
Unsupervised Learning of KB Queries in Task-Oriented Dialogs

Dinesh Raghu∗1,2, Nikhil Gupta†3, and Mausam1

1IIT Delhi, New Delhi, India
2IBM Research, New Delhi, India

3LimeChat, Gurgaon, India

diraghu1@in.ibm.com,nikhil@limechat.ai,mausam@cse.iitd.ac.in

Abstract

Task-oriented dialog (TOD) systems often

need to formulate knowledge base (KB) que-

ries corresponding to the user intent and use

the query results to generate system responses.

Existing approaches require dialog datasets to

explicitly annotate these KB queries—these

annotations can be time consuming, and ex-

pensive. In response, we define the novel prob-

lems of predicting the KB query and training

the dialog agent, without explicit KB query

annotation. For query prediction, we propose

a reinforcement learning (RL) baseline, which

rewards the generation of those queries whose

KB results cover the entities mentioned in sub-

sequent dialog. Further analysis reveals that

correlation among query attributes in KB can

significantly confuse memory augmented pol-

icy optimization (MAPO), an existing state of

the art RL agent. To address this, we improve

the MAPO baseline with simple but impor-

tant modifications suited to our task.

To train the full TOD system for our setting, we

propose a pipelined approach: it independently

predicts when to make a KB query (query po-

sition predictor), then predicts a KB query at

the predicted position (query predictor), and

uses the results of predicted query in subse-

quent dialog (next response predictor). Over-

all, our work proposes first solutions to our

novel problem, and our analysis highlights the

research challenges in training TOD systems

without query annotation.

∗D. Raghu is an employee at IBM Research. This work

was carried out as part of PhD research at IIT Delhi.
†This work was done while Nikhil Gupta was a graduate

student at IIT Delhi.

1 Introduction

Task-oriented dialog (TOD) systems converse

with users to accomplish specific tasks such as

restaurant reservation (Henderson et al., 2014b),

movie ticket booking (Li et al., 2017), or bus

enquiry (Raux et al., 2005). In addition to the

ability to converse, it is crucial for TOD systems

to learn to formulate knowledge base (KB) queries

based on user needs, and generate responses using

the query results. An example TOD is shown in

Figure 1, where during the conversation (at turn

2), the agent queries the KB based on the user

needs, and then suggests the Peking Restaurant

based on the retrieved results. Existing end-to-end

approaches (Bordes and Weston, 2017; Madotto

et al., 2018; Reddy et al., 2019) learn to formulate

KB queries using manually annotated queries.

In real-world scenarios, human agents chat with

users on messaging platforms. When the need to

query the KB arises, the agent fires the query on

a back-end KB application and uses the retrieved

results to compose a response back on the mes-

saging platform. The dialogs retrieved from these

platforms contain just the user and the agent

utterances, but the KB queries typically go un-

documented. As existing approaches require KB

annotations, they have to be manually annotated,

which is expensive and hinders scalability. To

eliminate the need for such annotations, we define

the novel problem of training a TOD system with-

out explicit KB query annotation. A key subtask

of such a system is the unsupervised prediction of

KB queries.

While there is no explicit query annotation, we

observe that dialog data still offers weak super-

vision to induce KB queries—all the entities used

by the agent in subsequent dialog should be re-

turned by the correct query. For example, in

Figure 1, the correct query should retrieve Peking

Restaurant and its phone number. This suggests a

374

Transactions of the Association for Computational Linguistics, vol. 9, pp. 374–390, 2021. https://doi.org/10.1162/tacl a 00372
Action Editor: Hang Li. Submission batch: 8/2020; Revision batch: 11/2020; Published 4/2021.

c© 2021 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

mailto:diraghu1@in.ibm.com
mailto:nikhil@limechat.ai
mailto:mausam@cse.iitd.ac.in
https://doi.org/10.1162/tacl_a_00372

Figure 1: Example of a training task-oriented dialog. At turn 2, the agent first queries the KB based on the user

requirement and then responds based on the retrieved results.

reinforcement learning (RL) formulation for query

prediction, not unlike similar tasks in Question

Answering (QA) (Artzi and Zettlemoyer, 2013)

and conversational QA (Yu et al., 2019). How-

ever, there is one key difference between TOD

and QA settings—in TOD only a few entities from

the query results are used in subsequent dialog,

whereas in QA all correct answers are provided

at training time. This makes defining the reward

function more challenging for our setting.

Our problem is further exacerbated by the issue

of correlated attributes. Query attributes in TOD

may exhibit significant correlation, like in the

restaurant domain, cuisine and price range are of-

ten correlated. For example, most Japanese res-

taurants in a KB may be in expensive price range.

As a result, presence and absence of expensive

price range in the query could retrieve almost the

same set of KB entities and hence similar rewards.

This can confuse the weakly supervised query pre-

dictor. To counter this issue we present a baseline

solution for KB query prediction by extending an

existing policy optimization technique, memory

augmented policy optimization (MAPO; Liang

et al., 2018). Experiments show that our proposed

modification significantly improves the query

prediction accuracy.

To train a full TOD system without KB query

annotation, we propose a pipelined solution. It uses

three main components: (1) query position predic-

tor predicts when a query must be made, (2) query

predictor predicts the query at the turn predicted by

position predictor, and (3) next response predictor

generates next utterance based on dialog context,

and predicted query’s results. We train these com-

ponents in a curriculum, due to the pipeline nature

of the system. We find that overall our system

obtains good dialog performance, and also learns

to generalize to entities unseen during training.

We conclude with novel research challenges

highlighted by our paper. In particular, we notice

that even fully supervised TOD systems (trained

with KB query annotation) suffer a significant loss

in performance when they are evaluated with the

protocol of using their own predicted queries and

its query results (instead of using gold queries and

gold results) in subsequent dialog. We believe that

designing TOD systems with high performance

under this evaluation protocol is the key next step

towards making end-to-end TOD systems useful

in real applications. We release all our resources

for further research—training data, evaluation

code, and code for TOD systems.1

2 Background & Related Work

Our work is on task-oriented dialogs and is closely

related to the task of semantic parsing. We briefly

discuss related work in both areas. Our query

predictor is an extension of MAPO (Liang et al.,

2018), which we describe in detail.

Task Oriented Dialogs: TOD systems are of

two main types: traditional spoken dialog systems

1https://github.com/dair-iitd/mb-mapo.

375

https://github.com/dair-iitd/mb-mapo

(SDS) and end-to-end TOD systems. SDS (Wen

et al., 2017; Williams et al., 2017) use hand-crafted

states and state annotations on every utterance

in the dialogs—a significant human supervision.

End-to-end TOD systems (Reddy et al., 2019;

Wu et al., 2019; Raghu et al., 2019) do not require

state annotations but just the KB query annota-

tions. There exist approaches (Chen et al., 2013,

2015) to induce state annotations in SDS, but we

are the first to induce query annotations in end-to-

end TOD systems. TOD systems cannot be learned

with just the state annotations, additional state to

KB query mapping/annotation is required. But

no further annotations are needed to learn TOD

system when query annotations are available.

We build on recent architectures, which use

memory networks to store previous utterances and

query results, and a generative copy decoder to

construct the agent utterances (Madotto et al.,

2018; Reddy et al., 2019; Raghu et al., 2019). An

alternative approach maintains the entire KB in its

neural model, bypassing the need for KB queries

entirely (Dhingra et al., 2017; Eric et al., 2017).

Unfortunately, such approaches can only work

with small KBs. In contrast, our approach is scal-

able and does not impose restrictions on KB size.

Semantic Parsing: Semantic parsing is the

task of mapping natural language text to a logical

form (or program) (Zelle and Mooney, 1996;

Zettlemoyer and Collins, 2005). To alleviate the

need for gold program annotations, weakly super-

vised approaches have been proposed (Artzi and

Zettlemoyer, 2013; Berant et al., 2013; Pasupat

and Liang, 2015; Neelakantan et al., 2017; Haug

et al., 2018). These weakly supervised approaches

solve two main problems: (1) exploring large

search space to find correct logical programs and

(2) spurious program problem—where the policy

learns an incorrect program that fetches the cor-

rect answer. To explore large search space better,

Guu et al. (2017) used randomized beam search,

Liang et al. (2017) and MAPO used systematic

search. There exists several approaches to over-

come the spurious query problem: crowd sourcing

(Pasupat and Liang, 2016), spreading the probabil-

ity mass over multiple reward earning programs

(Guu et al., 2017), clustering similar natural

language inputs and using their abstract represen-

tations (Goldman et al., 2018), and using overlap

between the text spans in input and the generated

programs (Wang et al., 2019; Dasigi et al., 2019;

Misra et al., 2018). MAPO samples from a buffer

of systematically explored reward earning pro-

grams based on their likelihood in the current pol-

icy (Liang et al., 2018) to tackle the spurious

program problem. Our query prediction approach

follows this literature, except in a dialog setting.

As our approach is an extension of MAPO, we

inherit the ability to effectively tackle the two

issues.

These methods use an RL formalism, in which a

logical form (query, in our case) a is predicted by

an RL-policy πθ(a|c). Here, θ are the parameters

of the RL agent, and c is the input, for example, a

question (in our case, a dialog context). The policy

πθ is trained by maximizing the expected reward:

OER = Ea∼πθ(a|c)R(a|c, y) = Ea∼πθ(a)R(a)

where R is the reward function and y is the

gold answer for c. For simplicity, we drop the

dependence of πθ and R on c and y. REINFORCE

(Williams, 1992) can be used to estimate the

gradient of the expected reward. Using N queries

sampled i.i.d. from the current policy, the gradient

estimate can be expressed as:

∇θOER =
1

N

N∑

k=1

∇θlogπθ(ak)R(ak) (1)

When the search space is large and the rewards

are sparse, relying on just the on-policy samples

often leads to poor search space exploration. To

overcome this, search is added on top of policy

samples (Liang et al., 2017). We build on MAPO,

which uses systematic exploration to identify non-

zero reward queries for each training data and

stores them in a memory buffer B. The expected

reward is computed as a weighted sum of two

expectations: one over the queries inside the buffer

B and the other over the remaining queries:

OER =
∑

a∈B

πθ(a)R(a) +
∑

a∈A−B

πθ(a)R(a)

= πBEa∼π+
θ
(a)R(a)+(1− πB)Ea∼π−

θ
(a)R(a)

(2)

where A is the set of all possible queries,

πB =
∑

a∈B πθ(a) is total probability of all

queries in the buffer, and π+
θ (a) and π−

θ (a) are the

normalized probability distributions inside and

outside the buffer respectively. The gradient of

the first term is estimated exactly by enumerating

all queries in the buffer, while the gradients of

376

the second term is estimated as in Equation 1 by

sampling i.i.d queries from the current policy and

rejecting them if they are present in the buffer B.

A randomly initialized policy is likely to assign

small probabilities to the queries in the buffer, and

hence negligible contribution to the gradient esti-

mation. To ensure queries in the buffer contribute

significantly to the gradient estimates, MAPO

clips πB to α. The modified gradient estimate is

∇θO
c
ER = πc

BEa∼π+
θ
(a)∇θlogπθ(a)R(a)

+ (1− πc
B)Ea∼π−

θ
(a)∇θlogπθ(a)R(a)

(3)

where πc
B = max(πB, α). When the training

begins, α > πB resulting in gradient estimates

biased towards the queries in the buffer. Once the

policy stabilizes, πB gets larger than α and the

estimates becomes unbiased.

Experience Replay: Experience replay (Lin,

1992) stores past experience in a buffer and reuses

that to stabilize training and improve sample effi-

ciency. Prioritized experience replay (Schaul et al.,

2016) assigns priorities to the experiences and

samples them based on the priorities to efficiently

learn using them. MAPO and our approach use

replay buffers that store non-zero reward queries.

These queries include both past experiences and

queries identified using systematic search. The

sampling strategy is similar to prioritized expe-

rience replay, where the priorities are defined by

the probability of the query in the current policy.

3 Task Definition & Baseline System

We first define our novel task of learning TOD

system using unannotated dialogs – we name it

uTOD. We then describe the KB query predictor in

detail. Finally, we describe our proposed baseline

uTOD system, which uses the KB query predictor.

3.1 Problem Definition

We represent a dialog d between a user u and an

agent s as {cu1 , c
s
1, c

u
2 , c

s
2, . . . , c

u
m, csm} where m

denotes the number of turns in the dialog. Our

goal is to train a uTOD system, which, for all

turns i, takes the partial dialog-so-far {cu1 , c
s
1, . . . ,

cui−1, c
s
i−1, c

u
i } as input and predicts the next sys-

tem response ĉsi . Such a uTOD system is trained by

the training data D comprising complete dialogs

{dj}
| D|
j=1, and an associated knowledge base KB.

System responses in a dialog often use certain

entities from KB. To accomplish this, a uTOD

system can fire an appropriate query a to KB

and fetch the query results Ea, and use those to

generate its response. No explicit supervision is

provided on the gold queries, at either training or

test time. That is, a uTOD system neither knows

which query was fired to KB, nor knows when it

was fired. In this work we assume that the system

can make only one KB query per dialog. Our

overall uTOD baseline uses a pipeline of multiple

components: a query position predictor, a query

predictor, and a next response predictor.

3.2 KB Query Predictor

We first assume that we have access to the specific

turn number q, 1 ≤ q ≤ m, where a KB query

gets fired by the system (an assumption we relax

in the next section). Thus, formally, we are given

the dialog context c = {cu1 , c
s
1, c

u
2 , c

s
2, . . . , c

u
q}, and

KB, and the goal of query predictor is to output a

that appropriately captures the user intent. We use

the term subsequent dialog to refer to all utterances

that follow the KB query–{csq, c
u
q+1, . . . , c

s
m}. In

Figure 1, the subsequent dialog starts from the

second agent utterance. Let Es be the set of

KB entities present in the subsequent dialog. In

Figure 1, Es = {Peking Restaurant, 2343-4040}.

We train the query predictor using RL, by pro-

viding feedback based on the predicted query’s

ability to retrieve the entities in Es.

Our proposed baseline follows the literature

on semantic parsing with weak supervision using

RL, and treats the query prediction as equivalent

to learning policy πθ(a|c) that takes the dialog

context c as the input and generates a KB query

a = a1a2 · · · aT . The KB query is a sequence of

T actions, where each action is a word predicted

by the query predictor. For a given context, the

set of all possible actions is a union of a set of

keywords2 in the SQL query language, set of field

names in KB, the set of all words in the context c

and an <eoq> token to indicate the end of query.

The query is generated auto-regressively as:

πθ(a|c) =
T∏

t=1

πθ(at|a1:t−1, c) (4)

As the environment is deterministic, at each time

t, the RL state can be fully defined by the dialog

context c and the actions predicted so far a1:t−1.

2{SELECT, *, =, FROM, AND, WHERE}.

377

RL gradients can be computed using REIN-

FORCE or the MAPO algorithm.

The policy network is implemented with a stan-

dard encoder-decoder architecture for TOD sys-

tems. The context is encoded using a multi-hop

memory encoder (Sukhbaatar et al., 2015) with a

bag of sequences memory (Raghu et al., 2019). In

the bag of sequences memory, the context is rep-

resented as a set of utterances and each utterance

as a sequence of words. Each utterance is encoded

using a bi-directional GRU (Cho et al., 2014).

The KB query is generated one word at a time

by a copy-augmented sequence decoder (Gu et al.,

2016). The search space is the output space of

this variable length, copy-augmented sequence

decoder. At each time step, the decoder computes

a copy distribution over words in the dialog con-

text and a generate distribution over words KB

field names and SQL keywords. Finally, a soft

gate (See et al., 2017) is used to combine the

two distributions and a word is sampled from the

combined distribution. By allowing only copying

words from the dialog context to the values in

the SQL WHERE clauses, we reduce the decod-

er’s ability to predict spurious queries. Following

Ghazvininejad et al. (2016), we use beam search

guided by the SQL grammar to generate only

syntactically correct queries.

3.2.1 Reward Functions

We now describe a vanilla reward function

considered for training the RL agent. For a given

(c, Es) pair, the query a is predicted using c and

the reward is computed using Es. Since partial

query isn’t meaningful, the reward is computed

only at time t = T , when the complete query is

generated.

Let Ea be the set of entities retrieved by the

query a, then the reward at time T must ensure

that all entities present in the subsequent dialog are

retrieved by the query. Moreover, the query should

be penalized for retrieving more than required

entities. This can be operationalized as follows:

R(a|c, Es) = 11recall(Es, Ea)=1.prec(Es, Ea) (5)

The recall based indicator ensures that all entities

are retrieved, and precision penalizes retrieval of

a large number of entities. While a reasonable

first solution, our initial experiments showed that

MAPO with this reward function does not achieve

satisfactory results. We now discuss the challeng-

ing aspects of our task, and our improved baseline,

multi buffer MAPO, to resolve those issues.

3.2.2 Multi Buffer MAPO (mB-MAPO)

Our problem can become particularly challenging

if KB has correlated attributes. To understand

this, consider two types of KB queries: (1) partial

intent query and (2) complete intent query. A par-

tial query is one that is partially correct, namely,

captures a part of the user’s intent, and does not

include any incorrect clauses. A complete query

contains all (and only) correct clauses expressed

in the intent. For example (a) in Table 1, the first

two queries are complete ones, whereas rest are

partial. Query 4 in column (b) is a spurious query

that can retrieve the same result as the complete

intent query. This spurious query is not a partial

query, as it does not capture any of the user

needs. Our query decoder allows only words to

be copied from the context when predicting the

query, thus reducing the policy network’s ability

to learn spurious queries.

Because of the nature of weak supervision in

uTOD (we get to see only a subset of entities

in subsequent dialog), it is possible that multiple

queries can achieve non-zero rewards for a dialog

context. It is further possible that a specific par-

tial query can achieve non-zero rewards in many

dialog contexts. Example, the query ‘‘price=

moderate’’ fetches non-zero rewards for both in-

tents in Table 1. Such phenomena can confuse an

RL agent, to the extent that it may end up incor-

rectly learning a single partial query as the best

query for many contexts.

This problem is further exacerbated if some

query attributes inKB are correlated. For example

(a) in Table 1, let us assume thatKB has 8 chinese

restaurants out of which 7 have moderate price

range, that is, cuisine and price range are highly

correlated. Here, results of the partial query ‘‘cui-

sine=chinese" would contain only one additional

restaurant compared to the complete query. As a

result, they will receive almost the same reward

during training. This could potentially get extreme

in certain cases, where presence or absence of an

attribute makes no difference, giving little signal

to an RL agent. As the number of attributes in

an intent increases, the problem can get harder

and harder. In our preliminary experiments using

MAPO with reward from Equation 5, the RL

agent often produced partial queries leading to

further errors in subsequent dialog.

378

User
(a)

user needs a restaurant that serves
(b)

user needs a Japanese restaurant

Intent Chinese with moderate price range in moderate price range

1. cuisine=chinese AND price=moderate 1. cuisine=japanese AND price=moderate

KB 2. price=moderate AND cuisine=chinese 2. price=moderate AND cuisine=japanese

Queries 3. cuisine=chinese 3. cuisine=japanese

4. price=moderate 4. phone=98232-66789

Table 1: Summary of dialogs and a few examples of non-zero reward KB queries for the corresponding

dialogs. For simplicity, the SELECT clauses are removed from the KB queries.

In our datasets intents can be described by

SELECT queries with multiple WHERE clauses;

thus, every partial query is a prefix of some

complete query (e.g., query 3 in Table 1). Upon

further analysis of model behavior, we observed

that MAPO often maintained both partial prefix

queries and complete queries, but still learned a

model to output the partial ones.
To understand this surprising observation, we

first note that auto-regressive decoders, due to

probability multiplication at every decode step,

generally prefer shorter grammatical sentences

(partial prefix query in our case) to longer ones.

This is particularly likely to happen when the

decoder gets randomly initialized at the start of

training. A partial query in the buffer that is as-

signed a high probability makes a higher contribu-

tion in the gradient estimation. Moreover, because

of correlated attributes, this query may have a

fairly high reward. This results in the model be-

lieving it to be a good query, and changing the

parameters to increase its probability further. The

only way RL can break out of this vicious cycle is if

the complete query is explored often—however,

MAPO’s in-buffer sampling probabilities are

proportional to network-assigned probabilities,

leading to an ineffective in-buffer exploration.

This issue is general, but gets extreme in our

problem due to a combination of (1) real-valued

(not just 0/1) rewards, (2) prefix queries getting

high rewards due to correlated attributes, and (3)

prefix queries getting sampled more often due to

decoder’s bias in favoring shorter queries.
In response, our proposed baseline extends

MAPO to maintain multiple buffers, so that com-

plete intent queries with high rewards can be

prioritized over other queries during gradient esti-

mation. We use two buffers with MAPO: a buffer

Bh to store all queries with the highest reward

for a dialog context and a buffer Bo to store all

other queries whose rewards are non-zero and

less than the highest. The expected reward is now

computed as:

OER =
∑

a∈Bh

πθ(a)R(a) +
∑

a∈Bo

πθ(a)R(a)

+
∑

a∈A−(Bh∪Bo)

πθ(a)R(a)

= πBh
E

a∼πh+
θ

(a)R(a) + πBo
Ea∼πo+

θ
(a)R(a)

+ (1− πBh
− πBo

)Ea∼π−
θ
(a)R(a) (6)

where πh+
θ , πo+

θ and π−
θ are the normalized prob-

ability distributions of queries in Bh, queries in

Bo, and all other queries, respectively. πBh
=∑

a∈Bh
πθ(a) and πBo

=
∑

a∈Bo
πθ(a) are the

total probabilities assigned by the policy πθ of all

queries inBh andBo respectively. As the complete

intent queries mostly have the highest rewards for

a given context, they are placed in Bh, and as the

partial prefix queries usually have rewards less

than the complete queries, they are placed in the

other bufferBo. To ensure that all non-zero reward

queries are explored, each buffer is made to con-

tribute to the gradient estimation. To ensure that

each buffer contributes significantly to the gradi-

ent estimation, we clip πBh
using max(πBh

, αh)
and πBo

using min(max((1 − πc
Bh
)αo, πBo

), (1 −
πc
Bh
)). αh and αo are hyperparameters whose

value can be between 0 and 1. αh ensures that

the highest reward buffer gets assigned a certain

weight during gradient estimation. αo ensures that

the queries in Bo are assigned at least a certain

fraction of probability mass unused by the queries

in Bh. The estimator is biased when the training

starts, and can becomes unbiased when πBh
> αh

and πBo
> (1 − πBh

))αo. Based on the clipped

probabilities, the gradients are estimated as:

∇θO
c
ER = πc

Bh
E

a∼πh+
θ

(a)∇θlogπθ(a)R(a)

+πc
Bo
Ea∼πo+

θ
(a)∇θlogπθ(a)R(a)

+(1− πc
Bh

− πc
Bo
)Ea∼π−

θ
(a)∇θlogπθ(a)R(a)

(7)

Finally, if a new query is found that has a higher

reward than queries in Bh, then the buffers are

379

Figure 2: The architecture of the uTOD system.

updated: That query is added to Bh, and all other

queries in that buffer are removed and added

to Bo. The proposed approach can be used for

estimating the policy gradients for any deter-

ministic environments with discrete actions and

non-binary rewards.

3.3 uTOD System

We now describe the remaining parts of the uTOD

system that learns to predict the next response

using unannotated dialogs. The system has three

main components: (1) query position predictor, (2)

query predictor (as described in the previous sec-

tion), and (3) next response predictor. The system

architecture is shown in Figure 2. The position pre-

dictor is a binary classifier that decides whether the

KB query is to be predicted at the given turn or not.

The query predictor generates a KB query at the

turn predicted by the position predictor. Finally,

the next response predictor takes the dialog con-

text along with the query results (if a KB query has

been made) and predicts the next system response.

In order to train the position predictor, each train

dialog must be annotated with the turn at which the

KB query is to be made. As there are no gold labels

available, we heuristically provide this supervi-

sion. We identify the turn (q̃) at which the agent

response contains a KB entity that was never seen

in the dialog context. We mark q̃ as the heuristic

label for training position predictor.3 For example,

in Figure 1, t = 2 is the turn at which the agent

response contains a KB entity Peking Restaurant

that was never used in the dialog context.

The position predictor takes the dialog context

as input and encodes it using a multi-hop memory

3This heuristic labeling matched 80% of gold labels in

our datasets.

encoder, as described in Section 3.2. The encoder

output is then passed through a linear layer fol-

lowed by sigmoid function to generate the prob-

ability of the binary label. At training time, KB

query predictor learns to generate KB queries at

the turns (q̃) annotated by the heuristic. During

test time, a query is generated at the turn (q̂)

predicted by the position predictor.

The query predictor can be seen as annotating

all the train dialogs with KB queries. Thus, after

this annotation, any existing end-to-end TOD sys-

tem can be used for next response prediction. For

our experiments, we use BoSsNet as the under-

lying response predictor (Raghu et al., 2019).

BoSsNet takes as input (i) the dialog context and

(ii) the ground truth KB query results (during

both train and test) to generate the response.

As we assume the ground truth KB queries are

unavailable, we use the results of the predicted

query results instead.

Since our system uses a pipeline of compo-

nents, it is trained in a training curriculum, which

is divided into three phases. In phase-1, the query

predictor is trained. Once each train dialog is

annotated with KB queries, the next response

predictor is trained in phase-2. Finally, in phase-3

the position predictor is trained. We train the

position predictor after the response predictor as

we observed that initializing the position pre-

dictor encoder with the weights of the response

predictor encoder yields better position prediction

performance.

4 Experimental Setup

We now describe the datasets used, the compar-

ison algorithms and the evaluation metrics for our

task. We release all software and datasets from

our experimental setup for further research.

380

CamRest DSTC2

Train Dialogs 406 1279

Val Dialogs 135 324

Test Dialogs 135 1051

Avg. no. of turns 4.06 7.94

Rows/Fields in KB 110/8 108/8

Vocab Size 1215 958

Table 2: Statistics of CamRest and DSTC2

datasets.

4.1 Datasets

We perform experiments on two task-oriented

dialog datasets from the restaurant reservation

domain: CamRest (Wen et al., 2016) and DSTC2

(Henderson et al., 2014a). CamRest676 is a human

human dialog dataset with having just one KB

query annotated in them. DSTC2 is a human-bot

dialog dataset. We filtered the dialogs from this

dataset that had more than one KB query. Table 2

summarizes the statistics of the two datasets. As

CamRest and DSTC2 are originally designed for

dialog state tracking, we use the versions that are

suitable for end-to-end learning, made available

by Raghu et al. (2019) and Bordes and Weston

(2017), respectively. Both these datasets have KB

query annotations. We remove these annotations

from the training dialogs to create datasets for our

task. We use these annotations for evaluating the

performance of various algorithms.

4.2 Comparison Baselines

We compare various gradient estimation tech-

niques to train the policy network (defined in

Section 3.2) for the task of KB query prediction

as follows.

REINFORCE (Williams, 1992): uses on-policy

samples to estimate the gradient as in Equation 1,

with the reward function defined in Equation 5.

BS-REINFORCE (Guu et al., 2017): uses all

the queries generated by beam search to estimate

the gradients. The reward for each query is a

product of the reward defined in Equation 5 and

the likelihood of the query in the current policy.

RBS-REINFORCE (Guu et al., 2017): uses all

the queries generated by ǫ-greedy randomized

beam search (RBS) to estimate the gradients. At

every time step, RBS samples a random continu-

ation as opposed to a highest scoring continuation

with a probability ǫ.

MAPO (Liang et al., 2018): uses on-policy sam-

ples and a buffer of non-zero reward queries to

estimate the gradients. It uses the reward function

defined in Equation 5.

mB-MAPO: the proposed approach, multi buffer

MAPO, which uses a buffer with highest reward

queries and a buffer with other non-zero reward

queries to estimate the gradients. This algorithm

uses the reward function defined in Equation 5.

SL: uses the gold KB queries as direct supervi-

sion. We train the policy network proposed in

Section 3.2 with cross entropy loss.

SL+RL: we combine weak supervision using RL

as a secondary source of knowledge on top of

supervised cross entropy loss for better training.

This is analogous to the benefits of additional prior

knowledge (e.g., as constraints) on top of super-

vision for small datasets (Nandwani et al., 2019).

In our experiments, total loss = Cross-Entropy

−λ.OER. Equation 6 is used for computing

OER.

We also compare the full uTOD dialog engines,

built using these RL approaches for query predic-

tion; we name them uTODREINFORCE, uTODMAPO,

and uTODmMAPO. We also compare these to a

fully supervised TOD system that uses KB query

annotations during training (aTOD). We report

two variants of the aTOD system based on the

supervised query predictors used: aTODSL and

aTODSL+RL.

4.3 Evaluation Metrics

As we have gold annotations, we evaluate the KB

query predictor and position predictor separately,

in addition to the overall TOD system. KB query

predictors are evaluated based on accuracy—the

fraction of dialogs where the gold KB queries are

predicted. We also report two other metrics: total

reward and the PIQ ratio—the fraction of dialogs

where a partial intent query was outputted, that is,

the predicted query captured only a subset of gold

query attributes.

A query position predictor’s performance is

also measured using accuracy. The predictor is

considered correct only if it predicts 1 at the turn at

which query is made and 0 for all turns before that.

We also compute turn difference as the absolute

difference between the turn at which the classifier

predicts true and the turn corresponding to the

gold label in the annotated dialog. The smaller the

average turn difference, the better is the classifier.

381

The next response prediction is evaluated based

on its ability to match the gold responses at every

turn. We use standard metrics of BLEU (Papineni

et al., 2002) and entity F1 to measure the similarity

between predicted and gold responses. Entity F1

is the average of F1 scores computed for each

response. We also report Entity F1KB for entities

that can only be copied from the KB results, to

emphasize importance of using query results in

subsequent dialog.

We note that our setup for evaluating dialog

engines looks similar to supervised TOD systems,

but has a subtle but important difference. In stan-

dard supervised dialog evaluations, for a given

turn, the full dialog context is provided and the

system is evaluated on correctly predicting the

next utterance. Thus, even if the system made an

incorrect query at an earlier turn, the subsequent

turns will be shown correct query and correct KB

query results.

However, since our goal is to assess the response

prediction without query annotation, we remove

such annotation from the test dialogs also. That is,

for the test dialogs subsequent to making the query,

all responses are generated based on the predicted

KB queries at predicted position q̂ and their query

results. This makes the evaluation much more

realistic, but also quite challenging for current

dialog engines. This is the key reason why aTOD

performance in Table 5 is much lower than results

reported in the BossNet paper (Raghu et al., 2019).

We perform two human evaluation experiments

to compare (1) informativeness – the ability to

effectively use the results to generate responses

and convey the information requested by the user,

and (2) grammar – ability to generate gram-

matically correct and fluent responses. Both the

dimensions were annotated on a scale of (0–2).

As the primary focus of our work is to evaluate

the ability of a TOD system to effectively use the

annotated query results, we only collect judge-

ments for responses that occur after the KB query.

We sampled 100 random dialog-context from

CamRest dataset and collected judgments from 2

judges for 4 systems, namely, uTODREINFORCE,

uTODMAPO, uTODmB−MAPO, and aTOD. We

collected a total of 1600 labels from the judges.

4.4 Implementation Details

We implemented our system using TensorFlow

(Abadi et al., 2016). We identify hyperparameters

based on the evaluation of the held-out validation

sets. We sample word embedding, hidden layer,

and cell sizes (es) from {32, 64, 128, 256, 512},

learning rates (lr) from {10−3, 25 × 10−4, 5 ×
10−4, 10−4}, αo and λ from increments of 0.1

between [0.1, 0,9], ǫ from {0.05, 0.1, 0.15, 0.2},

and αh from increments of 0.1 between [0.5, 0,9].

The hyper-parameters that (αh, αo, λ, ǫ, es, lr)
achieved the best validation rewards were (0.5,
0.1, 0, 0.15, 256, 5×10−4) and (0.6, 0.1, 0.1, 0.15,
256, 25×10−4) for DSTC2 and CamRest, respec-

tively. As our response predictor is BossNet, we

used the best performing hyper-parameters re-

ported by Raghu et al. (2019) for each dataset.

Total accumulated validation rewards is used as

a early stopping criteria for training the query

predictor and BLEU for the training the response

predictor.

5 Experiments

Our experiments evaluate three research questions:

1. Query Predictor Performance: How does the

performance of mB-MAPO compare to other

gradient estimation techniques?

2. Query Position Predictor Performance: How

does the proposed position predictor perform

on the two datasets?

3. Next Response Predictor Performance: How

do responses from TOD systems trained with

unannotated dialogs compare to the ones

trained with KB query annotated dialogs?

5.1 Query Predictor Performance

To measure the query predictor performance, we

generate the KB queries at the gold position during

train and test. We only use the gold queries during

test to measure the performance. Table 3 reports

the KB query prediction accuracy, PIQ ratio, and

total test rewards achieved by various gradient

estimation techniques. mB-MAPO significantly

outperforms MAPO on both datasets. The perfor-

mance gain comes from mB-MAPO’s ability to

address correlated attributes in KB and the fre-

quent sampling of highest reward queries from the

buffer to prevent the policy from learning common

partial intent queries. Compared to MAPO, mB-

MAPO reduces the PIQ ratio by 55% on DSTC2

and 54% on CamRest, and achieves considerably

higher rewards.

The failure of REINFORCE highlights that

using just the on-policy samples to estimate policy

382

Accuracy PIQ Ratio Total Test Rewards

DSTC2 CamRest DSTC2 CamRest DSTC2 CamRest

REINFORCE 0.00 0.00 0.00 0.00 0.00 0.00

BS-REINFORCE 0.00 0.00 0.00 0.004±0.008 0.00 0.01±0.03

RBS-REINFORCE 0.00 0.002±0.005 0.00 0.02±0.05 0.00 0.24±0.26

MAPO 0.25±0.01 0.10±0.01 0.61±0.01 0.54±0.05 77.13±3.6 11.8±0.5

mB-MAPO 0.68±0.03 0.62±0.03 0.06±0.03 0.09±0.02 169.98±7.6 23.4±1.1

SL 0.78±0.02 0.59±0.06 0.09±0.02 0.09±0.03 175.9±2.7 21.7±1.4

SL+RL 0.78±0.02 0.66±0.04 0.09±0.02 0.09±0.03 175.9±2.7 23.7±1.3

Table 3: Accuracy of KB query prediction of mB-MAPO and other algorithms on CamRest and DSTC2

on 10 runs. Partial intent query (PIQ) ratio is the fraction of partial intent queries predicted.

gradients is inadequate for exploring large combi-

natorial search spaces with sparse rewards. Both

MAPO and mB-MAPO use queries in the buffer,

which are explored using systematic search. These

guide the policy towards the parts of the search

space that are likely to yield non-zero rewards.

We notice that, surprisingly,mB-MAPO achieves

slightly better accuracy than even the supervised

(SL) baseline on CamRest dataset. Further analy-

sis reveals that on this dataset, supervised learner

achieves a train accuracy of 95%, while mB-

MAPO achieves only 75% (but higher test accu-

racy). This suggests that the supervised learner is

overfitting, which is conceivable since CamRest

is a relatively small dataset (406 train dialogs, see

Table 2). Because mB-MAPO is learning with

weak supervision, it is solving a much harder

problem, which makes it harder to overfit. More-

over, sometimes mB-MAPO may simply learn

partial intent queries if they generalize better.

This added flexibility helps avoid overfitting in

the small dataset. Our error analysis reveals that

25% of queries generated by supervised learner

had non-entity words as values in the WHERE

clause. For example,‘‘please" was predicted as a

cuisine. This shows the model has learned to pick

up spurious signals to predict certain attributes. In

contrast, only 11% to 13% of the queries predicted

by MAPO and mB-MAPO exhibited this problem.

To prevent the supervised learner from overfitting,

SL+RL combines the weak supervision using RL

as a secondary source of knowledge on top of

cross entropy loss. This increased the accuracy by

7 points and percent of queries with non-entity

words reduced from 25% to 11%.

On the other hand, compared to supervised

learner, mB-MAPO is 10 accuracy points lower

on DSTC2. The difference in performance can be

attributed to two factors. First, DSTC2 is a larger

dataset, which enables supervised learner to train

well. Second, in this dataset, there are 12% of

dialogs where overconstrained queries (those that

have even more attributes than the gold) fetch bet-

ter rewards than the gold. For instance, in Table 1

example (a), say the query ‘‘cuisine=chinese AND

price=moderate AND location=west" fetches all

the entities mentioned in subsequent dialog. Even

though it has one additional attribute compared to

the actual user intent (or gold query), it will likely

contain fewer unused entities than the gold query.

Thus mB-MAPO will assign a higher reward to

this overconstrained query, and will encourage the

training to output this. This confuses mB-MAPO,

leading to a significant performance gap from

supervised learner.

Dynamics of the Total Buffer Probabilities:

πBh
and πBo

are the sum of probabilities of all the

queries in buffers Bh and Bo, respectively. We

now discuss the dynamics of πBh
and πBo

during

training. We define average πBh
and average πBo

as the average of total buffer probabilities across

all the examples in train. Figure 3 shows the aver-

age πBh
and average πBo

after each train epoch

on DSTC2. Queries in Bo are typically shorter

(partial queries) compared to the queries in Bh

and so they get assigned a higher probabilities

when the policy is randomly initialized. Hence

during initial epochs average πBo
is higher than

average πBh
. But as the training proceeds, the

policy learns to assign higher probability to the

(longer) queries in Bh as a result of clipping the

buffer probabilities defined by αh. The gradients

are biased towards the queries in Bh during the

first few epochs, but as the policy converges we

can see that the average πBh
reaches close to αh

(0.5 for DSTC2) making the gradient estimates

unbiased.

383

Figure 3: Dynamics of total buffer probabilities πBh

and πBo
while training on DSTC2.

Accuracy ATD

w/o PT w/ PT w/o PT w/ PT

CamRest 0.47 0.54 0.72 0.56

DSTC2 0.21 0.28 2.26 2.20

Table 4: Position predictor performance with and

without pre-training (PT). ATD = average turn

difference.

5.2 Query Position Predictor Performance

To study the performance of the query position

predictor, we use the gold positions to train the

classifier and to measure the performance during

test. Table 4 shows the accuracy and the average

turn differences for the task of query position pre-

diction. The predictor is evaluated in two settings:

one initialized with random weights (w/o PT) and

one with the encoder network pre-trained for the

task of response prediction (w/ PT). The response

prediction tasks helps the network identify parts

of dialog context that are crucial for generating

the response. This additional information helps

improve the accuracy by 7 points on both datasets.

The overall performance for CamRest is accept-

able, since average turn difference is less than

1. The errors are due to natural variations in the

policy followed by the agent (human in the Wiz-

ard of Oz study)—sometimes the agent fires the

query before all possible attributes are specified

by the user, and at other times, the agent requests

for missing attributes and only then fires a query.

However, performance in DSTC2 is somewhat

limited. In addition to natural agent policy vari-

ations, there are artifacts of speech data, because

DSTC2 are speech transcripts of human-bot con-

versations. For exmaple, the bot often re-confirms

an already specified attribute to reduce speech

recognition errors. As DSTC2 dataset uses tran-

scripts and not actual speech, this re-affirmation

is redundant, but is still present. This confuses the

model since it has to decide between whether to

make a query or request a re-affirmation.

5.3 TOD System Performance

To study the TOD system performance, we neither

use the gold positions nor the gold queries. We

use the heuristic defined in Section 3.3 to label

the positions. These labelled positions are used

to train the position predictor and as the position

at which the query predictor generates the query

during train. At test time, the query predictor

generates the query at the predicted position.

We study the performance of uTOD systems

(next response prediction) trained using the dia-

logs whose queries were predicted by various

query prediction algorithms. For this evaluation,

test dialogs are first divided into (context, re-

sponse) pairs. The system predicts a response

for each turn and the predicted response is com-

pared with the gold response. When predicting

responses in the subsequent dialog, the results of

the predicted query are appended to the context.

For the aTOD system, results from gold queries

are used during train, and the results of predicted

queries are used during test.

Entities in responses can be divided into two

types: context entities and KB entities. Context

entities are present in the dialog context. For ex-

ample, in Figure 1, agent utterance in turn 2 has

two context entities (‘‘moderate’’ and ‘‘south’’)

and one KB entity (‘‘Peking Restaurant’’). For

the response to contain the correct KB entity, all

of position predictor, query predictor, and next

response predictor must work together. To assess

this, we report KB Entity F1, which judges the

match between gold and predicted KB entities

used in the utterance.

Table 5 shows the performance of various TOD

systems on two datasets. We see that the uTOD

system trained using mB-MAPO is only a few

points lower than aTOD system. This underscores

the value of our gradient computation scheme.

mB-MAPO is significantly better than MAPO;

our analysis reveals that MAPO frequently returns

partial queries which have a larger set of results

—this confuses the response predictor, reducing

KB Entity F1 substantially.

Most entities predicted by REINFORCE are just

context entities copied from the context and their

contribution dominates the entity F1 (all) score.

As REINFORCE fails completely in generating

384

DSTC2 CamRest

Ent. F1 Ent. F1 BLEU Ent. F1 Ent. F1 BLEU

KB All KB All

uTODREINFORCE 0.11±0.01 0.36±0.02 51.52±0.91 0.02±0.01 0.34±0.02 15.09±0.56

uTODMAPO 0.14±0.01 0.36±0.01 46.27±1.63 0.14±0.01 0.31±0.03 12.90±0.75

uTODmB−MAPO 0.21±0.02 0.38±0.02 47.52±1.27 0.23±0.02 0.35±0.02 13.11±0.86

aTODSL 0.24±0.02 0.41±0.02 48.35±1.58 0.25±0.03 0.36±0.02 13.80±1.04

aTODSL+RL 0.24±0.02 0.41±0.02 48.35±1.58 0.29±0.03 0.41±0.02 14.68±0.85

Table 5: Performance of various uTOD systems and aTOD system on 10 runs.

DSTC2 CamRest

uTODREINFORCE 0.02±0.01 0.00±0.00

uTODMAPO 0.08±0.01 0.10±0.01

uTODmB−MAPO 0.17±0.02 0.21±0.02

aTODSL+RL 0.20±0.01 0.28±0.02

Table 6: KB entity F1 achieved by various TOD

systems on OOV test set.

Info. Grammar

uTODREINFORCE 0.20 0.89

uTODMAPO 0.36 1.18

uTODmB−MAPO 0.64 1.38

aTODSL+RL 1.08 1.39

Table 7: Human evaluations on CamRest.

correct queries, the response predictor is forced

to memorize the KB entities rather than inferring

them from the query results. This results in very

low KB entity F1. As the dialog context often

has no query results, the system’s only objective

becomes generation of good language. Due to

this, it achieves a higher BLEU score compared

to other systems.

Human Evaluation: We report the human evalua-

tion4 results on 100 random context-response pairs

for CamRest dataset in Table 7. uTODmB−MAPO

outperforms other uTOD baselines on both infor-

mativeness and grammar. It was surprising to see

uTODREINFORCE perform poorly on grammar. Fur-

ther investigation showed that often the responses

generated were missing entities that made them

look incomplete. For example, the response ‘‘is a

restaurant in the moderate part of town . would you

like their phone number’’ has a missing restaurant

4We used two in-house (non-author) judges. One was an

expert in dialog systems and the other was a novice.

name at the start of the sentence. We measure the

inter-annotator agreement using Cohen’s Kappa

(κ) (Cohen, 1960). The agreement was substantial

for informativeness (κ = 0.62) and moderate

(κ = 0.45) for grammar.

Disentanglement Study: TOD systems can

learn to predict KB entities in the response either

by inferring (copying) them from the query results

or memorizing (generating) them. Only systems

that learns to copy them from the results will

generalize to entities unseen during train. To test

this ability to generalize, we follow Raghu et al.

(2019) and construct an OOV test set (and a corre-

sponding KB) such that it contains entities unseen

during train. Table 6 shows KB entity F1 of var-

ious TOD systems on this OOV test set. The low

numbers for uTODREINFORCE confirm that it mem-

orizes KB entities. uTODmB−MAPO achieves best

scores, and is 3–7 points short of supervised TOD.

Qualitative Example We qualitatively com-

pare the performance of various TOD systems

using the example shown in Table 8. The example

demonstrates the ability of uTODmB−MAPO to

generate the correct query and use the KB results

to generate an appropriate response. uTODMAPO

generates a partial query that has a larger set

of results—this confuses the response predictor,

and hence an incorrect restaurant is copied in the

response. uTODREINFORCE fails to generate a valid

query and so the response predictor generates a

random restaurant memorized during train. The

response generated by all approaches contain the

correct context entities (cheap and south), but only

responses of uTODmB−MAPO and uTODSL contain

the appropriate KB entity requested by the user.

6 Discussion & Research Challenges

We now discuss novel research questions identi-

fied in this research.

385

KB Results (Restaurant | Food | Area | Pricerange)

nandos | portuguese | south | cheap

the lucky star | chinese | south | cheap

User-1 hello, i am looking for a cheap restaurant on the south side of town .

Gold SELECT * FROM KB WHERE area = south AND pricerange = cheap

there is a place called nandos that specializes in portuguese food on the south side of town .

uTODREINFORCE SELECT * FROM table WHERE area = i

chiquito restaurant bar is cheap in the south of town . would you like their phone number

uTODMAPO SELECT * FROM table WHERE pricerange = cheap

the missing sock is a cheap restaurant in the south . would you like their phone number

uTODmB−MAPO SELECT * FROM table WHERE area = south AND pricerange = cheap

nandos are portuguese in the south south would you like their phone number

aTODSL+RL SELECT * FROM table WHERE area = south AND pricerange = cheap

the lucky star is a cheap restaurant in the south south would you like their phone number

Table 8: Queries and responses generated by uTODmB−MAPO and other TOD systems on a dialog from

CamRest. For simplicity, only the fields used in the dialog are mentioned in the KB results. Entities are

italicized.

Training DSTC2 CamRest

Q.Position Query Ent. F1 Ent. F1 BLEU Ent. F1 Ent. F1 BLEU

Predictor Predictor KB All KB All

Predicted Predicted 0.24±0.02 0.41±0.02 48.35±1.58 0.29±0.03 0.41±0.02 14.68±0.85

Oracle Predicted 0.32±0.04 0.40±0.02 48.52±1.31 0.32±0.02 0.40±0.02 14.17±0.70

Predicted Oracle. 0.32±0.03 0.41±0.03 48.94±1.80 0.37±0.04 0.44±0.03 14.63±0.82

Oracle Oracle 0.38±0.03 0.41±0.02 49.79±1.80 0.39±0.04 0.45±0.03 14.84±0.94

Table 9: Performance gap for supervised TOD systems when trained in different evaluation settings.

Can we train an end-to-end differentiable uTOD

system? Our proposed approach for uTOD uses a

pipeline of three components trained separately,

which can lead to cascading errors. We believe

that a single end-to-end neural architecture will

likely obtain superior performance. But, this is a

technical challenge, since it will require one model

to make two discrete decisions: when to query

and what to query, complicating the RL problem.

Can we bridge the gap between aTOD per-

formance with and without oracle queries at test

time? Our work exposes a critical weakness of

fully supervised TOD systems. When evaluated in

a setting where the TOD system only has access

to its own predicted query and that query’s results,

the overall performance drops drastically. Table 9

shows the performance of our aTOD system,

where at test time, both for query position and the

query, the system prediction is used (Prediction)

or the gold value is used (Oracle). We observe

that using oracle values gets 14-point KB Entity

F1 gains over predicted values. Since our setting

is very realistic to assess the usability of current

dialog systems, this result highlights the research

challenge of improving supervised TOD systems

in our setting. We also emphasize the importance

of KB Entity F1 as an important metric—it better

assesses the value offered to the end user, given

that these datasets contain mostly informational

tasks.

Can we design a uTOD system to handle dialogs

that require more than one query per dialog? Our

current work makes the assumption of a single

query per dialog. This is because most supervised

TOD datasets also make only one query per dia-

log. Given that our task is harder than those, it

was important to define it such that existing ML

machinery of TOD can feasibly learn our task. At

the same time, extending the task definition and

creating datasets for the multiple queries per dia-

log case is straightforward. An important future

research challenge will be to design an end-to-end

dialog system that can handle a variable number

of KB queries in a single dialog, without explicit

386

query (or query position) annotation. We believe

that this is best studied only after substantial pro-

gress on our specific task definition.

7 Conclusion

We define the novel problem of learning TOD

systems without explicit KB query annotation and

the associated subtask of unsupervised prediction

of KB queries. We also propose first baseline

solutions for these tasks. Our best query predic-

tion baseline extends the existing RL approach

MAPO to include multiple query buffers at train-

ing time. We also present a pipeline architecture

that trains different components in a curriculum

to obtain the final TOD system. Our detailed eval-

uation shows that our approaches achieve much

better performance than simpler baselines, though

there is some gap when compared to supervised

approaches. We study the results further to iden-

tify research challenges for future research. We

will release all resources for use by the research

community.

Acknowledgments

We thank Gaurav Pandey, Danish Contractor,

Dhiraj Madan, Sachindra Joshi, and the anony-

mous reviewers for their comments on an earlier

version of this paper. This work is supported by

IBM AI Horizons Network grant, an IBM SUR

award, grants by Google, Bloomberg, and 1MG,

a Visvesvaraya faculty award the Government of

India, and the Jai Gupta chair fellowship by IIT

Delhi. We thank the IIT Delhi HPC facility for

computational resources.

References

Martı́n Abadi, Paul Barham, Jianmin Chen,

Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey

Irving, Michael Isard, and et al. 2016. Ten-

sorflow: A system for large-scale machine

learning. In 12th {USENIX} Symposium on

Operating Systems Design and Implementation

({OSDI} 16), pages 265–283.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly

supervised learning of semantic parsers for

mapping instructions to actions. Transactions of

the Association for Computational Linguistics,

1:49–62. DOI: https://doi.org/10.1162

/tacl a 00209

Jonathan Berant, Andrew Chou, Roy Frostig,

and Percy Liang. 2013. Semantic parsing on

Freebase from question-answer pairs. In Pro-

ceedings of the 2013 Conference on Empirical

Methods in Natural Language Processing,

pages 1533–1544, Seattle, Washington, USA.

Association for Computational Linguistics.

Antoine Bordes and Jason Weston. 2017. Learn-

ing end-to-end goal-oriented dialog. In Interna-

tional Conference on Learning Representations.

Yun-Nung Chen, William Yang Wang, Anatole

Gershman, and Alexander I. Rudnicky. 2015.

Matrix factorization with knowledge graph prop-

agation for unsupervised spoken language un-

derstanding. In Proceedings of the 53rd Annual

Meeting of the Association for Computational

Linguistics and the 7th International Joint

Conference on Natural Language Processing

(Volume 1: Long Papers), pages 483–494.

Yun-Nung Chen, William Yang Wang, and

Alexander I. Rudnicky. 2013. Unsupervised

induction and filling of semantic slots for spo-

ken dialogue systems using frame-semantic

parsing. In 2013 IEEE Workshop on Auto-

matic Speech Recognition and Understanding,

pages 120–125. IEEE. DOI: https://doi

.org/10.1109/ASRU.2013.6707716

Kyunghyun Cho, Bart van Merrienboer, Caglar

Gulcehre, Dzmitry Bahdanau, Fethi Bougares,

Holger Schwenk, and Yoshua Bengio. 2014.

Learning phrase representations using rnn

encoder–decoder for statistical machine trans-

lation. In Proceedings of the 2014 Conference

on Empirical Methods in Natural Language

Processing (EMNLP), pages 1724–1734. Asso-

ciation for Computational Linguistics.

Jacob Cohen. 1960. A coefficient of agreement for

nominal scales. Educational and Psychological

Measurement, 20(1):37–46. DOI: https://

doi.org/10.1177/001316446002000104

Pradeep Dasigi, Matt Gardner, Shikhar Murty,

Luke Zettlemoyer, and Eduard Hovy. 2019.

Iterative search for weakly supervised semantic

parsing. In Proceedings of the 2019 Conference

387

https://doi.org/10.1162/tacl_a_00209
https://doi.org/10.1162/tacl_a_00209
https://doi.org/10.1109/ASRU.2013.6707716
https://doi.org/10.1109/ASRU.2013.6707716
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104

of the North American Chapter of the Asso-

ciation for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and

Short Papers), pages 2669–2680, Minneapolis,

Minnesota. Association for Computational Lin-

guistics. DOI: https://doi.org/10.18653

/v1/N19-1273

Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng

Gao, Yun-Nung Chen, Faisal Ahmed, and Li

Deng. 2017. Towards end-to-end reinforce-

ment learning of dialogue agents for infor-

mation access. In Proceedings of the 55th

Annual Meeting of the Association for Compu-

tational Linguistics (Volume 1: Long Papers),

pages 484–495. DOI: https://doi.org

/10.18653/v1/P17-1045

Mihail Eric, Lakshmi Krishnan, Francois Charette,

and Christopher D. Manning. 2017. Key-value

retrieval networks for task-oriented dialogue.

In Dialog System Technology Challenges,

Saarbrücken, Germany, August 15-17, 2017,

pages 37–49.

Marjan Ghazvininejad, Xing Shi, Yejin Choi, and

Kevin Knight. 2016. Generating topical poetry.

In Proceedings of the 2016 Conference on

Empirical Methods in Natural Language Pro-

cessing, pages 1183–1191. DOI: https://

doi.org/10.18653/v1/D16-1126

Omer Goldman, Veronica Latcinnik, Ehud Nave,

Amir Globerson, and Jonathan Berant. 2018.

Weakly supervised semantic parsing with

abstract examples. In Proceedings of the 56th

Annual Meeting of the Association for Compu-

tational Linguistics (Volume 1: Long Papers),

pages 1809–1819, Melbourne, Australia. Asso-

ciation for Computational Linguistics. DOI:

https://doi.org/10.18653/v1/P18

-1168

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor

O. K. Li. 2016. Incorporating copying mecha-

nism in sequence-to-sequence learning. In

Proceedings of the 54th Annual Meeting of

the Association for Computational Linguistics

(Volume 1: Long Papers), pages 1631–1640.

Association for Computational Linguistics.

Kelvin Guu, Panupong Pasupat, Evan Liu, and

Percy Liang. 2017. From language to programs:

Bridging reinforcement learning and maximum

marginal likelihood. In Proceedings of the

55th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long

Papers), pages 1051–1062.

Till Haug, Octavian-Eugen Ganea, and Paulina

Grnarova. 2018. Neural multi-step reasoning

for question answering on semi-structured ta-

bles. In European Conference on Information

Retrieval, pages 611–617. Springer. DOI:

https://doi.org/10.1007/978-3-319

-76941-7 52

Matthew Henderson, Blaise Thomson, and

Jason D. Williams. 2014a. The second dialog

state tracking challenge. In Proceedings of the

15th Annual Meeting of the Special Interest

Group on Discourse and Dialogue (SIGDIAL),

pages 263–272. DOI: https://doi.org

/10.3115/v1/W14-4337

Matthew Henderson, Blaise Thomson, and

Steve Young. 2014b. Word-based dialog state

tracking with re-current neural networks. In

In Proceedings of the 15th Annual Meeting of

the Special Interest Group on Discourse and

Dialogue (SIGDIAL), pages 292–299. DOI:

https://doi.org/10.3115/v1/W14

-4340

Xiujun Li, Yun-Nung Chen, Lihong Li, Jianfeng

Gao, and Asli Celikyilmaz. 2017. End-to-end

task-completion neural dialogue systems. In

Proceedings of the Eighth International Joint

Conference on Natural Language Processing,

pages 733–743. Asian Federation of Natural

Language Processing.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth

D. Forbus, and Ni Lao. 2017. Neural symbolic

machines: Learning semantic parsers on free-

base with weak supervision. In Proceedings of

the 55th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long

Papers), pages 23–33. DOI: https://doi

.org/10.18653/v1/P17-1003

Chen Liang, Mohammad Norouzi, Jonathan

Berant, Quoc V. Le, and Ni Lao. 2018. Memory

augmented policy optimization for program

synthesis and semantic parsing. In Advances

in Neural Information Processing Systems,

pages 9994–10006.

388

https://doi.org/10.18653/v1/N19-1273
https://doi.org/10.18653/v1/N19-1273
https://doi.org/10.18653/v1/P17-1045
https://doi.org/10.18653/v1/P17-1045
https://doi.org/10.18653/v1/D16-1126
https://doi.org/10.18653/v1/D16-1126
https://doi.org/10.18653/v1/P18-1168
https://doi.org/10.18653/v1/P18-1168
https://doi.org/10.1007/978-3-319-76941-7_52
https://doi.org/10.1007/978-3-319-76941-7_52
https://doi.org/10.3115/v1/W14-4337
https://doi.org/10.3115/v1/W14-4337
https://doi.org/10.3115/v1/W14-4340
https://doi.org/10.3115/v1/W14-4340
https://doi.org/10.18653/v1/P17-1003
https://doi.org/10.18653/v1/P17-1003

Long-Ji Lin. 1992. Self-improving reactive agents

based on reinforcement learning, planning and

teaching. Mach. Learn., 8(3–4):293–321. DOI:

https://doi.org/10.1007/BF00992699

A. Madotto, C. S. Wu, and P. Fung. 2018.

Mem2seq: Effectively incorporating knowl-

edge bases into end-to-end task-oriented dialog

systems. In Proceedings of 56th Annual Meet-

ing of the Association for Computational

Linguistics. Association for Computational

Linguistics. DOI: https://doi.org/10

.18653/v1/P18-1136

Dipendra Misra, Ming-Wei Chang, Xiaodong He,

and Wen-tau Yih. 2018. Policy shaping and gen-

eralized update equations for semantic parsing

from denotations. In Proceedings of the 2018

Conference on Empirical Methods in Natural

Language Processing, pages 2442–2452. DOI:

https://doi.org/10.18653/v1/D18

-1266

Yatin Nandwani, Abhishek Pathak, Mausam,

and Parag Singla. 2019. A primal dual for-

mulation for deep learning with constraints.

In Advances in Neural Information Processing

Systems 32: Annual Conference on Neural

Information Processing Systems 2019, NeurIPS

2019, 8-14 December 2019, Vancouver, BC,

Canada, pages 12157–12168.

Arvind Neelakantan, Quoc V. Le, Martı́n Abadi,

Andrew McCallum, and Dario Amodei. 2017.

Learning a natural language interface with

neural programmer. In 5th International Con-

ference on Learning Representations, ICLR

2017, Toulon, France, April 24-26, 2017, Con-

ference Track Proceedings. OpenReview.net.

Kishore Papineni, Salim Roukos, Todd Ward,

and Wei-Jing Zhu. 2002. BLEU: A

method for automatic evaluation of machine

translation. In Proceedings of the 40th Annual

Meeting on Association for Computational

Linguistics, pages 311–318. Association for

Computational Linguistics. DOI: https://

doi.org/10.3115/1073083.1073135

Panupong Pasupat and Percy Liang. 2015. Com-

positional semantic parsing on semi-structured

tables. In Proceedings of the 53rd Annual

Meeting of the Association for Computational

Linguistics and the 7th International Joint

Conference on Natural Language Processing

(Volume 1: Long Papers), pages 1470–1480,

Beijing, China. Association for Computational

Linguistics. DOI: https://doi.org/10

.3115/v1/P15-1142

Panupong Pasupat and Percy Liang. 2016.

Inferring logical forms from denotations. In

Proceedings of the 54th Annual Meeting of

the Association for Computational Linguistics

(Volume 1: Long Papers), pages 23–32, Berlin,

Germany. Association for Computational Lin-

guistics. DOI: https://doi.org/10.18653

/v1/P16-1003

Dinesh Raghu, Nikhil Gupta, and Mausam. 2019.

Disentangling language and knowledge in task-

oriented dialogs. In Proceedings of the 2019

Conference of the North American Chapter of

the Association for Computational Linguistics:

Human Language Technologies, Volume 1

(Long and Short Papers), pages 1239–1255.

Antoine Raux, Brian Langner, Dan Bohus,

Alan W. Black, and Maxine Eskénazi. 2005.

Let’s go public! Taking a spoken dialog system

to the real world. In INTERSPEECH.

Revanth Gangi Reddy, Danish Contractor, Dinesh

Raghu, and Sachindra Joshi. 2019. Multi-

level memory for task oriented dialogs. In

Proceedings of the 2019 Conference of the

North American Chapter of the Association for

Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short

Papers), pages 3744–3754. DOI: https://

doi.org/10.18653/v1/N19-1375

Tom Schaul, John Quan, Ioannis Antonoglou,

and David Silver. 2016. Prioritized experience

replay. In International Conference on Learn-

ing Representations, Puerto Rico.

Abigail See, Peter J. Liu, and Christopher D.

Manning. 2017. Get to the point: Summa-

rization with pointer-generator networks. In

Proceedings of the 55th Annual Meeting of

the Association for Computational Linguistics

(Volume 1: Long Papers), pages 1073–1083.

Association for Computational Linguistics.

Sainbayar Sukhbaatar, Arthur Szlam, Jason

Weston, and Rob Fergus. 2015. End-to-end

memory networks. In Advances in Neural Infor-

mation Processing Systems, pages 2440–2448.

389

https://doi.org/10.1007/BF00992699
https://doi.org/10.18653/v1/P18-1136
https://doi.org/10.18653/v1/P18-1136
https://doi.org/10.18653/v1/D18-1266
https://doi.org/10.18653/v1/D18-1266
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.18653/v1/P16-1003
https://doi.org/10.18653/v1/P16-1003
https://doi.org/10.18653/v1/N19-1375
https://doi.org/10.18653/v1/N19-1375

Bailin Wang, Ivan Titov, and Mirella Lapata.

2019. Learning semantic parsers from deno-

tations with latent structured alignments and

abstract programs. In Proceedings of the 2019

Conference on Empirical Methods in Natural

Language Processing and the 9th International

Joint Conference on Natural Language Pro-

cessing (EMNLP-IJCNLP), pages 3765–3776.

DOI: https://doi.org/10.18653/v1

/D19-1391, PMID: 31933765

T. H. Wen, D. Vandyke, N. Mrkšı́c, M. Gašı́c,

L. M. Rojas-Barahona, P. H. Su, S. Ultes,

and S. Young. 2017. A network-based end-

to-end trainable task-oriented dialogue system.

In 15th Conference of the European Chapter

of the Association for Computational Linguis-

tics, EACL 2017-Proceedings of Conference,

volume 1, pages 438–449. DOI:https://doi

.org/10.18653/v1/E17-1042, PMCID:

PMC5677129

Tsung-Hsien Wen, Milica Gasic, Nikola Mrkšić,

Lina M. Rojas Barahona, Pei-Hao Su, Stefan

Ultes, David Vandyke, and Steve Young.

2016. Conditional generation and snapshot

learning in neural dialogue systems. In EMNLP,

pages 2153–2162, Austin, Texas. ACL.

Jason D. Williams, Kavosh Asadi, and Geoffrey

Zweig. 2017. Hybrid code networks: practical

and efficient end-to-end dialog control with

supervised and reinforcement learning. In

Proceedings of the 55th Annual Meeting of

the Association for Computational Linguis-

tics (Volume 1: Long Papers), volume 1,

pages 665–677. DOI: https://doi.org/10

.18653/v1/P17-1062, PMID: 28243779

Ronald J. Williams. 1992. Simple statistical

gradient-following algorithms for connectionist

reinforcement learning. Machine learning,

8(3-4):229–256. DOI: https://doi.org

/10.1007/BF00992696

Chien-Sheng Wu, Richard Socher, and Caiming

Xiong. 2019. Global-to-local memory pointer

networks for task-oriented dialogue. In Pro-

ceedings of the International Conference on

Learning Representations (ICLR).

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric

Xue, Bo Pang, Xi Victoria Lin, Yi Chern

Tan, Tianze Shi, Zihan Li, Youxuan Jiang,

Michihiro Yasunaga, Sungrok Shim, Tao Chen,

Alexander Fabbri, Zifan Li, Luyao Chen,

Yuwen Zhang, Shreya Dixit, Vincent Zhang,

Caiming Xiong, Richard Socher, Walter S.

Lasecki, and Dragomir Radev. 2019. CoSQL: A

conversational text-to-SQL challenge towards

cross-domain natural language interfaces to

databases. In Proceedings of the 2019 Con-

ference on Empirical Methods in Natural

Language Processing and the 9th International

Joint Conference on Natural Language Pro-

cessing (EMNLP-IJCNLP), pages 1962–1979.

DOI: https://doi.org/10.18653/v1

/D19-1204

John M. Zelle and Raymond J. Mooney. 1996.

Learning to parse database queries using

inductive logic programming. In Proceedings

of the Thirteenth National Conference on

Artificial Intelligence - Volume 2, AAAI’96,

pages 1050–1055. AAAI Press.

Luke S. Zettlemoyer and Michael Collins. 2005.

Learning to map sentences to logical form:

Structured classification with probabilistic

categorial grammars. In Proceedings of the

Twenty-First Conference on Uncertainty in

Artificial Intelligence, UAI’05, pages 658–666,

Arlington, Virginia, USA. AUAI Press.

390

https://doi.org/10.18653/v1/D19-1391
https://doi.org/10.18653/v1/D19-1391
https://europepmc.org/article/MED/31933765
https://doi.org/10.18653/v1/E17-1042
https://doi.org/10.18653/v1/E17-1042
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677129
https://doi.org/10.18653/v1/P17-1062
https://doi.org/10.18653/v1/P17-1062
https://europepmc.org/article/MED/28243779
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204

	Introduction
	Background & Related Work
	Task Definition & Baseline System
	Problem Definition
	KB Query Predictor
	Reward Functions
	Multi Buffer MAPO (mB-MAPO)

	uTOD System

	Experimental Setup
	Datasets
	Comparison Baselines
	Evaluation Metrics
	Implementation Details

	Experiments
	Query Predictor Performance
	Query Position Predictor Performance
	TOD System Performance

	Discussion & Research Challenges
	Conclusion

