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Abstract

Recent approaches to data-to-text generation
have adopted the very successful encoder-
decoder architecture or variants thereof. These
models generate text that is fluent (but often
imprecise) and perform quite poorly at select-
ing appropriate content and ordering it co-
herently. To overcome some of these issues,
we propose a neural model with a macro
planning stage followed by a generation stage
reminiscent of traditional methods which em-
brace separate modules for planning and sur-
face realization. Macro plans represent high
level organization of important content such
as entities, events, and their interactions; they
are learned from data and given as input to
the generator. Extensive experiments on two
data-to-text benchmarks (RotoWire and MLB)
show that our approach outperforms compet-
itive baselines in terms of automatic and hu-
man evaluation.

1 Introduction

Data-to-text generation refers to the task of gen-
erating textual output from non-linguistic input
(Reiter and Dale, 1997, 2000; Gatt and Krahmer,
2018) such as databases of records, simulations
of physical systems, accounting spreadsheets, or
expert system knowledge bases. As an example,
Figure 1 shows various statistics describing a
major league baseball (MLB) game, including
extracts from the box score (i.e., the perfor-
mance of the two teams and individual team
members who played as batters, pitchers or field-
ers; Table (A)), play-by-play (i.e., the detailed
sequence of each play of the game as it occurred;
Table (B)), and a human written game summary
(Table (C)).

Traditional methods for data-to-text generation
(Kukich, 1983; McKeown, 1992; Reiter and Dale,
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1997) follow a pipeline architecture, adopting
separate stages for fext planning (determining
which content to talk about and how it might
be organized in discourse), sentence planning
(aggregating content into sentences, deciding spe-
cific words to describe concepts and relations, and
generating referring expressions), and linguistic
realization (applying the rules of syntax, mor-
phology, and orthographic processing to generate
surface forms). Recent neural network—based
approaches (Lebret et al., 2016; Mei et al., 2016;
Wiseman et al., 2017) make use of the encoder-
decoder architecture (Sutskever et al., 2014), are
trained end-to-end, and have no special-purpose
modules for how to best generate a text, aside
from generic mechanisms such as attention and
copy (Bahdanau et al., 2015; Gu et al., 2016). The
popularity of end-to-end models has been fur-
ther boosted by the release of new datasets with
thousands of input-document training pairs. The
example shown in Figure 1 is taken from the MLB
dataset (Puduppully et al., 2019b), which contains
baseball game statistics and human written sum-
maries (~25K instances). RoToWIRE (Wiseman
et al., 2017) is another widely used benchmark,
which contains NBA basketball game statistics
and their descriptions (~5K instances).

Wiseman et al. (2017) show that despite being
able to generate fluent text, neural data-to-text
generation models are often imprecise, prone
to hallucination (i.e., generate text that is not
supported by the input), and poor at content
selection and document structuring. Attempts to
remedy some of these issues focus on changing
the way entities are represented (Puduppully et al.,
2019b; Iso et al., 2019), allowing the decoder to
skip low-confidence tokens to enhance faithful
generation (Tian et al., 2019), and making the
encoder-decoder architecture more modular by
introducing micro planning (Puduppully et al.,
2019a; Moryossef et al., 2019). Micro planning
operates at the record level (see Table (A) in
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(A)

TEAM Inn1 Inn2 Inn3 Inn4 ... TR TH E ... © - — -
Orioles T 0 0 0 > 4 0 .. KANSAS CITY, Mo. — Brad Keller kept up his recent pitching surge with another strong
Royals 10 0 3 9 141 .. outing. <P> Keller gave up a home run to the first batter of the game — Cedric Mullins
— but quickly settled in to pitch eight strong innings in the Kansas City Royals’ 9-2 win
BATTER H/V ABBR BH RBI TEAM over the Baltimore Orioles in a matchup of the teams with the worst records in the majors.
C.Mullins H 4 2 2 1 Oroles . <P> Keller (7-5) gave up two runs and four hits with two walks and four strikeouts
JVillar H 4 00 0 Oroles .. to improve to 3—0 with a 2.16 ERA in his last four starts. <P> Ryan O’Hearn homered
WMerifield V. 2 3 2 1 Royals ... among his three hits and drove in four runs, Whit Merrifield scored three runs, and Hunter
ROHean V 5 1 3 4 Royals ... Dozier and Cam Gallagher also went deep to help the Royals win for the fifth time in six
games on their current homestand. <P> With the score tied 1-1 in the fourth, Andrew
......... Cashner (4-13) gave up a sacrifice fly to Merrifield after loading the bases on two walks
PITCHER HV W L IP PH PR ER BB K ... and a single. Dozier led off the fifth inning with a 423-foot home run to left field to make
ACashner H 4 1351 9 4 4 3 1 631, <p>
B.Keller vV 7 580 4 2 2 2 4 ..
<P> ...
Inn1: runs in innings, TR: team runs, TH: team hits, (B)
E: errors, AB: at-bats, RBI: runs-batted-in, BR: batter BATTER PITCHER SCORER ACTION TEAM INN PL-ID SCORE ...
runs, BH: batter hits, H/V: home or visiting, W: wins, C.Mulllms B.Keller T Home run Orioles  1-T 1 !
L: losses, IP: innings pitched, PH: hits given, PR: runs H.Dozu?r. A.Cashner W.Memflelld Grounded Royals 1-B 3 1
given, ER: earned runs, BB: walks, K: strike outs, INN: W.Merrifield A.Cashner B.Goodwin Sacfly Royals 4B 5 2
H.Dozier A.Cashner - Home run Royals 5B 1 3

inning with (T)op/(B)ottom, PL-ID: play id.

V(Orioles), V(Royals),

V(Royals) V(Orioles),

(D) V(C.Mullins), V(J.Villar), V(Orioles) V(C.Mullins), V(Orioles) V(J.Villar),
V(W.Merrifield), V(R.0’Hearn), V(Royals) V(W.Merrifield), V(Royals)
V(A.Cashner), V(B.Keller), V(R.0’Hearn), V(Orioles) V(A.Cashner), V(Royals)
V(H.Dozier), ..., V(B.Keller), ...,

V(1-T), V(1-B), V(2-T), V(2-B), V(C.Mullins) V(Royals) V(Orioles),
V(3-T), V(3-B), V(J.Villar) V(Royals) V(Orioles), ...
(E) V(B.Keller) <P>V(B.Keller) V(C.Mullins) V(Royals) V(Orioles)<P>V(B.Keller)<P>

V(R.0’Hearn) V(W.Merrifield) V(H.Dozier) V(C.Gallagher) <P>V(4-B, 5-B) <P>

<P>

Figure 1: MLB statistics tables and game summary. Tables summarize the performance of teams and individual
team members who played as batters and pitchers as well as the most important actions (and their actors) in each
play (Tables (A) and (B)). Macro plan for the game summary is shown at the bottom (Table (E)). <P> indicates
paragraph delimiters. There is a plan for every paragraph in the game summary (correspondence shown in same
color); <V(entity) > verbalizes entities, while <V (inning-T/B)> verbalizes events related to the top/bottom
side of an inning (see Section 3.1). Set of candidate paragraph plans are shown above macro plan (Table (D)) and
grouped into two types: plans describing a single entity/event or their combinations. Best viewed in color.

Figure 1; e.g., C.Mullins BH 2, J.Villar TEAM Orioles),
it determines which facts should be mentioned
within a textual unit (e.g., a sentence) and how
these should be structured (e.g., the sequence of
records). An explicit content planner essentially
makes the job of the neural network less onerous
allowing to concentrate on producing fluent natu-
ral language output, without expending too much
effort on content organization.

In this work, we focus on macro planning, the
high-level organization of information and how
it should be presented which we argue is impor-
tant for the generation of long, multi-paragraph
documents (see text (C) in Figure 1). Problem-
atically, modern datasets like MLB (Puduppully
et al., 2019b; and also Figure 1) and RoTOWIRE
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(Wiseman et al., 2017) do not naturally lend
themselves to document planning as there is no
explicit link between the summary and the content
of the game (which is encoded in tabular form).
In other words, the underlying plans are latent,
and it is not clear how they might be best repre-
sented, namely, as sequences of records from a
table, or simply words. Nevertheless, game sum-
maries through their segmentation into paragraphs
(and lexical overlap with the input) give clues
as to how content might be organized. Paragraphs
are a central element of discourse (Chafe, 1979;
Longacre, 1979; Halliday and Hasan, 1976),
the smallest domain where coherence and topic
are defined and anaphora resolution is possible



(Zadrozny and Jensen, 1991). We therefore oper-
ationalize the macro plan for a game summary as
a sequence of paragraph plans.

Although resorting to paragraphs describes the
summary plan at a coarse level, we still need to
specify individual paragraph plans. In the sports
domain, paragraphs typically mention entities
(e.g., players important in the game), key events
(e.g., scoring a run), and their interaction. And
most of this information is encapsulated in the
statistics accompanying game summaries (see
Tables (A) and (B) in Figure 1). We thus define
paragraph plans such that they contain verbaliza-
tions of entity and event records (see plan (E) in
Figure 1). Given a set of paragraph plans and their
corresponding game summary (see Table (D) and
summary (C) in Figure 1), our task is twofold.
At training time, we must learn how content was
selected in order to give rise to specific game
summaries (e.g., how input (D) led to plan (E)
for summary (C) in Figure 1), while at test time,
given input for a new game, we first predict a
macro plan for the summary and then generate the
corresponding document.

We present a two-stage approach where macro
plans are induced from training data (by taking the
table and corresponding summaries into account)
and then fed to the text generation stage. Aside
from making data-to-text generation more inter-
pretable, the task of generating a document from
a macro plan (rather than a table) affords greater
control over the output text and plays to the advan-
tage of encoder-decoder architectures which excel
at modeling sequences. We evaluate model per-
formance on the RoToWIRE (Wiseman et al., 2017)
and MLB (Puduppully et al., 2019b) benchmarks.
Experimental results show that our plan-and-
generate approach produces output that is more
factual, coherent, and fluent compared with exist-
ing state-of-the-art models. Our code, trained
models, and dataset with macro plans can be
found at https://github.com/ratishsp
/data2text-macro-plan-py.

2 Related Work

Content planning has been traditionally consid-
ered a fundamental component in natural lan-
guage generation. Not only does it determine
which information-bearing units to talk about,
but also arranges them into a structure that
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creates coherent output. Many content plan-
ners have been based on theories of discourse
coherence (Hovy, 1993), schemas (McKeown
et al.,, 1997), or have relied on generic plan-
ners (Dale, 1989). Plans are mostly based on
hand-crafted rules after analyzing the target text,
although a few approaches have recognized the
need for learning-based methods. For example,
Duboue and McKeown (2001) learn ordering
constraints in a content plan, Konstas and Lapata
(2013) represent plans as grammar rules whose
probabilities are estimated empirically, while oth-
ers make use of semantically annotated corpora
to bootstrap content planners (Duboue and
McKeown, 2002; Kan and McKeown, 2002).

More recently, various attempts have been made
to improve neural generation models (Wiseman
et al., 2017) based on the encoder-decoder archi-
tecture (Bahdanau et al., 2015) by adding various
planning modules. Puduppully et al. (2019a) pro-
pose a model for data-to-text that first learns a
plan from the records in the input table and then
generates a summary conditioned on this plan.
Shao et al. (2019) introduce a Planning-based
Hierarchical Variational Model where a plan is
a sequence of groups, each of which contains a
subset of input items to be covered in a sentence.
The content of each sentence is verbalized, con-
ditioned on the plan and previously generated
context. In their case, input items are a rela-
tively small list of attributes (~28) and the output
document is also short (~110 words).

There have also been attempts to incorporate
neural modules in a pipeline architecture for
data-to-text generation. Moryossef et al. (2019)
develop a model with a symbolic text planning
stage followed by a neural realization stage. They
experiment with the WebNLG dataset (Gardent
et al., 2017) which consists of RDF ( Subject,
Object, Predicate ) triples paired with correspond-
ing text. Their document plan is a sequence of
sentence plans that in turn determine the division
of facts into sentences and their order. Along
similar lines, Castro Ferreira et al. (2019) pro-
pose an architecture composed of multiple steps
including discourse ordering, text structuring, lex-
icalization, referring expression generation, and
surface realization. Both approaches show the
effectiveness of pipeline architectures, however,
their task does not require content selection and
the output texts are relatively short (24 tokens on
average).


https://github.com/ratishsp/data2text-macro-plan-py
https://github.com/ratishsp/data2text-macro-plan-py

Although it is generally assumed that task-
specific parallel data is available for model
training, Laha et al. (2020) do away with this
assumption and present a three-stage pipeline
model which learns from monolingual corpora.
They first convert the input to a form of tuples,
which in turn are expressed in simple sentences,
followed by the third stage of merging simple
sentences to form more complex ones by aggre-
gation and referring expression generation. They
also evaluate on data-to-text tasks which have
relatively short outputs. There have also been
efforts to improve the coherence of the output,
especially when dealing with longer documents.
Puduppully et al. (2019b) make use of hierar-
chical attention over entity representations which
are updated dynamically, while Iso et al. (2019)
explicitly keep track of salient entities and mem-
orize which ones have been mentioned.

Our work also attempts to alleviate deficien-
cies in neural data-to-text generation models.
In contrast to previous approaches, (Puduppully
et al., 2019a; Moryossef et al., 2019; Laha et al.,
2020), we place emphasis on macro planning and
create plans representing high-level organization
of a document including both its content and
structure. We share with previous work (e.g.,
Moryossef et al. 2019) the use of a two-stage
architecture. We show that macro planning can
be successfully applied to long document data-to-
text generation resulting in improved factuality,
coherence, and fluency without any postpro-
cessing (e.g., to smooth referring expressions)
or recourse to additional tools (e.g., parsing or
information extraction).

3 Problem Formulation

We hypothesize that generation based on plans
should fare better compared to generating from a
set of records, since macro plans offer a bird’s-eye
view, a high-level organization of the document
content and structure. We also believe that macro
planning will work well for long-form text genera-
tion, that is, for datasets that have multi-paragraph
target texts, a large vocabulary space, and require
content selection.

We assume the input to our model is a set of
paragraph plans £ = {el}i‘l where e; is a para-
graph plan. We model the process of generating
output summary y given £ as a two step process,
namely, the construction of a macro plan x based
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on the set of paragraph plans, followed by the
generation of a summary given a macro plan as
input. We now explain how Z is obtained and
each step is realized. We discuss our model con-
sidering mainly an example from the MLB dataset
(Puduppully et al., 2019b) but also touch on how
the approach can be straightforwardly adapted to
RotoWIRE (Wiseman et al., 2017).

3.1 Macro Plan Definition

A macro plan consists of a sequence of paragraph
plans separated by a paragraph discourse marker
<P>, that is, z = e; <P> ¢; ... <P> ¢, where
ei,¢ej,ex € E. A paragraph plan in turn is a
sequence of entities and events describing the
game. By entities we mean individual players or
teams and the information provided about them in
box score statistics (see rows and column headings
in Figure 1 Table (A)), while events refer to infor-
mation described in play-by-play (see Table (B)).
In baseball, plays are grouped in half-innings.
During each half of an inning, a team takes its
turn to bat (the visiting team bats in the top half
and the home team in the bottom half). An exam-
ple macro plan is shown at the bottom of Figure 1.
Within a paragraph plan, entities and events are
verbalized into a fext sequence along the lines of
Saleh et al. (2019). We make use of special tokens
for the <TYPE> of record followed by the value
of record from the table. We retain the same posi-
tion for each record type and value. For example,
batter C.Mullins from Figure 1 would be verbal-
ized as <PLAYER>C.Mullins <H/V>H <AB>4
<BR>2 <BH>2 <RBI> 1 <TEAM>Orioles
.... For the sake of brevity we use shorthand
<V(C.Mullins) > for the full entity.

Paragraph Plan for Entities For a paragraph
containing entities, the corresponding plan will
be a verbalization of the entities in sequence.
For paragraphs with multiple mentions of the
same entity, the plan will verbalize an entity only
once and at its first position of mention. Paragraph
“Keller gave up a home run . . . the teams with the
worst records in the majors’” from the summary in
Figure 1 describes four entities including B. Keller,
C. Mullins, Royals and Orioles. The respective
plan is the verbalization of the four entities in
sequence: <V(B.Keller)> <V(C.Mullins)>
<V(Royals)> <V(0Orioles) >, where V stands
for verbalization and <V(B. Keller)> is a



shorthand for <PLAYER>B.Keller <H/V>V
<W>7 <L>5 <IP>8 ..., <V(Royals)>isa
shorthand for the team <TEAM>Royals <TR>9
<TH>14 <E>1, and so on.

Paragraph Plan for Events A paragraph may
also describe one or more events. For example,
the paragraph ‘‘With the score tied 1-1 in the
fourth ... 423-foot home run to left field to
make it 3-1"° discusses what happened in the
bottom halves of the fourth and fifth innings. We
verbalize an event by first describing the par-
ticipating entities followed by the plays in the
event. Entities are described in the order in which
they appear in a play, and within the same play
we list the batter followed by the pitcher, fielder,
scorer, and basemen. The paragraph plan corre-
sponding to the bottom halves of the fourth and
fifth inning is <V (4-B, 5-B)>. Here, <V (4-B,
5-B) > is a shorthand for <V(W.Merrifield)>
<V(A.Cashner)> <V(B.Goodwin)> <V(H.
Dozier)> ... <V(4-B,1)> <V(4-B,2)> ...
<V(5-B,1)> <V(5-B,2)>, and so on. The en-
tities <V(W.Merrifield)>, <V(A.Cashner) >,
<V(B.Goodwin) >, and <V(H.Dozier)> cor-
respond in turn to W. Merrifield, A. Cashner,
B. Goodwin, and H. Dozier while <V(5-B,1) >
refers to the first play in the bottom half of
the fifth inning (see the play-by-play table in
Figure 1) and abbreviates the following detailed
plan: <INN>5 <HALF>B <BATTING>Royals
<PITCHING>Orioles <PL-ID>1 <BATTER>
H.Dozier <PITCHER>A. Cashner> <ACTION>
Home-run <SCORES> Royals-3-Orioles-1,

and so forth.

The procedure described above is not specific
to MLB and can be ported to other datasets with
similar characteristics such as RoToWIRE. How-
ever, ROoTOWIRE does not provide play-by-play
information, and as a result there is no event
verbalization for this dataset.

3.2 Macro Plan Construction

We provided our definition for macro plans in the
previous sections, however, it is important to note
that such macro plans are not readily available in
data-to-text benchmarks like MLB (Puduppully
et al., 2019b) and RotoWIRE (Wiseman et al.,
2017) which consist of tables of records r paired
with a gold summary y (see Tables (A)—(C) in
Figure 1). We now describe our method for obtain-
ing macro plans x from r and y.

Similar to Moryossef et al. (2019), we define
macro plans to be conformant with gold sum-
maries such that (1) they have the same splits
into paragraphs—entities and events within a
paragraph in y are grouped into a paragraph plan
in x; and (2) the order of events and entities
in a paragraph and its corresponding plan are
identical. We construct macro plans by matching
entities and events in the summary to records
in the tables. Furthermore, paragraph delimiters
within summaries form natural units which taken
together give rise to a high-level document plan.

We match entities in summaries with entities
in tables using exact string match, allowing for
some degree of variation in the expression of
team names (e.g., A’s for Athletics and D-backs
for Diamondbacks). Information pertaining to
innings appears in the summaries in the form of
ordinal numbers (e.g., first, ninth) modifying the
noun inning and can be relatively easily identi-
fied via pattern matching (e.g., in sentences like
“Dozier led off the fifth inning’’). However, there
are instances where the mention of innings is more
ambiguous (e.g., ‘‘With the scored tied 1-1 in the
Jourth, Andrew Cashner (4—13) gave up a sacri-
fice fly’’). We could disambiguate such mentions
manually and then train a classifier to learn to
predict whether an inning is mentioned. Instead,
we explore a novel annotation-free method that
makes use of the pretrained language model GPT2
(Radford et al., 2019). Specifically, we feed the
context preceding the ordinal number to GPT2
(i.e., the current paragraph up to the ordinal
number and the paragraph preceding it) and if
inning appears in the top 10 next word predictions,
we consider it a positive match. On a held-out
dataset, this method achieves 98% precision and
98% recall at disambiguating inning mentions.

To resolve whether the summary discusses the
top or bottom side of an inning, we compare the
entities in the paragraph with the entities in each
half-inning (play-by-play Table (B) in Figure 1)
and choose the side with the greater number of
entity matches. For instance, Andrew Cashner,
Merrifield and fourth inning uniquely resolves to
the bottom half of the fourth inning.

3.3 Paragraph Plan Construction

Figure 1 shows the macro plan we obtain for
game summary (C). Importantly, macro plan (E)
is the outcome of a content selection process after
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considering several candidate paragraph plans as
input. So, what are the candidate paragraph plans
that give rise to macro plan (E)? To answer this
question, we examined the empirical distribution
of paragraph plans in MLB and RoToWIRE (train-
ing portion). Interestingly, we found that ~79% of
the paragraph plans in MLB refer to a single event
or a single player (and team(s)). In ROTOWIRE,
~92% of paragraphs are about a singleton player
(and team(s)) or a pair of players.

Based on this analysis, we assume that para-
graph plans can be either one (verbalized)
entity/event or a combination of at most two.
Under this assumption, we explicitly enumerate
the set of candidate paragraph plans in a game.
For the game in Figure 1, candidate paragraph
plans are shown in Table (D). The first table
groups plans based on individual verbalizations
describing the team(s), players, and events taking
place in specific innings. The second table groups
pairwise combinations thereof. In MLB, such
combinations are between team(s) and players. In
RoToWIRE, we also create combinations between
players. Such paragraph plans form set £ based
on which macro plan z is constructed to give rise
to game summary y.

4 Model Description

The input to our model is a set of paragraph plans,
each of which is a sequence of tokens. We first
compute paragraph plan representations € R",
and then apply a contextualization and content
planning mechanism similar to planning mod-
ules introduced in earlier work (Puduppully et al.,
2019a; Chen and Bansal, 2018). Predicted macro
plans serve as input to our text generation model,
which adopts an encoder-decoder architecture
(Bahdanau et al., 2015; Luong et al., 2015).

4.1 Macro Planning

Paragraph Plan Representation We encode
tokens in a verbalized paragraph plan e; as
{ei;}/") with a BILSTM (Figure 2, bottom part).
To reflect the fact that some records will be more
important than others, we compute an attention
weighted sum of {e; ; }'fjl following Yang et al.
(2016). Let d € R™ denote a randomly initialized
query vector learnt jointly with the rest of
parameters. We compute attention values «; ;j over
d and paragraph plan token representation e; ;:

o ; o exp(dTe; ;) (D
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o)

Content Selection

P31 P32 P33 .- DP3ps|

Figure 2: Paragraph plan representation and
contextualization for macro planning. Computation
of ey is detailed in Equations (1) and (2), e} in
Equation (3), and e§ in Equation (4).

Paragraph plan vector e; is the attention weighted
sum of € j (with Z Q5 = 1):
J

e = Z Q; ;€ j (2
J

Next, we contextualize each paragraph plan
representation vis-a-vis other paragraph plans
(Figure 2, top left part). First, we compute attention
scores [3; j, over paragraph plan representations to
obtain an attentional vector e?* for each:

Bii x exp(e] Wep)

c = Z Bi kek

kti
e’ = Wle;; c;] (3)

)

where W, € R™" ‘W, € R"*?" are parameter
matrices, and ) ;. 4 Bix = 1. Then, we compute
a content selection gate, and apply this gate to e;
to obtain new paragraph plan representation e;:

g; = sigmoid (eftt)
e =g Oe 4)

where © denotes element-wise multiplication.
Thus, each element in e; is weighted by cor-
responding element of g; € [0,1]" to obtain a
contextualized paragraph plan representation ef.

Content Planning Our model learns to predict
macro plans, after having been trained on pairs
of sets of paragraph plans and corresponding



Figure 3: Macro planning model; paragraph plan
representation and contextualization mechanism are
detailed in Figure 2. The output points to e, ez, and
e1 (see Equations (5) and (6)). EOM is end of macro
plan token.

macro plans (Sections 3.2 and 3.3 explain how
we obtain these for data-to-text datasets like
RoTtoWIRE and MLB). More formally, we model
macro plan 2z = z; ... z|;| as a sequence of point-
ers, with each zj pointing to an input paragraph
plan, ie., z; € {ez}l S decompose p(z|E),
the probability of macro plan z given paragraph
plans £, as:

|2
p(z|E) = [ [ p(2k|2<r, ) &)
k=1

where zo = 21 ... 2k 1.

We use Pointer Networks (Vinyals et al., 2015)
to model p(zx|z<k, E) as:

(2 = €i|z<k, E) x exp(h[Wipef)  (6)

where p(zx|z<k,E) is normalized to 1 and
W, € R**". Rather than computing a weighted
representation, Pointer Networks make use of
attention to point to specific elements in the
input (see Figure 3). We use a decoder LSTM to
compute hidden representation hy, at time step k.
We initialize hy with the mean paragraph plan
representation, avg({ef}gl). Once the output
points to e;, its representation e is used as input
to the next step of the LSTM decoder. The process
stops when the model points to EOM, a token
indicating end of the macro plan.

4.2 Text Generation

Recall that z is a sequence of pointers with
each entry z; pointing to a paragraph plan,
namely, z, € {ei}El. We can deterministically
obtain macro plan z from z by retrieving the
paragraph plans being pointed to, adding <P>
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separators in between. The conditional output
probability p(y|z) is modeled as:

|yl
p(ylz) = Hp Yely<t, )

where Yy« = y1 ... yr_1.

To compute p(y|x), we use an encoder-decoder
architecture enhanced with an attention mecha-
nism (Bahdanau et al., 2015; Luong et al., 2015).
We encode macro plan z with a bidirectional
LSTM (Hochreiter and Schmidhuber, 1997). At
time step ¢, we lookup the embedding of the previ-
ously predicted word y; 1 and feed it as input to the
decoder, which is another LSTM unit. The decoder
attends over hidden states of the macro plan to pre-
dict y;. We further incorporate a copy mechanism
(Gulcehre et al., 2016) in the decoder to enable
copying values directly from the macro plan.

We expect the text generation model to learn
to generate summary tokens while focusing on
the corresponding macro plan and that the output
summary will indeed follow the plan in terms of
the entities and events being described and their
order. At the same time, we believe that text gen-
eration is relatively easier as the encoder-decoder
model is relieved from the tasks of document
structuring and information selection.

4.3 Training and Inference

We train two independent models for macro plan-
ning and text generation. Our training objective for
macro planning aims to maximize the log likeli-
hood of the macro plan given the paragraph plans:

max Z logp (2|E;0)

(£,2)eD

where D is the training set consisting of pairs of
(sets of) paragraph plans and macro plans, and 6
are model parameters.

Our training objective for text generation aims
to maximize the log likelihood of the output text
given the macro plan:

max »  logp (ylw; )

(z,y)eF

where ¥ is the training set consisting of pairs
of macro plans and game summaries, and ¢ are
model parameters.



RoTOWIRE MLB
Vocab Size 11.3K 38.9K
# Tokens 1.5M 14.3M
# Instances 49K 26.3K
# Record Types 39 53
Avg Records 628 565
Avg Paragraph Plans 10.7 15.1
Avg Length 337.1 542.05

Table 1: Dataset statistics for RoTOWIRE and
MLB. Vocabulary size, number of tokens,
number of instances (i.e., table-summary pairs),
number of record types, average number of
records, average number of paragraph plans,
and average summary length.

During inference, we employ beam search to
find the most likely macro plan 2 among candidate
macro plans z’ given paragraph plans as input.

2 = arg max p(2'|E;0)
Z/
We deterministically obtain # from 2, and
output summary ¢ among candidate outputs 3’
given macro plan Z as input:

g = argmax p(y'|Z; )
y/

S Experimental Setup

Data We performed experiments on the
RoroWIRe (Wiseman et al., 2017) and MLB
(Puduppully et al., 2019b) benchmarks. The
details of these two datasets are given in Table 1.
We can see that MLB is around 5 times bigger,
has a richer vocabulary, and has longer game sum-
maries. We use the official splits of 3,398/727/728
for RotoWIRE and 22,821/1,739/1,744 for MLB.
We make use of a tokenization script' to deto-
kenize and retokenize the summaries in both
RoToWIRE and MLB.

We reconstructed the MLB dataset, as the
version released by Puduppully et al. (2019b)
had removed all paragraph delimiters from
game summaries. Specifically, we followed their
methodology and downloaded the same sum-
maries from the ESPN Web site? and added the
<P> delimiter to paragraphs in the summaries.’

'https://github.com/neulab/DGT.

’http://www.espn.com/mlb/recap?gameId=
{gameid}.

3 Although our model is trained on game summaries with
paragraph delimiters, and also predicts these at generation
time, for evaluation we strip <P> from model output.

517

RoTOWIRE does not have paragraph delimiters in
game summaries either. We reverse engineered
these as follows: (1) we split summaries into sen-
tences using the NLTK (Bird et al., 2009) sentence
tokenizer; (2) initialized each paragraph with a
separate sentence; (3) merged two paragraphs into
one if the entities in the former were a superset of
entities in the latter; (4) repeated Step 3 until no
merges were possible.

Training Configuration We tuned the model
hyperparameters on the development set. For
training the macro planning and the text gener-
ation stages, we used the Adagrad (Duchi et al.,
2011) optimizer. Furthermore, the text generation
stage made use of truncated BPTT (Williams and
Peng, 1990) with truncation length 100. We learn
subword vocabulary (Sennrich et al., 2016) for
paragraph plans in the macro planning stage. We
used 2.5K merge operations for RoTOWIRE and 8K
merge operations for MLB. In text generation, we
learn a joint subword vocabulary for the macro
plan and game summaries. We used 6K merge
operations for RoToWIRE and 16K merge oper-
ations for MLB. All models were implemented
on OpenNMT-py (Klein et al., 2017). We add to
set £ the paragraph plans corresponding to the
output summary paragraphs, to ensure full cover-
age during training of the macro planner. During
inference for predicting macro plans, we employ
length normalization (Bahdanau et al., 2015) to
avoid penalizing longer outputs; specifically, we
divide the scores of beam search by the length of
the output. In addition, we adopt bigram blocking
(Paulus et al., 2018). For MLB, we further block
beams containing more than two repetitions of a
unigram. This helps improve the diversity of the
predicted macro plans.

System Comparisons We compared our model
against the following systems: (1) the Template-
based generators from Wiseman et al. (2017)
for RoToWIRE and Puduppully et al. (2019b) for
MLB. Both systems apply the same principle, they
emit a sentence about the teams playing in the
game, followed by player-specific sentences, and
a closing sentence. MLB additionally contains a
description of play-by-play; (2) ED+CC, the best
performing system in Wiseman et al. (2017), is
a vanilla encoder-decoder model equipped with
an attention and copy mechanism; (3) NCP+CC,
the micro planning model of Puduppully et al.


https://github.com/neulab/DGT
https://www.espn.com/mlb/recap?gameId={gameid}
https://www.espn.com/mlb/recap?gameId={gameid}

(2019a), generates content plans from the table
by making use of Pointer networks (Vinyals
et al., 2015) to point to records; content plans are
encoded with a BILSTM and the game summary
is decoded using another LSTM with attention
and copy; (4) ENT, the entity-based model of
Puduppully et al. (2019b), creates dynamically
updated entity-specific representations; the text
is generated conditioned on the data input and
entity memory representations using hierarchical
attention at each time step.

6 Results

Automatic Evaluation For automatic evalua-
tion, following earlier work (Wiseman et al. 2017;
Puduppully et al. 2019a,b, inter alia) we report
BLEU (Papineni et al., 2002) with the gold sum-
mary as reference but also make use of the In-
formation Extraction (IE) metrics from Wiseman
et al. (2017), which are defined over the output
of an IE system; the latter extracts entity (players,
teams) and value (numbers) pairs in a summary,
and then predicts the type of relation. For instance,
given the pair Kansas City Royals, 9, it would
predict their relation as TR (i.e., Team Runs).
Training data for the IE system is obtained by
checking for matches between entity, value pairs
in the gold summary and entity, value, record type
triplets in the table.

Let y be the gold summary and y the model
output. Relation Generation (RG) measures the
precision and count of relations extracted from y
that also appear in records r. Content Selection
(CS) measures the precision and recall of relations
extracted from g that are also extracted from .
Content Ordering (CO) measures the normalized
Damerau-Levenshtein distance between the se-
quences of relations extracted from y and .

We reused the IE model from Puduppully et al.
(2019a) for RoToWIRE but retrained it for MLB
to improve its precision and recall. Furthermore,
the implementation of Wiseman et al. (2017)
computes RG, CS, and CO excluding duplicate
relations. This artificially inflates the performance
of models whose outputs contain repetition. We
include duplicates in the computation of the IE
metrics (and recreate them for all comparison
systems).

Table 2 (top) presents our results on the
RoTtoWIRE test set. In addition to Templ,
NCP+CC, ENT, and ED+CC we include the

RG CS CcO
# P%| P R% F% |DLD%
Templ 543 99.9| 27.1 57.7 36.9| 13.1 | 8.46

RoTOWIRE BLEU

WS-2017 341 75.1| 203 363 26.1| 124 |14.19
ED+CC 359 82.6| 19.8 33.8 249| 12.0 | 14.99
NCP+CC 40.8 87.6] 28.0 51.1 36.2| 15.8 |16.50
ENT 327 91.7| 34.7 485 40.5| 16.6 |16.12
RBF-2020 |44.9 89.5| 239 47.0 31.7| 143 |17.16
Macro 421 97.6] 34.1 57.8 429| 17.7 | 1546
—Plan(4) 36.2 81.3| 22.1 38.6 28.1| 12.1 | 14.00
RG CS CcO

MLB # P%| P R% F% |DLD% BLEU
Templ 62.3 99.9| 21.6 552 31.0| 11.0 | 4.12

ED+CC 32,5 91.3| 27.8 40.6 33.0| 17.1 | 9.68
NCP+CC 19.6 81.3| 44.5 44.1 44.3| 219 | 9.68

ENT 23.8 81.1| 40.9 495 44.8| 20.7 | 11.50
Macro 30.8 94.4| 40.8 549 46.8| 21.8 | 12.62
—Plan(SP,4)|25.1 92.7| 40.0 44.6 42.2| 21.9 |11.09

Table 2: Evaluation on RoToWIRE and MLB
test sets; relation generation (RG) count (#)
and precision (P%), content selection (CS)
precision (P%), recall (R%) and F-measure (F%),
content ordering (CO) in normalized Damerau-
Levenshtein distance (DLD%), and BLEU.

best performing model of Wiseman et al. (2017)
(WS-2017; note that ED+CC is an improved re-
implementation of their model), and the model of
Rebuffel et al. (2020) (RBF-2020), which repre-
sents the state of the art on RoTOWIRE. This model
has a Transformer encoder (Vaswani et al., 2017)
with a hierarchical attention mechanism over
entities and records within entities. The models
of Saleh et al. (2019), Iso et al. (2019), and Gong
et al. (2019) make use of additional information
not present in the input (e.g., previous/next games,
summary writer) and are not directly comparable
to the systems in Table 2. Results for the MLB
test set are in the bottom portion of Table 2.
Templ has the highest RG precision and count
on both datasets. This is not surprising, by design
Templ is always faithful to the input. How-
ever, notice that it achieves the lowest BLEU
among comparison systems, indicating that it
mostly regurgitates facts with low fluency. Macro
achieves the highest RG precision among all neu-
ral models for RoroWIRe and MLB. We obtain
an absolute improvement of 5.9% over ENT
for RotoWIRE and 13.3% for MLB. In addition,
Macro achieves the highest CS F-measure for
both datasets. On RotToWIRE, Macro achieves the
highest CO score, and the highest BLEU on MLB.
On RoTtoWIRE, in terms of BLEU, Macro is worse
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than comparison models (e.g., NCP+CC or ENT).
Inspection of the output showed that the opening
paragraph, which mostly describes how the two
teams fared, is generally shorter in Macro, lead-
ing to shorter summaries and thus lower BLEU.
There is high variance in the length of the opening
paragraph in the training data and Macro verbal-
izes the corresponding plan conservatively. Ideas
such as length normalization (Wu et al., 2016) or
length control (Kikuchi et al., 2016; Takeno et al.,
2017; Fan et al., 2018) could help alleviate this;
however, we do not pursue them further for fair
comparison with the other models.

The Contribution of Macro Planning To study
the effect of macro planning in more detail, we
further compared Macro against text generation
models (see Section 4.2) which are trained on
verbalizations of the tabular data (and gold sum-
maries) but do not make use of document plans or a
document planning mechanism. On RoTOWIRE, the
model was trained on verbalizations of players and
teams, with the input arranged such that the ver-
balization of the home team was followed by the
visiting team, the home team players and the visit-
ing team players. Mention of players was limited
to the four best ones, following Saleh et al. (2019)
(see —Plan(4) in Table 2). For MLB, we addition-
ally include verbalizations of innings focusing on
scoring plays which are likely to be discussed in
game summaries (see —Plan(SP,4) in Table 2).
Note that by preprocessing the input in such a
way some simple form of content selection takes
place simply by removing extraneous information
which the model does not need to consider.

Across both datasets, —Plan variants appear
competitive. On RoToWIRE —Plan(4) is better than
ED+CC in terms of content selection but worse
compared to ENT. On MLB, —Plan(SP,4) is again
superior to ED+CC in terms of content selection
but not ENT whose performance lags behind
when considering RG precision. Taken together,
these results confirm that verbalizing entities and
events into a text sequence is effective. At the
same time, we see that —Plan variants are worse
than Macro across most metrics which underlines
the importance of an explicit planning component.

Table 3 presents intrinsic evaluation of the
macro planning stage. Here, we compare the in-
ferred macro plan with the gold macro plans, CS
and CO metrics with regard to entities and events
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Macro CS-P CS-R CS-F CcO
RoToWIRE 81.3 73.2 77.0 45.8
MLB 80.6 63.3 70.9 314

Table 3: Evaluation of macro planning stage;
content selection precision (CS-P), recall (CS-
R), F-measure (CS-F), and content ordering (CO)
between the inferred plans and gold plans in terms
of entities and events for RoroWIrRe (RW) and
MLB test sets.

instead of relations. We see that our macro plan-
ning model (Macro) achieves high scores for CS
and CO for both RoToWIre and MLB. We further
used the CS and CO metrics to check how well the
generated summary follows the (predicted) plan.
We followed the steps in Section 3.2 and reverse
engineered macro plans from the model summa-
ries and compared these extracted plans with the
original macro plans with regard to entities and
events. We found that Macro creates summaries
that follow the plan closely: For RoToWIREg, the
CS F-score and CO are greater than 98%; for
MLB, the CS F-score is greater than 94% and CO
is greater than 89%. We show an output summary
for Macro in Table 4, together with the predicted
document plan.

Human-Based Evaluation We also asked par-
ticipants to assess model output in terms of relation
generation, grammaticality, coherence, and con-
ciseness (Wiseman et al., 2017; Puduppully
et al.,, 2019a; Puduppully et al., 2019b), For
RoTOWIRE, we compared Macro against RBF-
2020,* ED+CC, Gold, and Templ. For MLB, we
compared Macro against ENT, ED+CC, Gold,
and Templ.

We conducted our study on the Amazon
Mechanical Turk (AMT) crowdsourcing platform,
following best practices for human evaluation in
NLG (vander Lee et al., 2019). Specifically, to en-
sure consistent ratings, we required crowdworkers
to have an approval rating greater than 98% and
a minimum of 1,000 previously completed tasks.
Raters were restricted to English-speaking coun-
tries (i.e., US, UK, Canada, Ireland, Australia, or
NZ). Participants were allowed to provide feed-
back on the task or field questions (our interface
accepts free text).

“We are grateful to Clément Rebuffel for providing us
with the output of their system.



<V(Rays)> <P> <V(8-B)> <P> <V(Rays)> <P>
<V(Rays)> <V(Red Sox)> <P> <V(8-B)> <P> <V(8-T)>
<P> <V(9-T) > <P> <V(Clay Buchholz)> <P> <V(5-T)>
<P> <V(Edwin Jackson)> <P> <V(5-T)> <P> <V(8-T)>

ST. PETERSBURG, Fla. (AP) — The Tampa Bay Rays are making
the most of it. <P> Akinori Iwamura hit a two-run homer in the
eighth inning and the Rays beat the Boston Red Sox 2-1 on Sunday
to complete a three-game sweep. <P> The Rays, who have the best
record in the majors, have won six of their last seven games. <P>
The Rays have won four of their last five series, including three in
a row against the Red Sox, who have won six of their last seven
overall. <P> Dioner Navarro singled with one out in the eighth off
Clay Buchholz (1-2) and moved to third on Jason Bartlett’s flyout to
center. Iwamura then drove a 1-1 pitch into the left-field stands for
his second homer of the season. <P> Scott Dohmann (2-0) got the
win in relief, striking out Manny Ramirez with runners on first and
third to end the eighth. <P> Troy Percival worked the ninth for
his fifth save in five opportunities. <P> Clay Buchholz (1-2) gave
up two runs and three hits in eight innings. He struck out nine and
walked two. <P> The Red Sox loaded the bases with one out in the
fifth on a single by Coco Crisp, a wild pitch and a walk to Jed Lowrie.
Jacoby Ellsbury drove in Crisp with a two-out single to center. <P>
Jackson struck out four and walked three. <P> The Red Sox loaded
the bases with one out in the fifth on a single by Coco Crisp, a walk
to Jed Lowrie and a one-out walk to Jed Lowrie. Jackson struck out
Julio Lugo, but Jacoby Ellsbury singled to center to put the Red Sox
up 1-0. <P> The Red Sox threatened in the eighth when J. D. Drew
drew a two-out walk against Trever Miller, but Ramirez struck out to
end the inning.

Table 4: Predicted macro plan (top) with
corresponding model output (bottom). Entities and
events in summary corresponding to those in the
macro plan are boldfaced.

In our first study, we presented crowdworkers
with sentences randomly selected from summaries
along with their corresponding box score (and
play-by-play in case of MLB) and asked them to
count supported and contradicting facts (ignoring
hallucinations, i.e., unsupported facts). We did
not require crowdworkers to be familiar with
NBA or MLB. Instead, we provided a cheat sheet
explaining the semantics of box score tables. In
addition, we provided examples of sentences with
supported/contradicting facts. We evaluated 40
summaries from the test set (20 per dataset), 4 sen-
tences from each summary and elicited 3 responses
per summary. This resulted in 40 summaries X
5 systems x 3 raters, for a total of 600 tasks.
Altogether, 131 crowdworkers participated in this
study (agreement using Krippendorff’s o« was 0.44
for supported and 0.42 for contradicting facts).

As shown in Table 5, Macro yields the smallest
number of contradicting facts among neural mod-
els on both datasets. On RoTOWIRE the number
of contradicting facts for Macro is comparable
to Gold and Templ (the difference is not sta-
tistically significant) and significantly smaller
compared to RBF-2020 and ED+CC. The count
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RoTroWRE #Supp #Contra Gram Coher  Concis
Gold 3.63 0.07 38.33 46.25*  30.83
Templ 7.57%  0.08 —61.67* —52.92% —36.67*
ED+CC  3.92 0.91* 5.0 —8.33 —4.58
RBF-2020 5.08*  0.67* 13.33 4.58 3.75
Macro 4.00 0.27 5.0 10.42 6.67
MLB #Supp #Contra Gram Coher  Concis
Gold 3.59 0.14 21.67 30.0 26.67
Templ 4.21 0.04 —51.25% —43.75% 7.5
ED+CC 342 0.72% —=22.5%  —12.08*% —39.17*
ENT 3.71 0.73%* 5.83*  —0.83* —22.08*
Macro 3.76 0.25 46.25 26.67 27.08

Table 5: Average number of supported (#Supp)
and contradicting (#Contra) facts in game
summaries and best-worst scaling evaluation
(higher is better). Systems significantly different
from Macro are marked with an asterisk * (using
a one-way ANOVA with post hoc Tukey HSD
tests; p < 0.05).

of supported facts for Macro is comparable to
Gold, and ED+CC, and significantly lower than
Templ and RBF-2020. On MLB, Macro has sig-
nificantly fewer contradicting facts than ENT and
ED+CC and is comparable to Templ and Gold
(the difference is not statistically significant). The
count of supported facts for Macro is comparable
to Gold, ENT, ED+CC, and Templ. For both
datasets, Templ has the lowest number of contra-
dicting facts. This is expected as Templ essentially
parrots facts (aka records) from the table.

We also conducted a second study to evaluate
the quality of the generated summaries. We pre-
sented crowdworkers with a pair of summaries and
asked them to choose the better one in terms of
Grammaticality (is the summary written in well-
formed English?), Coherence (is the summary
well structured and well organized and does it have
a natural ordering of the facts?), and Conciseness
(does the summary avoid unnecessary repetition
including whole sentences, facts or phrases?). We
provided example summaries showcasing good
and bad output. For this task, we required that the
crowdworkers be able to comfortably compre-
hend NBA/MLB game summaries. We elicited
preferences with Best-Worst Scaling (Louviere
and Woodworth 1991; Louviere et al., 2015), a
method shown to be more reliable than rating
scales. The score of a system is computed as the
number of times it is rated best minus the number
of times it is rated worst (Orme, 2009). The scores



range from —100 (absolutely worst) to +100
(absolutely best). We divided the five competing
systems into ten pairs of summaries and elicited
ratings for 40 summaries (20 per dataset). Each
summary pair was rated by 3 raters. This resulted
in 40 summaries x 10 system pairs x 3 evaluation
criteria x 3 raters, for a total of 3,600 tasks. A
total of 206 crowdworkers participated in this task
(agreement using Krippendorff’s o« was 0.47).

As shown in Table 5, on RoToWIRE, Macro is
comparable to Gold, RBF-2020, and ED+CC in
terms of Grammaticality but significantly better
than Templ. In terms of Coherence, Macro is
comparable to RBF-2020 and ED+CC but signif-
icantly better than Templ and significantly worse
than Gold. With regard to Conciseness, Macro is
comparable to Gold, RBF-2020, and ED+CC, and
significantly better than Templ. On MLB, Macro
is comparable to Gold in terms of Grammaticality
and significantly better than ED+CC, ENT, and
Templ. Macro is comparable to Gold in terms of
Coherence and significantly better than ED+4-CC,
ENT and Templ. In terms of Conciseness, raters
found Macro comparable to Gold and Templ and
significantly better than ED+CC and ENT. Taken
together, our results show that macro planning
leads to improvement in data-to-text generation in
comparison to other systems for both ROTOWIRE
and MLB datasets.

7 Discussion

In this work we presented a plan-and-generate
approach for data-to-text generation that consists
of a macro planning stage representing high-level
document organization in terms of structure and
content, followed by a text generation stage.
Extensive automatic and human evaluation shows
that our approach achieves better results than ex-
isting state-of-the-art models and generates sum-
maries which are factual, coherent, and concise.
Our results show that macro planning is more
advantageous for generation tasks expected to
produce longer texts with multiple discourse
units, and could be easily extended to other sports
domains such as cricket (Kelly et al., 2009) or
American football (Barzilay and Lapata, 2005).
Other approaches focusing on micro planning
(Puduppully et al., 2019a; Moryossef et al., 2019)
might be better tailored for generating shorter
texts. There has been a surge of datasets recently
focusing on single-paragraph outputs and the task
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of content selection such as E2E (Novikova et al.,
2017), WebNLG (Gardent et al., 2017), and
WikiBio (Lebret et al., 2016; Perez-Belrachini
and Lapata, 2018). We note that in our model con-
tent selection takes place during macro planning
and text generation. The results in Table 2 show
that Macro achieves the highest CS F-measure
on both datasets, indicating that the document as
a whole and individual sentences discuss appro-
priate content.

Throughout our experiments we observed that
template-based systems score poorly in terms of
CS (but also CO and BLEU). This is primarily due
to the inflexibility of the template approach which
is limited to the discussion of a fixed number of
(high-scoring) players. Yet, human writers (and
neural models to a certain extent), synthesize
summaries taking into account the particulars of a
specific game (where some players might be more
important than others even if they scored less)
and are able to override global defaults. Template
sentences are fluent on their own, but since it
is not possible to perform aggregation (Reiter,
1995), the whole summary appears stilted, it lacks
coherence and variability, contributing to low
BLEU scores. The template baseline is worse for
MLB than RotoWIRE which reflects the greater
difficulty to manually create a good template for
MLB. Overall, we observe that neural models are
more fluent and coherent, being able to learn a
better ordering of facts which is in turn reflected
in better CO scores.

Despite promising results, there is ample room
to improve macro planning, especially in terms
of the precision of RG (see Table 2, P% column
of RG). We should not underestimate that Macro
must handle relatively long inputs (the average
input length in the MLB development set is ~3100
tokens) which are challenging for the attention
mechanism. Consider the following output of our
model on the MLB dataset: Ramirez’s two-run
double off Joe Blanton tied it in the sixth, and
Brandon Moss added a two-out RBI single off
Alan Embree to give Boston a 3-2 lead. Here, the
name of the pitcher should have been Joe Blanton
instead of Alan Embree. In fact, Alan Embree is
the pitcher for the following play in the half in-
ning. In this case, attention diffuses over the rela-
tively long MLB macro plan, leading to inaccurate
content selection. We could alleviate this prob-
lem by adopting a noisy channel decomposition



(Yee et al., 2019; Yu et al., 2020), that is, by
learning two different distributions: a conditional
model that provides the probability of translating
a paragraph plan to text and a language model that
provides an unconditional estimate of the output
(i.e., the whole game summary). However, we
leave this to future work.

For RorToWIRE, the main source of errors is
the model’s inability to understand numbers. For
example, Macro generates the following output:
The Lakers were the superior shooters in this
game, going 48 percent from the field and 30 per-
cent from the three-point line, while the Jazz went
47 percent from the floor and 30 percent from
beyond the arc. Here, 30 percent should have been
24 percent for the Lakers but the language model
expects a higher score for the three-point line, and
since 24 is low (especially compared to 30 scored
by the Jazz), it simply copies 30 scored by the
Jazz instead. A mechanism for learning better rep-
resentations for numbers (Wallace et al., 2019) or
executing operations such as argmax or minus (Nie
et al., 2018) should help alleviate this problem.

Finally, although our focus so far has been on
learning document plans from data, the decoupling
of planning from generation allows to flexibly
generate output according to specification. For
example, we could feed the model with manually
constructed macro plans, consequently controlling
the information content and structure of the output
summary (e.g., for generating short or long texts,
or focusing on specific aspects of the game).
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