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Abstract
Task-oriented dialogue systems typically rely
on large amounts of high-quality training data
or require complex handcrafted rules. However,
existing datasets are often limited in size con-
sidering the complexity of the dialogues.
Additionally, conventional training signal in-
ference is not suitable for non-deterministic
agent behavior, namely, considering multiple
actions as valid in identical dialogue states. We
propose the Conversation Graph (ConvGraph),
a graph-based representation of dialogues that
can be exploited for data augmentation, multi-
reference training and evaluation of non-
deterministic agents. ConvGraph generates
novel dialogue paths to augment data vol-
ume and diversity. Intrinsic and extrinsic
evaluation across three datasets shows that data
augmentation and/or multi-reference training
with ConvGraph can improve dialogue success
rates by up to 6.4%.

1 Introduction

Dialogue systems research focuses on the natural
language interaction between a user and an
artificial conversational agent. Current trends lean
towards end-to-end models (Bordes et al., 2017;
Miller et al., 2017) while modular systems tend to
be the preferred approach in industrial applica-
tions (Bocklisch et al., 2017; Burtsev et al., 2018).
At the core of a modular conversational agent
is dialogue management (DM), whose function
is to exchange information with a user, update
the agent’s internal state, and plan its next action
according to a policy (Young, 2000). The dialogue
manager then collects the user’s response and the
process repeats until the conversation ends. More
specifically, task-oriented dialogue managers are
aiming towards the completion of some specific
task or tasks (e.g., booking services or buying
products).

Machine-learned policies for DM require large
amounts of high-quality data to generalize to a
variety of conversational scenarios (El Asri et al.,
2017; Shah et al., 2018; Budzianowski et al., 2018;
Rastogi et al., 2019). However, given the com-
plexity of some tasks, the datasets are often lim-
ited in size. Reinforcement learning approaches
(Henderson et al., 2008; Bordes et al., 2017; Miller
et al., 2017; Li et al., 2017; Gordon-Hall et al.,
2020) can replace the need for explicit training
data by exploiting a custom-designed environ-
ment to infer the training signal for the policy.
Unfortunately, such custom-designed environ-
ments may not be representative of how a user
would interact with a conversational agent and
their manual development is time-consuming and
domain-specific. Furthermore, modern conversa-
tional agents exhibit non-deterministic behavior,
that is, they are able to take different but equally
valid actions in identical dialogue states. Con-
ventional agent training and evaluation do not
support the non-deterministic nature of conver-
sational datasets as only a single fixed target is
considered per inference, penalizing valid model
predictions.

To address these problems, we propose the
Conversation Graph (ConvGraph), a DM frame-
work for data augmentation, which also enables
the training and evaluation of non-deterministic
policies. If we consider each dialogue as a se-
quence of dialogue states, alternating between the
agent and the user, we assemble a graph struc-
ture by unifying matching states across all con-
versations in the dataset. New dialogue paths can
then be traversed in the graph resulting in novel
training instances that can improve the DM policy.
The unification simultaneously collects all valid
actions at each point in the dialogue to facilitate
the training and evaluation of non-deterministic
policies.

We consider the contribution of this paper to be
threefold. First, we explore several augmentation
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baselines as well as variants of ConvGraph aug-
mentation to show their impact on policy through
intrinsic and extrinsic evaluation. We show that
augmentation with ConvGraph leads to improve-
ments of up to 6.4% when applied in an end-to-
end dialogue system. In addition, we propose a
loss function that takes advantage of ConvGraph’s
unified dialogue states to increase the success rate
by up to 2.6%. Finally, we exploit ConvGraph to
introduce a multi-reference evaluation metric for
non-deterministic dialogue management.

2 Background

The idea of using graphs in dialogue systems is not
new (Larsen and Baekgaard, 1994; Schlungbaum
and Elwert, 1996; Agarwal, 1997), but it is lim-
ited to graphs representing flow charts where each
node is an action step in a sequence, without a spe-
cific semantic importance assigned to the nodes
themselves (Aust and Oerder, 1995; Wärnestål,
2005). On the other hand, the ConvGraph dialogue
state information is encoded in a structured way
for each node, allowing the unification of nodes
across conversations. It is primarily this structured
representation of dialogues that enables the use
of the graph for data augmentation by traversal
of new dialogue paths. It also allows for non-
deterministic training and evaluation by refer-
encing the graph to validate model predictions.

2.1 Data Augmentation

Data augmentation for dialogue management is
relatively unexplored and limited to increasing
training data volume with (random) data dupli-
cation/recombination (Bocklisch et al., 2017) or
general machine learning data transformations
such as oversampling and downsampling of ex-
isting samples (Chawla et al., 2002). We explore
variants of both strategies as additional baselines.
Related to our work is a recent paper on Multi-
Action Data Augmentation (MADA; Zhang et al.,
2019). Similarly to us, they are leveraging the fact
that a non-deterministic agent can take different
actions given the same dialogue state. However,
our methodologies then diverge sharply. While
we pursue data augmentation for DM, MADA
is applied towards the task of context-to-text
Natural Language Generation (Wen et al., 2017).
This necessitates fundamental differences such as
MADA not abstracting away slot values because
its states must be unified on literal values and

database results to generate the required natural
language response. MADA additionally does not
consider any dialogue history, hence this approach
is not suitable for dialogue management data
augmentation.

2.2 Training and Evaluation

ConvGraph enables the training and evaluation of
non-deterministic agents. When multiple actions
are equally valid in a particular dialogue state,
conventional ‘‘pointwise’’ machine learning train-
ing and evaluation adversely influences, even
penalizes otherwise correct predictions. Multi-
reference training (sometimes called ‘‘soft loss’’)
has been used for this reason, for example, to
improve the application of Maximal Discrepancy
to Support Vector Machines (Anguita et al., 2011)
as well as to boost performance for noisy image
tag alignments (Liu et al., 2012). Multi-reference
evaluation has been the standard for language gen-
eration tasks in NLP, as it accounts for the non-
deterministic nature of language output. In some
cases, both soft training and evaluation have been
used—for example, for decision tree learning with
uncertain clinical measurements (Nunes et al.,
2020) to mitigate the impact of hard thresholds.

3 The Conversation Graph

This section describes how dialogues are unified
into a graph representation useful for data aug-
mentation, model training, and evaluation.

3.1 Key Concepts

In a task-oriented dialogue system, the user in-
teracts with an agent through natural language in
order to achieve a specific goal. Every user or
agent utterance corresponds to a dialogue act
(da) (see Figure 1), that is, an abstract repre-
sentation typically consisting of an intent and
a set of slots with corresponding values. The
intent denotes the abstract communication goal
of the user or agent and the slot (s) - value (v)
pairs encode the entities provided in an utterance.
For example, inform{destination = London}
denotes that the communication goal is to inform
the listener that the value of the destination
slot is ‘‘London’’. The values of all slots in a
given turn constitute the belief state (bs) such
that bs = [(s1 = v1), (s2 = v2) , ... (sn = vn)].
After each dialogue turn, the bs is updated as
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Figure 1: Two dialogues with different utterances (in plain text) but identical da sequences of (multi)
intents and slots, entities (in plain text) and slot values. These dialogues follow identical edges/nodes
in ConvGraph.

the dialogue proceeds towards the goal. Note
that we may observe multiple intents at each
turn, depending on the design of the dialogue
system. We finally define the dialogue state (ds),
which is a concatenation of bs and da at each
turn.

3.2 Construction

We treat each dialogue D as a sequence of n
encoded turns such that D = [ds0, ds1, ds2, . . . ,
dsn] where ds0 is the start state and dsn is the
end state. ConvGraph is defined as a directed
graph ConvGraph = (N,E) where N is a set of
nodes, each corresponding to a dialogue state
dsi and E, which is the set of edges (transitions)
between any two nodes. An edge corresponds to
a user or an agent dialogue act. Its frequency
is also recorded, as observed in the data.
Algorithm 1 shows how multiple dialogues (DS)
are converted into a conversation graph such
that nodes that are identical are unified. As a
result, dialogue sequences intersect on common
nodes (see Figure 2). During this unification, we
infer which actions are valid, given the same
ds. We additionally append an artificial final
state to each dialogue to explicitly mark the
end of the conversation for datasets where a
‘‘task complete’’ indicator is not present (Shah
et al., 2018).

Data: Dialogues DS
Result: ConvGraph CG
ds0 = zeros(|ds|) //empty start state
CG = empty directed graph
for D in DS do

lastState = ds0
for turn in D do

ds = encode(turn[bs], turn[da])
CG.newEdge(lastState, ds)
lastState = ds

end
end

Algorithm 1: Dialogues unified into a graph.

3.3 Data Augmentation

The aim of DM in a modular dialogue system is
to learn a policy to predict an appropriate agent
action (dialogue act da) at turn t, conditioned
on the history of previous dialogue states PDS.
We define a policy πθ(dat|PDS) where PDS =
[dst−1, dst−2, .., dst−n] and n = history length.
Machine-learned policies can benefit from ad-
ditional training instances in order to better ge-
neralize and reduce overfitting. This leads us to
ConvGraph’s first application, the inference of
additional training signal that can be used to train
a DM policy.

Augmentation by Most Frequent Sampling is
our main method. In order to generate training
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Figure 2: ConvGraph unification with four fictitious dialogues, which intersect on identical dialogue
states.

instances from ConvGraph, we visit all nodes and
extract (dat|PDS) pairs for the policy. Because an
exhaustive traversal of ConvGraph is unrealistic
due to its size and connectivity on the datasets
we considered, we need a strategy to select the
most useful pairs. In preliminary experiments, we
performed uniform sampling among the outgoing
edges at each agent node. This was not promising,
as it ignored the likelihood of agent actions.
Instead, for each agent node in ConvGraph, we
exclusively choose the most frequent outgoing
edge, as observed in the original data. This
process pairs frequent actions with a new history
(context) thus creating new training examples. It
also results in a reduction of actions at each agent
node, decreasing conflicting training signals for
the policy. This approach for inferring training
instances, which can be combined with the original
data, resulted in the most effective experimental
setup (Results 5). We refer to this method as MFS
henceforth.

Oracle Augmentation is featured in our
experiments to explore the performance impact
of oracle-guided augmentation. An oracle in
this context represents an information source
that can be queried to obtain additional (but
incomplete) information about the development
and test set. More specifically, while generating
novel instances with ConvGraph, the oracle can
tell us which novel training examples occur
in the development and/or test set. The oracle
confirms whether a new training example will
be informative to the DM policy and likely lead
to higher development/test scores. Adding these
instances to the original training data creates
another challenging baseline policy. Please note
that this baseline is designed for theoretical

comparisons only as obtaining this type of strong
information source is not possible in real settings.

3.4 Additional Augmentation Approaches

To the best of our knowledge, there are few
comparable data augmentation methods for DM.
The following are the most relevant baselines that
were included in our experiments.

Downsampling removes duplicate training
examples, thus results in only unique instances
being included in training. This action therefore
reduces the size of (and balances) the train set.
Downsampling is related to SMOTe, the Synthetic
Minority Oversampling Technique (Chawla et al.,
2002), particularly its later variants (Han et al.,
2005), which aim to balance the training data by
oversampling rare cases. This has been shown to
improve classifier performance (Maciejewski and
Stefanowski, 2011; Ramentol et al., 2012).

Data Duplication is an adaptation of dialogue
concatenation and/or recombination, available in
some dialogue systems although this has not been
rigorously evaluated (Bocklisch et al., 2017).
Our implementation takes care to combine the
state sequences in a way that does not introduce
inconsistent state transitions, for example, starting
a new conversation without resetting the dialogue
state, which would result in skipping some
required steps.

3.5 Multi-Reference Evaluation

Before we describe the full evaluation procedure,
we briefly introduce the Evaluation Graph
(denoted ‘‘eval’’ in Table 1). This is a regular
conversation graph constructed from all data splits
using Algorithm 1. The EvalGraph serves as a
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reference tool used to look up the list of valid
actions for each agent node.

The EvalGraph allows us to pool all observed
agent actions into a single graph and use it to score
policy predictions. We evaluate the predicted
dialogue act ŷ against all of the valid target
dialogue acts Y and report the greatest score (see
Equation 1). For example, if Y = [request(time,
date), request(time) and request(date)] and ŷ =
request(time), then the maximum score is
awarded. In our experiments, this modification
of the F-score (Pedregosa et al., 2011) is referred
to as SoftF1. The running time is approximately
an order of magnitude slower.

SoftF1(ŷ, Y ) = max([F1(y, ŷ) ∀y ∈ Y ]) (1)

3.6 Multi-Reference Training

Most conversational datasets, including ones
featured in the evaluation (see 4.1), contain user
interactions with non-deterministic agents. Given
more than one valid response in a given state,
conventional single-reference ‘‘hard’’ training
penalizes the model for making a valid prediction.
Propagating such a loss is likely to lead to a
deteriorating dialogue management policy.

BCE(y, ŷ)=−
|y|∑

i=1

yi log(ŷi)+ (1−yi) log(1−ŷi) (2)

We therefore modify the Binary Cross-Entropy
(BCE) loss from Equation 2 to propose the Soft
Binary Cross-Entropy (SBCE) seen in Equation 3.
SBCE uses ConvGraph to compute losses for all
valid actions Y in a given dialogue state ds. SBCE
then propagates the lowest loss for ŷ. Training time
with SBCE increases by an order of magnitude
because multiple references are considered.

SBCE(ŷ, Y ) = min([BCE(y, ŷ) ∀y ∈ Y ]) (3)

4 Experimental Setup

Next, we describe the platform, datasets, and
metrics used throughout our experiments.

4.1 Datasets

There are two main approaches to dataset cons-
truction for dialogue systems. Machines talking

to machines (M2M) is a data generation frame-
work that makes use of rule-based user and agent
simulators that interact to generate sequences of
dialogue acts. Also known as Dialogue Self-
Play (Shah et al., 2018), crowd workers proceed
to lexicalize them to produce corresponding
natural utterances. This approach has two main
limitations: (i) both simulators must be hand-
coded and (ii) there is no guarantee that the
simulators generate realistic conversations. Other
examples of such datasets include AirDialogue
(Wei et al., 2018) and Schema Guided Dialogue
(Rastogi et al., 2019). The second approach is
collecting dialogues through a Wizard of OZ
(WOZ; Dahlbäck et al., 1993; Strauß et al.,
2006) setting, which has been used to gather
the DSTC2 (Henderson et al., 2014), WOZ 2.0
(Wen et al., 2017), Frames (El Asri et al., 2017),
Microsoft E2E Challenge (Li et al., 2018), and
MultiWOZ (Budzianowski et al., 2018) datasets.
The collection process involves two humans
conversing, one acting as the agent and the other
as the user. In standard WOZ, the user is led to
believe that the agent is artificial rather than a
human. This helps ensure that gathered dialogues
reflect how users interact with machine-driven
agents.

For our experiments, we use three datasets with
original splits, both human and machine gener-
ated to ensure the applicability of our methods
to a variety of conversational scenarios. These
are the movie and restaurant partitions of M2M
and the extended version of MultiWOZ 2.0
(Lee et al., 2019) with user intent annotations.
Note that the original dataset has since been cor-
rected and released as MultiWOZ 2.1 (Eric et al.,
2020). The descriptive statistics for each dataset
can be found in Table 1. ConvGraph requires
user/system intents and other dialogue annota-
tions, thus several aforementioned datasets were
not compatible.

4.2 Test Set Deduplication

All test sets contain some degree of duplicate
instances. Table 1 shows the highest duplication
(# unique / # instances) for M2M restaurant
(∼61% unique), followed by M2M movie (∼75%
unique), and MultiWOZ (∼96% unique). For a
more complete evaluation, we present results
on two test sets for each dataset. Besides the
original data, we also evaluate on a deduplicated

40



test set. This ensures that changes in model
performance are not disproportionately influenced
by duplicated instances.

4.3 End-to-end User Simulation

ConvLab (Lee et al., 2019) is an end-to-end
dialogue system platform built to support the
MultiWOZ dataset (Budzianowski et al., 2018),
a collection of human-to-human conversations
spanning multiple domains and one of the largest
annotated task-oriented corpora for dialogue.
ConvLab allows an agent to interact with the
user simulator via dialogue acts, and supports
reinforcement learning, supervised learning, and
rule-based agents. It can be used as an eval-
uation platform to test modular, task-oriented
conversational agents in an end-to-end fashion
and has been used in this capacity at the Eighth
Dialog System Technology Challenge (Kim et al.,
2019). We use ConvLab for extrinsic evaluation
of DM policies. Note that the platform does
not support the entirety of actions occurring in
MultiWOZ. We adapt our policies’ output action
space accordingly, so that we are compatible with
ConvLab and able to duly perform the extrinsic
evaluation.1

4.4 Metrics

We evaluate policies intrinsically and extrin-
sically, the latter through the ConvLab user
simulator and limited to MultiWOZ since the
dialogue system framework for M2M is proprie-
tary and unavailable. For extrinsic evaluation, the
main automatic metric is success rate (Kim et al.,
2019), averaged over 1000 conversations or epi-
sodes. A dialogue is considered successful if all
informable slots (what the agent needs to com-
plete the task) and requestable slots (what the
user wants to know) were correctly filled. We
also report the average number of dialogue turns.
For intrinsic evaluation, we use SoftF1 scores
(Section 3.5) alongside the conventional F-scores

1Please note that we are not excluding any portion of the
MultiWOZ data. When multiple actions are taken in the same
turn, ConvLab handles them as a single concatenated action,
e.g., inform(departure) and inform(destination) are treated as
inform(departure+destination). Due to this paradigm, every
action combination needs to be treated distinctly by ConvLab.
As the number of combinations is large, the user simulator
is restricted to the 300 most frequent combined actions. Any
policy’s output needs to comply to the restricted action space.

(Pedregosa et al., 2011). We refer to the latter as
HardF1 as it is computed strictly against a single
target y ∈ Y , even if another prediction ŷ was
valid under a ‘‘soft’’ evaluation because ŷ ∈ Y .
In other words, when the agent is able to pre-
dict multiple different valid actions Y , the SoftF1
score reports the lowest error for any y ∈ Y while
HardF1 reports the error for exactly one y ∈ Y .
Using only HardF1 can lead to unfair penalties for
otherwise correct predictions. HardF1 and SoftF1
are computed using ‘‘samples’’ averaging, that is,
score each prediction separately, then average for
an overall score. This is the most realistic scenario
for the DM task as it evaluates the quality of each
interaction without pooling or averaging predic-
tions over multiple turns. ‘‘Micro’’ and ‘‘macro’’
averages can underestimate or exaggerate changes
in predictions, particularly for infrequent classes.

4.5 Policy Implementation

As the approaches we examine are orthogonal
to the policy implementation, in order to mini-
mize the influence of hyperparameter/architecture
choice, we have fixed the model for training and
evaluation across all experiments. We have used
an LSTM (Hochreiter and Schmidhuber, 1997)
model with default PyTorch hyperparameters
to train all DM policies. We learn a policy
πθ(dat|PDS) where t is the current agent turn,
PDS = [dst−1, dst−2, .., dst−n] are the previous
dialogue states, and n is the history length. In
our experiments, we set n to 3, 4, and 5. For
brevity, the Results (section 5) feature scores with
history set to 4 as the differences are negligi-
ble. We proceed to encode PDS with the LSTM
with a hidden layer size of 256. We explored
several hidden sizes between 64 (underfitting)
and 512 (overfitting) but the relative rank and
differences between experimental setups were not
affected. The LSTM output is passed through a
ReLu (Nair and Hinton, 2010) activation followed
by a linear layer with a sigmoid activation and
size equal to the output size. The output size
is the number of distinct labels in the observed
dialogue acts. The input size is equal to |ds|,
that is, output size + the encoded belief state
size. The model parameter counts are as follows:
M2M movie (299K) with input size of 31 and
output size of 12, M2M restaurant (314K) with
input size of 45 and output size of 16, and
MultiWOZ (707K) with input size of 355 and
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Dataset Edges Repetition Nodes MND # dial # instances # unique

M2M-R train 1,767 84.3% 725 2.48 1,116 5,059 2,492
M2M-M train 978 72.5% 472 2.01 384 1,589 1,063
M-WOZ train 82,097 27.7% 55,783 1.41 8,434 56,753 51,288
M2M-R val 935 64.4% 533 1.8 349 1,140 812
M2M-M val 498 56.1% 279 1.86 120 507 397
M-WOZ val 12,744 13.5% 10,140 1.27 999 7,365 7,116
M2M-R test 1,541 74.7% 706 2.26 775 2,661 1,631
M2M-M test 842 63.8% 436 1.82 264 1,100 822
M-WOZ test 12,659 14.1% 10,094 1.27 1,000 7,372 7,076
M2M-R eval 2,563 87.2% 959 2.69 2,240 8,860 3,795
M2M-M eval 1,458 79.6% 619 2.24 768 3,196 1.850
M-WOZ eval 101,864 28.8% 67,517 1.44 10,433 71,487 64,054

Table 1: Statistics of standard data splits; eval = train + val + test splits; MND = Mean
Node Degree, the average number of outgoing edges (higher number means a denser graph);
# instances = number of training instances of which # unique are unique; # dial = number of
dialogues; Repetition = percentage of edges visited more than once.

output size of 309. Training with batch size of 32,
the development set HardF1 score was monitored
for early stopping with a patience of 5 for the
M2M models and 3 for MultiWOZ policies. For
an illustration of computational requirements, a
MultiWOZ experiment with SBCE loss training
on an NVIDIA GeForce RTX 2080 GPU Ti 11GB
takes ∼2.5 hours.

The output space of dialogue management
models can be framed as either multi-class
classification or multi-label classification. In some
dialogue systems (Bocklisch et al., 2017), actions
are predicted and executed one at a time, which
lends itself to multi-class classification with a
Cross-Entropy loss as the probability of the
target label is maximized while all other label
probabilities are minimized. However, in most
conversational research datasets 4.1, several target
labels are jointly predicted. We consider multi-
label classification with BCE (Equation 2) or
SBCE loss function (Equation 3) to be more
suitable for this type of DM task. An increase
in the number of dialogue acts means that the
output vector size would grow at a constant
rate when considering multi-label classification
but would grow exponentially with multi-class
classification. This is not scalable beyond any but
the simplest dialogue systems. Therefore, multi-
label classification allows for a highly expressive
agent using a small target vector while also being
more sample-efficient.

According to extrinsic evaluation in ConvLab,
this configuration leads to a 73.4% success rate
and 10.11 turns as the average conversation length
(Table 4). Therefore, our (multi-label) baseline
achieves stronger results than the baseline used in
the Eighth Dialog System Technology Challenge
(Li et al., 2020), which reached a 61% success
rate and 11.67 turns on average. Note that our
data-augmentation approach and loss function are
orthogonal to the choice of the DM model.

4.6 Statistical Significance
Ten models were trained for each experiment to
determine the mean and variance under various
random seeds. We then perform an Analysis of
Variance followed by a two-tailed t-test (samples
with unequal variance). In Tables 2 and 3, sig-
nificant differences are noted with an asterisk (*).

5 Results and Analysis

Tables 2 and 3 show intrinsic evaluation results for
DM policies with a history of 4, trained with BCE
and SBCE loss, respectively. The H-F1 columns
denote HardF1 scores, and the S-F1 columns
denote SoftF1 scores. Table 4 presents the results
of extrinsic evaluation in ConvLab.

5.1 Graph (Dataset) Properties
Conversational datasets have very distinct proper-
ties that will help us interpret the observed results.
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Datasets BASE (B) D-SAMPLE DATA DUPL MFS MFS + B ORACLE + B
Metrics H-F1 S-F1 H-F1 S-F1 H-F1 S-F1 H-F1 S-F1 H-F1 S-F1 H-F1 S-F1

M2M (R) 66.9 93.3 61.9* 85.6* 65.4* 92.5 65.0* 94.9 67.1 95.6* 68.8* 94.4
M2M (M) 65.4 90.7 65.4 91.5 64.9 91.4 65.4 95.2* 66.5* 93.7* 68.3* 93.1*
M-WOZ 46.6 67.9 45.6* 66.7* 46.6 67.9 46.4 73.9* 46.6 69.0* 46.6 67.5
M2M (R) 61.7 91.8 59.4* 86.6* 60.8 91.0 60.0* 95.8* 61.7 95.0* 63.8* 92.5
M2M (M) 69.8 91.0 69.9 90.8 69.7 91.1 69.4 94.7* 69.9 93.1* 72.2* 92.3*
M-WOZ 45.9 66.5 45.3 65.6 45.8 66.4 45.5 72.6* 45.9 67.9 46.0 66.4
M2M (R) 65.8 93.4 60.1* 85.8* 64.7 92.6 64.8 95.9* 66.3 96.0* 67.8* 94.1
M2M (M) 71.5 92.0 71.4 92.2 71.4 92.5 71.2 95.6* 71.7 94.1* 73.8* 93.6*
M-WOZ 46.5 67.1 45.4* 65.8* 46.4 67.2 46.3 73.7* 46.6 68.6* 46.7 67.1

Table 2: DM policies using the BCE loss. Development Set (top three rows), De-duplicated Test Set
(middle three rows), Original Test Set (bottom three rows). * denotes statistically significant (p < 0.05)
from baseline. Bold figures indicate the best performing method(s) for each of the two metrics and for
each row (experimental setting).

An intrinsic view of the data shown in Table 1 can
be used to infer the approximate performance of
the DM policies, even before any training.

The MultiWOZ graph has the most complex
dialogue state due to its multi-domain nature.
Its EvalGraph, initiated from all MultiWOZ
partitions, has ∼100K edges, which is 40 times
more than M2M restaurant and almost 70 times
more than M2M movie. However, the number of
shared edges between the train graph (n = 82K)
and the development graph (n = 12.7K) is only
2.7K. The train and test (n = 12.7K) graphs also
share 2.7K edges. Once featurized into training
instances, the overlaps are even smaller, approx-
imately 800 out of 7.3K for both test and dev
sets. This enables us to predict that the available
data is almost certainly insufficient to learn a
supervised DM policy with F-scores approaching
1.0, regardless of the model architecture. The
dialogue state and target vector are too complex
for the amount of data provided (71.5K in-
stances of which ∼90% is unique). Scenarios
significantly different from ones observed in
training effectively demand a zero-shot transfer
to unseen test instances. However, since dialogue
acts consist of multiple labels, the model is able to
predict many of them correctly, which is why in
extrinsic evaluation, the best policy successfully
handles almost 80% of dialogues.

The M2M Restaurant graph is quite different
from MultiWOZ beyond just the size difference.
It is important to look at graph connectivity
such as the average outgoing edges (MND in
Table 1) and the amount of repetition (percentage

of edges visited more than once). This dataset
has the highest density (2.69 MND) and repetition
(87.2%). It also has the most shared edges between
train (n = 1,767), development (n = 935), and test
(n= 1,541) graphs. The train graph shares 629 and
951 edges with the development and test graphs
respectively, a high percentage and the opposite
of MultiWOZ. Perhaps unsurprisingly, the policy
performance for both M2M restaurant and M2M
movie is much higher than MultiWOZ.

The M2M Movie graph is approximately half
the size of M2M restaurant in terms of nodes
and edges. This means a lower dialogue state
variety but it comes with a lower number of total
dialogues (n = 768 versus n = 2,240). Repetition
(79.6% versus 87.2%) is also lower while the
shared edges between train (n = 978), validation
(n = 498) and test (n = 842) graphs are similar
to M2M restaurant (65% with dev and 59% test).
It is perhaps unsurprising that these datasets were
generated with the same probabilistic automata,
given their similarities. The repetition (or lack
thereof) in dialogues strongly contributes to the
differences across experimental results.

5.2 SoftF1 and HardF1 Score

Using two evaluation metrics helps us understand
experimental results from different angles. The
most important contribution of the addition of
the SoftF1 score is being able to measure the
error of the best valid response in each agent
state, making evaluation fairer by not penal-
izing otherwise correct predictions. While we
recommend to strive to improve both scores, we
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Datasets BASE (B) D-SAMPLE DATA DUPL MFS MFS + B ORACLE + B
Metrics H-F1 S-F1 H-F1 S-F1 H-F1 S-F1 H-F1 S-F1 H-F1 S-F1 H-F1 S-F1

M2M (R) 54.5 98.0 55.2 97.8 55.2 97.3 54.3 97.0 54.7 98.0 55.5 98.6
M2M (M) 56.8 97.1 57.8 96.4 56.1 96.4 59.8* 97.1 56.9 96.2 56.2 96.6
M-WOZ 43.7 77.7 43.6 77.8 43.3 77.4 47.4* 78.2 43.2 77.5 43.6 78.2
M2M (R) 48.8 96.7 49.5 96.9 48.9 96.1 48.1 96.6 49.0 96.8 49.7 97.9*
M2M (M) 61.1 96.4 61.3 95.7 60.6 95.7 61.4 96.6 60.9 95.7 60.5 95.8
M-WOZ 44.1 76.4 44.1 76.8 44.2 76.6 47.2* 77.0 43.2 76.0 43.9 77.0
M2M (R) 53.6 97.8 54.0 97.9 53.7 97.3 53.2 97.3 53.4 97.9 54.2 98.7*
M2M (M) 60.0 97.0 61.0 96.4 59.5 96.3 62.2* 97.1 60.0 96.3 59.5 96.5
M-WOZ 43.7 77.4 43.6 77.8 43.6 77.6 47.5* 77.8 42.9 77.0 43.4 77.8

Table 3: DM policies using the SBCE loss. Development Set (top three rows), De-duplicated Test
Set (middle three rows), Original Test Set (bottom three rows). * denotes statistically significant
(p < 0.05) from baseline. Bold figures indicate the best performing method(s) for each of the two
metrics and for each row (experimental setting).

observe that an improved SoftF1 score is more
likely to lead to successful conversations as it
promotes the choice of actions that lead to fewer
policy errors in training. In extrinsic evaluation,
this translates into a higher probability of the agent
navigating a conversation from start to end hence
higher SoftF1 scores with samples averaging are
preferred for DM.

5.3 BCE and SBCE Loss
Conventional BCE loss encourages the policy to
learn all available actions, aiming to maximize
the HardF1 score on the test set. Training with
SBCE may lead to less diverse agent responses,
however, both intrinsic and extrinsic scores show
consistent improvements over BCE of around 5
SoftF1 points for M2M datasets and 10 points
for MultiWOZ. The declining HardF1 scores do
not correlate with lower success rates in end-
to-end evaluation (see Table 4). The strongest
effect of SBCE is that most differences between
experiments observed in Table 2 were neutralised.
HardF1 scores decrease to roughly same levels
while SoftF1 scores increase to their highest
levels (with a few statistically significant results).
We think this is because the SBCE loss may
lead the policy to converge to approximately the
same actions. We also observe that even without
augmentation, the DM policy can be significantly
improved with SBCE alone.

5.4 Downsampling
Downsampling reduces the original data size by
filtering out duplicate instances. This has a similar
effect as oversampling infrequent examples,

that is, reducing biases towards some training
instances. Downsampling ignores the likelihood
of agent actions as observed in the original data,
an effect also seen with uniform sampling in
Section 3.3. For M2M restaurant, which has the
highest repetition and therefore the most biased
paths through the graph, this leads to a substantial
decline in F1-scores. Specifically: (i) the ‘‘rating’’
slot score dropped by 70%, (ii) the ‘‘time’’
and ‘‘date’’ slots dropped by 41%, and (iii)
the ‘‘confirm’’ intent decreased by 26%. Similar
trends were observed in MultiWOZ scores but to
a lesser extent. The M2M movie dataset contains
relatively little repetition hence we observed
no significant changes. Downsampling is more
suitable for dialogues with more evenly distributed
agent actions.

5.5 Data Duplication
Training data duplication did not produce any
significant changes as compared to the baseline.
Over all dialogue histories, the SoftF1 and HardF1
scores fluctuate around the original training
data scores without any consistent patterns. This
augmentation only seems effective in ultra-low
data regimes (Bocklisch et al., 2017), where one
possesses at most a few dozen training dialogues.

5.6 Most Frequent Sampling
MFS generates novel training instances so that the
most frequent agent actions are preceded by new
histories, that is, one or more original paths leading
to common actions. Due to this, the infrequently
visited edges effectively get pruned from the
graph, leading to a ∼20% reduction in size
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BASE (B) MFS B+MFS Oracle
Success #Turns Success #Turns Success #Turns Success #Turns

BCE 73.4% 10.11 72.4% 9.91 79.8% 9.03 70.2% 10.43
SBCE 75.3% 9.01 76.0% 9.60 76.0% 9.55 73.8% 9.24

Table 4: MultiWOZ success rate and the average number of turns with a user simulator
over 1000 dialogues.

compared to baseline data for MultiWOZ, ∼50%
for M2M (M), and ∼60% reduction for M2M (R).
Repetition is also removed so that each training
example occurs exactly once. As a consequence,
the overlap between MFS train and dev/test
sets is also reduced by 40%–60% compared to
baseline. In spite of having substantially fewer
paths through the graph, this is the most effective
intervention from a data standpoint. We should
note that when combined with SBCE, MFS is
no longer considering the most probable action
exclusively, as the training will defer to an
equally valid action if the calculated loss is
lower. Due to this, MFS achieves the highest
SoftF1 with BCE loss without sacrificing HardF1.
In cases where MFS alone is less effective, it
can be combined with the baseline training data
to achieve best performance. MFS achieves the
best HardF1 when combined with SBCE (except
M2M restaurant). In extrinsic evaluation, after
1000 simulated conversations with a user, MFS
combined with the baseline train data improves
the success rate from 73.4% to 79.8% with BCE
loss. Success rate also improves with SBCE loss
to 76% with and without adding original data. The
length of the dialogue is also consistently reduced
as the agent satisfies the user’s goals faster.

We observe no distinct error patterns for the
movie task except for the lack of usage of the
‘‘offer’’ intent, even with MFS data. This may be
due to the lower frequency of the ‘‘offer’’ intent in
the dataset relative to other dialogue acts. Instead,
we observe consistent, single-digit improvements
(∼4 F1 points) for almost all actions and slots.
For M2M restaurant, there are two main patterns:
(i) The most problematic errors discussed in the
downsampling section were reversed. It now
means that the ‘‘rating’’, ‘‘time’’, ‘‘date’’, and
‘‘confirm’’ targets show a good improvement
rather than a decline. Even the previously unused
‘‘meal’’ slot went from 0 to 35 points. (ii) The
remaining actions and slots show a single-digit

improvement similar to the movie task. The M2M
restaurant is particularly sensitive to the removal
of repeated instances, hence benefits from addi-
tional training on frequent agent actions. Errors
in MultiWOZ were also reduced although two
domains (police and hospital) have not been
learned despite the additional MFS data. This
is likely owing to their very low frequency in
the training data. For all other domains, we
observe that an estimated one third of the dialogue
acts that were unused with baseline training data
advance by around 20 F1 points, on average. More
frequent dialogue acts have also improved by an
estimated 10 F1 points. Despite the advantages
of augmentation, many dialogue acts are still
predicted with low accuracy (or not at all), which
explains where the remaining∼20% success score
in extrinsic evaluation and ∼26 F1 points in
intrinsic evaluation could be recovered. Example
dialogues are provided in the Appendix.

5.7 Oracle Augmentation

Oracle generates novel instances at ∼56% of the
original train data size for M2M restaurant, ∼65%
for M2M movie, but only ∼3% for MultiWOZ
due to the small percentage of shared edges.
As expected, we observed improvements over
baseline, although with some caveats. Oracle
augmentation illustrates the need for the usage
of both soft and hard evaluation. Using the
conventional approach, BCE training with HardF1
evaluation, we would correctly conclude that
Oracle is (mostly) effective for M2M datasets
and only marginally so for MultiWOZ. While
SoftF1 scores also improve over the baseline,
those are 1–2 points lower than the best MFS
scores. For MultiWOZ, this difference is even
greater (5–6 points lower) and would be indis-
cernible with only a HardF1 score available to
guide experimentation. Oracle augmentation is an
example where the policy training risks overfitting
to maximize HardF1 at the expense of SoftF1,
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which may explain the 2%–3% decline in suc-
cess rate in end-to-end evaluation. When oracle
augmentation is effective (movie task), the error
pattern is similar to the movie MFS experiment.
In other words, more accurate predictions were
observed for all dialogue acts but with a lower
magnitude.

6 Future Work

6.1 Transformers

Our data augmentation method is orthogonal to
the choice of the (sequence) model. We have
used an LSTM for all experiments. We have also
briefly tested a Multi Layer Perceptron where the
input consisted of concatenated time steps, yield-
ing comparable results to the LSTM model. Other
architectures such as Transformers (Vaswani et al.,
2017), which have recently achieved SOTA per-
formance on language modeling and transfer
learning, can also be used. However, due to the
symbolic nature of the dialogue management
input, we may not see an advantage from using
pretrained transformers that compute representa-
tions of natural language. Also, as we previously
mentioned (see Section 4.5), we have performed
experiments with LSTMs using larger hidden state
sizes but they did not lead to any improvement.
We don’t expect any significant improvement
in performance by switching the architecture to
Transformers.

6.2 Semi-Random Data Augmentation

A random graph traversal augmentation should
be avoided as the dialogue flows in the train,
development, and test sets (including the user
simulator) are not random. Some paths are more
likely than others and some nodes/edges are more
frequently visited than others. A more promising
approach to show policy improvement may be
with semi-random sampling from the train
ConvGraph, using the validation set performance
as a reward signal. Similar to a hyperparameter
search (even reinforcement learning), one can
repeatedly sample training instances from dif-
ferent hyperparameters until a stopping criterion
is met. Though more computationally intensive
and more challenging to reproduce, this type of
data augmentation may deliver novel insights into
the generation process.

6.3 Data Generation with ConvGraphs

ConvGraph is expected to be initialized from
existing dialogues in order to augment the training
data. However, we can also collect new data with
ConvGraph by checking the uniqueness of incom-
ing dialogue turns, possibly in real-time. New
nodes and edges will make the graph denser and
allow for maximally diverse data augmentation,
avoiding needless repetition and accelerating data
collection. ConvGraph can be efficiently expan-
ded as the environment or user behaviors change
over time in order to extend an artificial agent
with additional capabilities or to bootstrap agent
policies interactively (Williams and Liden, 2017;
Williams et al., 2017; Liu et al., 2018).

6.4 RNN ConvGraph

We also propose the RNN-ConvGraph, a theo-
retical alternative to ConvGraph. This is a gene-
rative model that takes as input a sequence of
previous dialogue states PDS = [dst−1,
dst−2, . . . , dst−n] where n = max history
and predicts the next dialogue state dst over a
‘‘vocabulary’’ of all graph nodes. Reminiscent of
a generative language model, RNN-ConvGraph
augments training data by using the conditional
probabilities learned from the train data. Instead
of an explicit graph data structure, the RNN-
ConvGraph would be an implicit representation
of the graph.

7 Conclusions

We have introduced the Conversation Graph
for Dialogue Management, an approach that
unifies conversations based on matching nodes
(dialogue states). Exploiting the structure of
ConvGraph can be effectively used for (1) data
augmentation with our Most Frequent Sampling
method, (2) training non-deterministic policies
with SBCE, our soft loss function, and (3)
a more complete and fair evaluation of non-
deterministic agents with our SoftF1 score. We
conducted a thorough analysis of ConvGraph on
three conversational datasets and showed that they
can have markedly different properties. Extrinsic
evaluation with a user simulator as well as intrin-
sic evaluation supports that ConvGraph can suc-
cessfully augment datasets by generating novel
paths through the graph. The soft training loss
SBCE lets the agent choose which actions to learn
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in each dialogue state, leading to consistent policy
improvements. Finally, the soft evaluation has
extended the conventional ‘‘hard’’ evaluation,
which was insufficient for non-deterministic
agents, leading to unfair penalties for correct
predictions. We hope that our methodology as
well as suggestions for future work will inspire
further research in this topic area.
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A Dialogue Examples: MultiWOZ

The following tables show examples of typical
errors committed on the MultiWOZ dataset. For
clarity and brevity, we do not provide the dialogues
in full, only the turns relevant to the models’
decisions. We set the dialogue history length to
n = 3 thus PDS = [dst−1, dst−2, dst−3] (see
Section 3.3). At turn t, we show output for models
BASE and B+MFS (see Section 5.6). For more
detailed analysis of each model’s strengths and
failings, we refer the reader back to Section 5.

In Table 5, at turn t − 3, the user tells the
agent of that he’s interested in free hotel parking
Hotel-Inform(Parking). The agent replies that
there are many available hotels the user can
choose from Hotel-Inform(Choice). The agent
additionally asks the user to provide a desirable
price range to further filter down the choices
Hotel-Request(Price). At the next turn t − 1, the
user provides a specific price-range, asks about
the hotels’ area and requests that the restaurant
they are booking in parallel should be in a speci-
fic price-range. We remind the reader that in
MultiWOZ, the same dialogue may span multi-
ple domains. In the current turn t, both models
respond that no hotel could be found with
the additional criteria Booking-Inform(None).
Inappropriately, however, the BASE model also
provides a hotel’s name Hotel-Inform(Name) but
that hotel would not be meeting the criteria.

In Table 6, we observe a similar history that
leads both agents to declare that no hotels could
be found under the criteria. However, the B+MFS
model goes a step further and recommends a hotel
in a different area Hotel-Recom(Name, Area). In
extrinsic evaluation, such action will likely lead
to a shorter dialogue (see #turns in Table 4).
Proactively offering appropriate hotel choices
should also lead to a higher dialogue success
rate.

In Table 7, both models request additional
information from the user Train-Request(Leave).
However, the B+MFS agent also informs the user
that there are many choices available and offers to
book the train. The inclusion of a ‘‘call to action’’
increases user engagement and the probability of
a successful train booking.

The final example for MultiWOZ in Table 8
shows that after collecting all required in-
formation, the BASE agent merely informs the
user that it found a train (specified by its ID) that

Turn User Agent

t-3 Hotel-Inform(Parking)
t-2 Hotel-Inform(Choice),

Hotel-Request(Price)
t-1 Hotel-Inform(Price),

Hotel-Request(Area),
Restaurant-
Inform(Price)

t B+MFS:
Booking-Inform(None)
BASE (B):
Booking-Inform(None),
Hotel-Inform(Name)

Table 5: MultiWOZ example #1.

Turn User Agent

t-3 Hotel-Inform(Parking)
t-2 Hotel-Inform(Choice)
t-1 Hotel-Inform(Price)

t B+MFS:
Booking-Inform(None),
Hotel-Recom(Area),
Hotel-Recom(Name)
BASE (B):
Booking-Inform(None)

Table 6: MultiWOZ example #2.

Turn User Agent

t-3 Hotel-Request(Phone)
t-2 Hotel-Inform(Phone)
t-1 Train-Inform(Dest)

t B+MFS:
Train-Inform(Choice)
Train-Request(Leave)
BASE (B):
Train-Request(Leave)

Table 7: MultiWOZ example #3.

meets the criteria. The B+MFS agent additionally
informs the user of the train’s arrival time and
offers to book the train for the user.

B Dialogue Examples: Machines to
machines (M2M)

The following examples are taken from the M2M
dataset (the restaurant domain) in order to illustrate
some of the typical errors of the baseline (BASE)
and our best augmented method (B+MFS). More
error analysis is provided in Section 5.

In Table 9, at turn t − 1, the user provides a
time Inform(Time) and date Inform(Date) for the
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Turn User Agent

t-3 Train-Inform(Dest)
t-2 Train-Request(Leave)
t-1 Train-Inform(Leave)

t B+MFS:
Train-Inform(Arrive)
Train-Inform(ID)
Train-OfferBook()
BASE (B):
Train-Inform(ID)

Table 8: MultiWOZ example #4.

Turn User Agent

t-3 Affirm()
t-2 Request(Date)

Request(Time)
t-1 Inform(Date)

Inform(Time)

t B+MFS:
Confirm(Time)
BASE (B):
Request(Time)

Table 9: M2M (R) example #1.

Turn User Agent

t-3 Inform(Category)
t-2 Confirm(Category)
t-1 Affirm()

t B+MFS:
Request(Meal)
BASE (B):
Select(Restaurant Name)
Select(Restaurant Name)
Select(Restaurant Name)

Table 10: M2M (R) example #2.

restaurant booking. The BASE model asks for
the time again, which is clearly problematic as
it seems to ignore the user’s input. The B+MFS
agent correctly handles the query and asks the user
to confirm that choice thus avoiding a penalty.

In Table 10, the user lets the agent know about
the preferred type of restaurant Inform(Category)
they would like to book. When this is confirmed
by the user, the BASE model is prematurely asking
the user to select from a list of available restaurants

Turn User Agent

t-3 Find Restaurant()
t-2 Request(Category)
t-1 Inform(Category)

t B+MFS:
Request(Location)
Request(Rating)
BASE (B):
Request()

Table 11: M2M (R) example #3.

Turn User Agent

t-3 Inform(Price Range)
t-2 Confirm(Price Range)
t-1 Affirm()

t B+MFS:
Select(Restaurant Name)
Select(Restaurant Name)
Select(Restaurant Name)
BASE (B):
Offer(Restaurant Name)

Table 12: M2M (R) example #4.

before all necessary slots have been filled. The
B+MFS agent correctly requests that the user
specifies what type of meal they are interested in
first.

Table 11 shows the user asking for a spe-
cific category of restaurant Inform(Category). The
BASE model only provides a partial output,
correctly predicting that it should request infor-
mation from the user but not which infor-
mation it requires. This means the user would
have to repeat the query in the better case or lose
a dialogue in the worst case.

Table 12 shows the user asking for a restaurant
in a specific price range Inform(Price Range).
Once the agent confirms that this is what the
user is looking for, the BASE agent proceeds
to offer a single restaurant. Although this is not
wrong, the B+MFS model offers three choices
using the Select(Restaurant Name) dialogue act.
A preference for this action may lead to higher
user satisfaction and ultimately to more successful
dialogues.
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