampling tiny subsets of the training data.
Since our focus is to measure the contextual learn-
ing ability of models, we first selected sentences
of CONLL training data that contain at least one
entity followed or preceded by 3 non-entity words.

Then, we randomly sampled k ∈ {100, 500,
1000, 2000} sentences9 with which we fine-tuned
BERT-large. Figure 6 shows the performance of
the resulting models on NRB. Expectedly, F1
scores of models fine-tuned with few examples
are rather low on NRB as well as on the in-domain
test set. Not shown in Figure 6, fine-tuning on 100
and 2000 sentences leads to performance of 14%
and 45%, respectively, on the CONLL test set.
Nevertheless, we observe that our training meth-
ods, and adv in particular, improve performances
on NRB even under extremely low resource set-
tings. On CONLL test and WTS sets, scores vary
in a range of ±0.5 and ±0.7, respectively, when
our methods are added to BERT-large.

6.4 Multilingual Setting
6.4.1 Experimental Protocol
For in-domain data, we use the German, Spanish,
and Dutch CONLL-2002 (Tjong Kim Sang, 2002)
NER datasets. Those benchmarks—also from the
news domain—come with a train/dev/test split,
and the training material is comparable in size

9{0.7, 3.5, 7.1, 14.3}% of the training sentences.
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NRB WTS NRB WTS
de 37% 44% fi 53% 62%
es 20% 22% da 19% 24%
nl 20% 24% hr 39% 48%

af 26% 32%

Table 5: Percentage of translated
sentences from NRB and WTS discarded
for each language.

to the English CONLL dataset. In addition, we
experiment with four non CONLL benchmarks:
Finnish (Luoma et al., 2020), Danish (Hvingelby
et al., 2020), Croatian (Ljubešić et al., 2018), and
Afrikaans (Eiselen, 2016) data. These corpora
have more diversified text genres, yet mainly
follow the CONLL annotation scheme.10 Finnish
and Afrikaans datasets have comparable size to
English CONLL, Danish is 60% smaller, while
the Croatian is twice larger. We use the provided
train/dev/test splits for Danish and Finnish, and
we randomly split (80/10/10) the Croatian and
Afrikaans datasets.

Because NRB and WTS are in English, we
designed a simple yet generic method for pro-
jecting them to another language. First, both test
sets are translated to the target language using
an online translation service. In order to ensure a
high quality corpus, we eliminate a sentence if the
BLEU score (Papineni et al., 2002) between the
original (English) sentence and the back translated
one is below 0.65.

Table 5 reports the percentage of discarded sen-
tences for each language. While for the Finnish
(fi), Croatian (hr), and German (de) languages
we remove a large proportion of sentences, we
found our translation approach simpler and more
systematic than generating an NRB corpus from
scratch for each language. The latter approach
depends on the robustness of the weak tagger, the
number of Wikipedia articles and disambiguation
pages per language, as well as the existence of
type information. This is left as future work.

For experiments with fine-tuning, we use
language-specific BERT models11 for German
(Chan et al., 2020), Spanish (Canete et al., 2020),

10The Finnish data is tagged with EVENT, PRODUCT,
and DATE in addition to the CONLL 4 classes.

11Language-specific models have been reported more
accurate than multilingual ones in a monolingual setting
(Martin et al., 2019; Le et al., 2020; Delobelle et al., 2020;
Virtanen et al., 2019).

Dutch (de Vries et al., 2019), Finnish (Virtanen
et al., 2019), Danish,12 Croatain (Ulčar and
Robnik-Šikonja, 2020), while we use mBERT
(Devlin et al., 2019) for Afrikaans.

For feature-based approaches, we use the same
architecture for ELMo-LSTM (Peters et al., 2018)
except that we replace English word embeddings
by language-specific ones: FastText (Bojanowski
et al., 2017) for static representations, and the
aforementioned BERT-base models for contextu-
alized ones.

6.4.2 Results

Table 6 reports the performances on test, NRB,
and WTS sets for both feature-based and fine-
tuning approaches with and without our training
methods. We used the hyper-parameters of the
English CONLL experiments with no further
tuning. We selected the best performing mod-
els based on development sets score, and report
average results on 5 runs.

Mainly due to implementation details and hy-
perparameter settings, our fine-tuned BERT-base
models perform better on the CONLL test sets
for German (83.8 vs. 80.4) and Dutch (91.8 vs.
90.0) and slightly worse on Spanish (88.0 vs.
88.4) compared to the results reported in their
respective BERT papers.

Consistent with the results obtained on English
for feature-based (Table 1) and fine-tuned
(Table 3) models, the latter approach performs
better on NRB, although by a smaller margin
compared to English (+37%). More precisely, we
observe a gain of +28% and +26% on German
and Croatian respectively, and a gain ranging
between 11% and 15% for other languages.

Nevertheless, our training methods lead to
systematic and often drastic improvements on
NRB coupled with a statistically nonsignificant
overall decrease on in-domain test sets. They do,
however, incur a slight but significant drop of
around 2 F1 score points on WTS for feature-
based models. Similar to what was previously
observed, the best scores on NRB are obtained
by BERT models when the training methods are
combined. For the Dutch language, we observe
that once trained with our methods, the type of
models used (feature-based vs. BERT fine-tuned)
leads to much less difference on NRB.

12https://github.com/botxo/nordic bert.
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Model
German Spanish Dutch Finnish Danish Croatian Afrikaans

TEST NRB WTS TEST NRB WTS TEST NRB WTS TEST NRB WTS TEST NRB WTS TEST NRB WTS TEST NRB WTS

Feature-based
BERT-LSTM 78.9 36.4 84.2 85.6 59.9 90.8 84.9 45.4 85.7 76.0 38.9 84.5 76.4 42.6 78.1 78.0 28.4 79.3 76.2 39.7 65.8

+adv 78.2 44.1 82.8 85.0 65.8 90.2 84.3 57.8 83.5 75.1 52.9 81.0 75.4 47.2 76.9 77.5 35.2 75.5 75.7 42.3 63.3
+adv&mask 78.1 47.6 82.9 84.9 72.2 88.7 84.0 62.8 83.5 74.6 54.3 81.8 75.1 48.4 76.6 76.9 36.8 76.7 75.1 52.8 63.1

Fine-tuning
BERT-base 83.8 64.0 93.3 88.0 72.3 93.9 91.8 56.1 92.0 91.3 64.6 91.9 83.6 56.6 86.2 89.7 54.7 95.6 80.4 54.3 91.6

+adv 83.7 68.9 93.6 87.9 75.9 93.9 91.9 58.3 91.8 90.2 66.4 92.5 82.7 58.4 86.5 89.5 57.9 95.5 79.7 60.2 92.1
+a&m&f 83.2 73.3 94.0 87.4 81.6 93.7 91.2 63.6 91.0 89.8 67.4 92.7 82.3 63.1 85.4 88.8 59.6 94.9 79.4 64.2 91.6

Table 6: Mention level F1 scores of 7 multilingual models trained on their respective training data,
and tested on their respective in-domain test, NRB, and WTS sets.

Altogether, these results demonstrate that name
regularity bias is not specific to a particular lan-
guage, even if its degree of severity varies from
one language to another, and that the training
methods proposed notably mitigate this bias.

7 Conclusion

In this work, we focused on the name regularity
bias of NER models, a problem first discussed in
Lin et al. (2020). We propose NRB, a benchmark
we specifically designed to diagnose such a bias.
As opposed to existing strategies devised to mea-
sure it, NRB is composed of real sentences with
easy to identify mentions.

We show that current state-of-the-art models,
perform from poorly (feature-based) to decently
(fined-tuned BERT) on NRB. In order to mit-
igate this bias, we propose a novel adversarial
training method based on adding some learnable
noise vectors to entity words. These learnable
vectors encourage the model to better incorporate
contextual information. We demonstrate that this
approach greatly improves the contextual ability
of existing models, and that it can be combined
with other training methods we proposed. Signif-
icant gains are observed in both low-resource and
multilingual settings. To foster research on NER
robustness, we encourage others to report results
on NRB and WTS.13

This study opens up new avenues of inves-
tigation. Conducting a large-scaled multilingual
experiment, characterizing the name regularity
bias of more diversified morphological language
families is one of them, possibly leveraging mas-
sively multilingual resources such as WikiAnn
(Pan et al., 2017), Polyglot-NER (Al-Rfou et al.,

13English and multilingual NRB and WTS are available at
http://rali.iro.umontreal.ca/rali/?q=en
/wikipedia-nrb-ner.

2015), or Universal Dependencies (Nivre et al.,
2016). We can also develop a more challenging
NRB by selecting sentences with multi-word
entities.

Also, non-sequential labeling approaches for
NER like the ones of Li et al. (2020) and Yu et al.
(2020) have reported impressive results on both
flat and nested NER. We plan to measure their
bias on NRB and study the benefits of applying
our training methods to those approaches. Finally,
we want to investigate whether our adversarial
training method can be successfully applied to
other NLP tasks.
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