
Adaptive Semiparametric Language Models

Dani Yogatama, Cyprien de Masson d’Autume, Lingpeng Kong

DeepMind

London, United Kingdom

{dyogatama,cyprien,lingpenk}@google.com

Abstract

We present a language model that combines

a large parametric neural network (i.e., a

transformer) with a non-parametric episodic

memory component in an integrated architec-

ture. Our model uses extended short-term con-

text by caching local hidden states—similar

to transformer-XL—and global long-term

memory by retrieving a set of nearest neighbor

tokens at each timestep. We design a gat-

ing function to adaptively combine multiple

information sources to make a prediction.

This mechanism allows the model to use

either local context, short-term memory, or

long-term memory (or any combination of

them) on an ad hoc basis depending on

the context. Experiments on word-based and

character-based language modeling datasets

demonstrate the efficacy of our proposed

method compared to strong baselines.

1 Introduction

Human language processing is facilitated by com-

plex systems interacting together. A core compo-

nent that enables such a process is human memory.

Memory in humans consists of specialized sys-

tems, which form a basis for intelligent behaviors

(Tulving, 1985; Rolls, 2000; Eichenbaum, 2012).

For language processing, working (short-term)

memory is a temporary storage that can be used to

comprehend sentences and follow conversations.

Episodic (long-term) memory stores individual

experience and events. Semantic memory stores

facts and knowledge about words and concepts.1

In artificial language processing systems (e.g.,

language models), a popular approach to design

a better model is by encoding all of the desired

knowledge (to produce grammatical sentences,

process long text, remember events, etc.) in the

1We refer readers to Nematzadeh et al. (2020) for

discussions on human and artificial language processing

memory systems.

weights of a large parametric neural network

via end-to-end training. We see an increasingly

larger transformer become a better language

model (Radford et al., 2018, 2019; Shoeybi et al.,

2019; Brown et al., 2020). In this scale approach,

the knowledge is implicitly represented in the

weights of a parametric neural network, and it is

not straightforward to interpret whether a model

contains a particular knowledge without asking

the model to produce a response—for example,

via a cloze-style question (Petroni et al., 2020) or

a prompt (Brown et al., 2020).

An alternative strategy is to design a modular

architecture that separates memory storage and

computational processing, where each module

has a clear purpose. Recent progress in memory-

augmented neural networks has given rise to

many variants of memory-augmented transformer

language models that fall under this category. For

example, attempts to incorporate extended local

context to a neural network—such as those found

in neural cache (Grave et al., 2017c), transformer-

XL (Dai et al., 2019), compressive transformer

(Rae et al., 2020), performers (Choromanski

et al., 2021), longformer (Beltagy et al., 2020),

and reformer (Kitaev et al., 2020)—can be seen as

models of working memory. Models of episodic

memory include kNN-LM (Khandelwal et al.,

2020) and architectures that are designed for more

complicated tasks such as question answering

(de Masson d’Autume et al., 2019; Guu et al.,

2020) and machine translation (Khandelwal et al.,

2021). In machine learning and natural language

processing, memory-augmented neural networks

is used to refer to all types of memory systems.

In this paper, inspired by the modular design

of human memory systems, we present a lan-

guage model architecture (SPALM) with storage

modules that resemble working and episodic

memory systems, which we combine with a large

parametric neural network that is responsible for

362

Transactions of the Association for Computational Linguistics, vol. 9, pp. 362–373, 2021. https://doi.org/10.1162/tacl a 00371
Action Editor: Mihai Surdeanu. Submission batch: 10/2020; Revision batch: 1/2021; Published 4/2021.

c© 2021 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

mailto:dyogatama@google.com
mailto:cyprien@google.com
mailto:lingpenk@google.com
https://doi.org/10.1162/tacl_a_00371


computation (§2). Our hypothesis is that encour-

aging each component to focus on a specific

function (e.g., storing long-term information, cap-

turing extended context, modeling local infor-

mation) facilitates easier training that produces an

overall better language model.2

Specifically, we follow transformer-XL (Dai

et al., 2019) to capture extended context by

caching hidden states in a temporary short-term

memory. For long-term context, we use a persis-

tent key-value database and perform sparse re-

trieval with (approximate) k-nearest neighbors. In

contrast to previous language models that either

interpolate output probabilities (Merity et al.,

2017; Grave et al., 2017c; Khandelwal et al.,

2020; Kassner and Schutze, 2020) or use input

concatenation (Guu et al., 2020; Xu et al., 2020)

to combine information from different sources,

we design a context-dependent gating mechanism

to incorporate local, extended, and global context.

We discuss similarities and differences to related

work in §3.

In language modeling, many tokens can be pre-

dicted from their local context without requiring

long-term information. Our model can adaptively

decide whether the current (local) context is

enough, or whether it needs to use information

from the short-term and/or long-term memory.

In §4, we compare SPALM with strong

baselines—including transformer-XL and kNN-

LM—on word-based and character-based lan-

guage modeling. Our positive results establish

the benefit of the proposed architecture. They also

indicate the generality of our approach and its

potential applicability to other sequence modeling

tasks.

We analyze how SPALM uses long vs. short-term

context (§5) to better understand how the model

operates when making predictions. We conclude

by discussing limitations and future directions

(§6).

2 Model

We consider a language model that takes as input

a sequence of words x≤t = {x0, . . . , xt} and

outputs a probability distribution of the next word

2We note that SPALM is not intended to be a model

of human language processing system. We merely take

inspirations from human memory systems to design a better

artificial language model.

Figure 1: Our language model architecture has three

main components: (i) a transformer that processes the

current local context, (ii) a short-term memory module

that stores hidden states from an extended context, (iii)

and a key-value (hidden state-output token) database

that stores compressed long-term context. At each

timestep, our model combines the current context

and short-term memory with a mechanism similar to

transformer-XL. It then retrieves a set of past output

tokens that are used in a similar context from the long-

term memory module. These past output tokens are

then encoded and aggregated to a single vector that

represents long-term information. We use a context-

dependent gate to combine information from multiple

sources for making a final prediction.

p(xt+1 | x≤t;W). Given a corpus of T words,

the log likelihood of the corpus is:

L =

T∑

t=0

log p(xt+1 | x≤t;W),

where x0 is the start of sentence symbol.

SPALM consists of three main components: (i)

a large parametric neural network in the form

of a transformer to process local context, (ii) a

short-term memory to store extended context, and

(ii) a non-parametric episodic memory module

that stores information from long-term context.

We integrate these components in a single archi-

tecture with a gating mechanism. Figure 1 shows

an illustration of our model, which we discuss in

detail below.

363



2.1 Base Model

We use transformer (Vaswani et al., 2017) as our

base model. Given the input sequence x≤t, trans-

former performs multiple layers of self-attention

between every pair of tokens in the input sequence

to produce token representations.

A core limitation of transformer is that its

computational complexity is quadratic in the

input sequence length. As a result, instead of

considering all previous tokens x≤t, transformer

truncates the input to be the most recent N words

x̃≤t = {xt−N+1, . . . , xt} and only operates on

this fixed-length window in practice. A large

transformer, no matter how many parameters it

has, is limited by the input sequence length.

2.2 Short-term Memory

We use transformer-XL (Dai et al., 2019) as our

working memory model. Given the current con-

text x̃<t, denote the extended context of length

M by x̃≤t−N = {xt−N−M+1, . . . , xt−N}. In other

words, the extended context is the M tokens

prior to the current context. In transformer-XL,

hidden states for x̃≤t−N (obtained from a previous

computation when predicting xt−N+1) are cached.

They are then used as additional states that can be

attended to during the forward pass when com-

puting hidden states for the current context x̃≤t,

but the values of the states are not updated during

the backward pass to save computation time.

Formally, denote the hidden state for xt at

layer r by hr
t . Denote the hidden states asso-

ciated with the current (truncated) context x̃<t

by Hr = [hr
t−N , . . .hr

t ] and the hidden states

associated with the extended context x̃<t−N by

Er = [SG(hr
t−N−M+1), . . . SG(hr

t−N )], where SG

is the stop gradient function. Together,Hr and Er

are used as an input to an attention function (with

relative positional encodings) where each vector

is transformed into a key, value, query triplet

which are used to produce Hr+1 (i.e., hidden

states for the next layer).

Note that while transformer-XL extends the

context window, the extra information is still

‘‘local’’ with respect to the sequence.

2.3 Long-term Memory

We design a long-term episodic memory mod-

ule that allows our language model to retrieve

‘‘global’’ information. The long-term memory

module is implemented as a key-value database.

The key is a vector representation of a context

x̃≤i (i.e., we compress x̃≤i into a vector). Each

context is paired with the output token for that

context xi+1, which is stored as the value. In our

experiments, we store a key-value entry for each

context-token pair in the training corpus, so the

number of entries is equal to the number of tokens

in the training corpus.

There are many choices that can be used for the

key representation, which we denote by di. For

example, we can use hR
i or a separate pretrained

encoder such as BERT (Devlin et al., 2018). We

pretrain a vanilla transformer language model and

use the final-layer hidden state for di.

For predicting a new token xt+1 given x̃≤t,

we first obtain dt from the separate pretrained

language model. We then use dt to do a k-nearest

neighbor search on the database. Since dt is a con-

textual representation, this search finds contexts

that are similar to x̃<t in the database. For the top

k such contexts, we retrieve the values associated

with those contexts, which are the output (next)

tokens when those contexts are encountered in the

past. Denote the output tokens retrieved from the

database by y1, . . . yK .

For each yk, we create a vector representation

yk by using the same word embedding matrix that

is used in our base model. We then combine the

long-term memory information obtain from the

database with the extended local context with a

gating mechanism as follows:

mt =

K∑

k=1

expy⊤
k h

R
t∑K

j=1 expy
⊤
j h

R
t

yk

gt = σ(VhR
t )

zt = (1− gt)⊙mt + gt ⊙ hR
t

p(xt+1 | x≤t) = softmax(zt;W),

where V is a parameter matrix, σ is the sig-

moid function, and W is the word embedding

matrix that is shared for input and output word

embeddings (Inan et al., 2017).3

In the above formulation, we first aggregate

information from y1, . . . yK with a simple atten-

tion mechanism using hR
t as the attention query.4

3In a preliminary experiment, we incorporate the nearest

neighbor distance as a bias term in the computation of mt.

However, this does not improve performance, so we use the

above equation in the final model.
4It is possible to first transform hR

t
(e.g., by doing a linear

projection) before using it as an attention query. We choose

364



We then use a context-dependent gate gt that

decides how much the model needs to use local

information (hR
t ) versus long-term information

(mt) for making the current prediction based on

the current context. Note that given the database,

the only additional parameter that needs to be

trained is V. The result is a language model that is

able to rely on short-term context for ‘‘easy’’ pre-

dictions while using long-term context for ‘‘hard’’

predictions by adaptively combining short-term

and long-term memory at the architectural level.

2.4 Training Details

As discussed previously, we first train a stan-

dard transformer language model and use it as

an encoder to compute key representations di

for the episodic memory database. Since our

training datasets contain hundreds of millions of

tokens, for computational considerations, we do

not update the key representations when training

the overall model. This allows us to fix the set of

nearest neighbors for each token, making training

of the overall model to be almost as fast as a

vanilla transformer-XL in terms of wall-clock

time after we precompute neighbors for each

token. The value encoder, on the other hand, is

updated during training since we use the word

embedding matrix to represent yk.

k-nearest neighbors on hundreds of millions of

tokens can be computationally expensive. We use

the publicly available ScANN5 (Guo et al., 2020)

to do this efficiently, which is a quantization-

based technique to do fast and accurate maximum

inner product search.

We note that it is conceptually possible to train

all components of our model in an end-to-end

manner. However, we leave end-to-end training

to future work. In addition, while it is possible to

continually grow the long-term memory module

by storing new tokens from evaluation data, we

choose to do a static evaluation. Therefore, we

do not compare with dynamic evaluation models

(Krause et al., 2018, 2019; Grave et al., 2017a),

which adapt language models to evaluation data.

We next discuss comparisons to existing nearest

neighbor and cache language models.

an untransformed version in our experiments to minimize the

number of new parameters in SPALM. We leave explorations

on the best transformation of hR

t
to future work.

5https://github.com/google-research

/google-research/tree/master/scann.

3 Comparisons to Previous Work

kNN-LM. There are several language models

that are related to our proposed method. The

closest one is kNN-LM (Khandelwal et al.,

2020), which is another language model that

is augmented with a nearest neighbor retrieval

mechanism. kNN-LM is an ensemble technique

that is designed to be used only at evaluation

time. In kNN-LM, a pretrained language model

(e.g., a transformer) is combined with another

retrieval-based language model by interpolating

their probabilities: p(xt+1 | x≤t) = λpLM(xt+1 |
x≤t)+(1−λ)pkNN(xt+1 | x≤t). The interpolation

weight λ is tuned at the corpus level on a

development set.

While this post hoc integration method used by

kNN-LM has its merit (e.g., very practical, fast to

incorporate to any model since it does not require

additional training), our focus is on designing a

model that combines short-term and long-term

memory at the architecture level. Our motivation

is twofold. First, interpolating the language model

weights at the corpus level forces the model to use

the same interpolation weight λ for pLM and pkNN

for each token in the corpus. It cannot adaptively

combine short-term and long-term information at

the token level based on the context. In addition,

λ needs to be tuned on an extra development set.6

SPALM, on the other hand, is able to adjust the

weights placed on mt and hR
t when construct-

ing zt differently for different tokens. Second,

we believe that integration of different memory

modules at the architectural level is a more nat-

ural approach that could help pave the way for

applications with other memory sources (e.g.,

knowledge bases, images, videos)—where the

memory output is not in the same space as the

prediction output (i.e., words) and an interpolation

technique cannot be used.

We compare with kNN-LM in our experi-

ments. Since interpolating model probabilities is

an ensembling technique that is independent of

the architecture, we also show that our language

model can be furher ensembled with pkNN if

necessary.

6We note that it is possible to incorporate this interpolation

technique during the training phase of a language model as

well to avoid having to tune λ on a development set. For

example, Neubig and Dyer (2016) show how to train a mixture

of experts language models, where the mixture weights

are inferred. However, the efficacy of this approach as a

memory-augmented language model has not been explored.

365

https://github.com/google-research/google-research/tree/master/scann
https://github.com/google-research/google-research/tree/master/scann


Cache-based Language Models and Pointer

Networks. Cache-based language models

(Grave et al., 2017c; Merity et al., 2017) store

pairs of hidden states and output tokens from

previously seen tokens (within a limited context

length) in a cache. The best variant of the method

uses an interpolation (ensemble) method similar to

kNN-LM to combine information from the cache

and the backbone language model. This class of

models temporarily stores M past hidden states

(typically, in the order of thousands), so it is a

working-memory model as opposed to long-term

memory. In addition, they also rely on interpolat-

ing probabilities of a backbone language model

and a cache component (similar to kNN-LN when

the cache size is unbounded).

Other Retrieval Augmented Methods. An

early version of a neural language model that

includes a retrieval component is presented in

Guu et al. (2018). They follow a retrieve-then-edit

approach to generate a sentence, which requires

approximating an expectation over an edit prior.

Outside language modeling, there are several re-

cent retrieval-augmented methods that have been

used for question answering (de Masson d’Autume

et al., 2019; Guu et al., 2020; Xiong et al.,

2021; Kassner and Schutze, 2020), controllable

generation (Xu et al., 2020), machine translation

(Bapna and Firat, 2019; Khandelwal et al., 2021),

and one-shot learning (Kaiser et al., 2017). These

methods share some similarities with our proposed

model since it involves a retrieval component.

However, the difference in the downstream tasks

(language modeling vs. question answering vs.

machine translation), results in different items

that are stored in and retrieved from the key-value

database. For example, de Masson d’Autume

et al. (2019) store and retrieve question-answer

pairs, Guu et al. (2020) have a database of

passages of an article, and Khandelwal et al.

(2021) use source and target sentences. Our gating

mechanism resembles the gate that is used to

incorporate information from a non-parametric

memory component to a machine translation

model in Bapna and Firat (2019), although the

memory entries, the decoder architecture, and the

downstream task are different.

In addition, these models are only models of

long-term memory. Their evaluation tasks often

do not need working memory because the entire

Dataset # Train # Dev # Test # Vocab

WikiText 110M 0.2M 0.3M 33,060

WMT 852M 1M 1M 50,259

enwik8 94M 5.2M 5.2M 256

Table 1: Descriptive statistics of datasets used

in our experiments. For each split, we show the

number of (sub)words for WikiText and WMT

and the number of characters for enwik8.

input sequence is short enough that it can be fed

as an input to a transformer as a whole.

4 Experiments

We use word-based and character-based English

language model datasets—WikiText 103, WMT,

and enwik8—to evaluate our proposed method.

We provide descriptive statistics in Table 1 and

discuss each dataset in the respective section

below.

4.1 Implementation Details

We use Adam (Kingma and Ba, 2015) as our

optimizer. For word-based language modeling,

we use adaptive softmax (Grave et al., 2017b).

We apply dropout with a rate of 0.25. All models

are trained on 128 Tensor Processing Units until

convergence with batch size 256.

4.2 WikiText-103

Our first dataset is WikiText-103 (Merity

et al., 2017). We compare four models:

vanilla transformer, transformer-XL, kNN-LM,

and SPALM. For WikiText-103, all of our models

have 18 layers and 512 hidden dimension size with

a total of 142M parameters. We set the sequence

length to 512. For transformer-XL, we set the

short-term memory length to 512 during training

and 512 or 3072 at test time. We use 4 nearest

neighbors for kNN-LM and SPALM and analyze the

effect of varying the number of neighbors in §5.4.

For kNN-LM, we use the transformer-XL model

to obtain pLM, compute pkNN based on the nearest

neighbor distance similar to Khandelwal et al.

(2020), and tune λ from {0.05, 0.1, 0.2, 0.3, 0.4}
on the development set.

Table 2 shows perplexity on WikiText103.

Our implementation produces results that are

in the same range as state-of-the-art numbers,

demonstrating the strength of our baselines.

Transformer-XL outperforms transformer, and

interpolating the probability of transformer-XL

366



Model # Params Dev Test

Transformer-XLa 257M – 18.3

Adaptive Inputb 247M 18.0 18.7

Compressivec 257M 16.0 17.1

kNN-LMd 247M 16.1 16.1

M
=

5
1
2

Transformer 142M 20.8 21.8

Transformer-XL 142M 18.7 19.6

kNN-LM 142M 18.1 18.5

SPALM 142M 17.9 18.8

→֒ + kNN 17.6 18.0

M
=

3
0
7
2 Transformer-XL 142M 18.3 19.1

kNN-LM 142M 17.7 18.0

SPALM 142M 17.4 18.3

→֒ + kNN 17.2 17.6

Table 2: Perplexity on WikiText-103. The top

rows contain results taken from other papers: (a)

transformer-XL (Dai et al., 2019), (b) adaptive

input embeddings (Baevski and Auli, 2019), (c)

compressive transformer (Rae et al., 2020), and

(d) kNN-LM (Khandelwal et al., 2020). The

(log likelihood) difference between the best

model (SPALM + kNN) and transformer-XL on

the test set is statistically significant (Wilcoxon

signed-rank test, p < 0.05).

with kNN (i.e., kNN-LM) improves the result

further. This is true both with transformer-XL

(short-term) memory length of 512 and 3072.

Comparing kNN-LM with SPALM, kNN-LM is

marginally better on the test set even though SPALM

is marginally better on the development set.

We observe further improvements in SPALM by

interpolating its output probability with the output

probability from pkNN which is used by kNN-LM,

resulting in the best model with a perplexity of

17.6. We find this interesting since SPALM and pkNN

use the exact same four neighbors for each token.

It indicates that there are some complementary

benefits in incorporating long-term memory into

training and interpolating probabilities at test time.

4.3 WMT

In the second experiment, our goal is to evaluate

on a much larger dataset. We construct a language

modeling dataset from the English portion of

the WMT 2019 dataset, publicly available at

http://www.statmt.org/wmt19/. WMT

contains news articles from different months. We

use articles from January to October for training, a

portion of articles in November for development,

Model # Params Dev Test

Transformer 148M 16.0 16.3

Transformer-XL 148M 15.6 15.5

kNN-LM 148M 13.1 15.2

SPALM 148M 13.0 14.0

Table 3: Perplexity on the WMT dataset. The

(log likelihood) difference between SPALM and

transformer-XL on the test set is statistically

significant (Wilcoxon signed-rank test, p < 0.05).

and a portion of articles in December for test.7

The resulting WMT dataset is approximately ten

times larger than the WikiText-103 dataset.

Similar to the previous experiment, we evaluate

models with 18 layers and 512 hidden dimension

size with a total of 148 million parameters. We set

the sequence length to 512, the transformer-XL

short-term memory length to 512 for training and

evaluation, and the number of neighbors for SPALM

and kNN-LM to 4.

Table 3 shows results on this dataset.

Consistent with the previous experiment, kNN-

LM outperforms transformer-XL and transformer.

SPALM outperforms all of them by a considerable

margin on the test set. Unlike WikiText-103, we

observe no further improvement interpolating the

probabilities of SPALM with pkNN. The results also

indicate that when the distributions of the dev

and test sets can be different (e.g., articles from

different months), kNN-LM that relies on tuning

λ on the dev set is more sensitive to performance

discrepancy between the dev and test sets.

4.4 enwik8

In the third experiment, we evaluate our models

on character-level language modeling. Compared

to word-level language modeling, character-level

has a much smaller output space (in the order

of hundreds instead of tens of thousands) and

has a different characteristic in how much local

vs. global contexts are needed to make a good

prediction.

The enwik8 dataset (Hutter, 2012) is a

benchmark for character-level language modeling.

7We sample articles written in November and December

in chronological order to create development and test sets of

approximately 1 million tokens (there are almost 100 million

tokens if we use all of the articles in each month).

367

http://www.statmt.org/wmt19/


Model # Params Dev Test

18L Transformer-XLa 88M − 1.03

24L Transformer-XLa 277M − 0.99

Longformerc 102M − 0.99

Compressived 277M − 0.97

Transformer 104M 1.07 1.05

Transformer-XL 104M 1.03 1.01

kNN-LM 104M 1.04 1.02

SPALM 104M 1.02 1.00

Table 4: Bits per character (BPC) on enwik8.

The top rows contain results taken from

other papers: (a) transformer-XL (Dai et al.,

2019), (b) longformer (Beltagy et al., 2020),

and (c) compressive transformer (Rae et al.,

2020). The (log likelihood) difference between

SPALM and transformer-XL on the test set is

statistically significant (Wilcoxon signed-rank

test, p < 0.05).

We use a 24-layer model with 512 hidden size. In

total, our model has 100 million parameters. We

set the sequence length to 768, the transformer-

XL short-term memory length to 1536 for training

and 4096 for evaluation. Since character-level

language models has a much smaller output space,

we only retrieve two neighbors per character.

We show the results in Table 4. Unlike

the previous two word-level language modeling

results, kNN-LM underperforms transformer-XL.

However, SPALM outperforms all other models.

We note that a decrease of 0.01 is considerable

on this dataset under the BPC metric. Similar

to WMT, interpolating the probabilities of SPALM

with pkNN does not improve performance. These

results highlight a major strength of our proposed

model: Uniformly setting interpolation weights at

the corpus level decreases performance (i.e., kNN-

LM), but allowing the model to flexibly decide

when to use long-term vs. short-term memory is

beneficial.

Since character-level and word-based language

modeling are characteristically different, the

success of our model on this dataset indicates

its applicability to other sequence modeling

problems. We leave such explorations to future

work.

5 Analysis

We have demonstrated the efficacy of our

proposed method on three language modeling

tasks. In this section, we analyze the model to

gain more insights into how it works.

5.1 Examples of Neighbors

We inspect the neighbor tokens that are retrieved

from the long-term memory for news articles

in the WMT development dataset. We provide

a cherry-picked example in Figure 2. As the

model sees more tokens in a sequence, the long-

term memory model becomes more accurate. We

observe interesting cases such as when predicting

a named entity (e.g., Elizabeth Warren),

even if the long-term memory model fails to

retrieve the correct first name, it usually is able

to retrieve the correct last name after seeing the

first name (because the entity exists in the training

corpus). We observe this phenomenon in many

other examples as well. We can also see that the

retrieved neighbors are generally relevant even

when they do not match a target word exactly—for

example, when predicting names of days, dollar

amounts, time quantifiers, and common phrases.

We next investigate neighbors on enwik8

development set (Figure 3). We observe that

information from the long-term memory helps

when completing common words (e.g., before

and invasion), named entities (e.g., Soviet),

and corpus-specific formats (e.g., double square

brackets).

We note that the above examples are only

provided to give a better insight into our model.

It is entirely plausible that a baseline parametric

model is already able to predict correctly from

the local context. Nonetheless, directly providing

this information as a long-term context helps our

model learn better, as evident from the superior

performance of SPALM on our three evaluation

datasets.

5.2 Output Analysis

We search for predictions where SPALM

significantly outperforms transformer-XL and

transformer to understand when modeling local

information is sufficient (i.e., vanilla transformer),

when adding extended context helps (i.e.,

transformer-XL), and when storing long-term

information is useful (i.e., SPALM). We show three

examples from the WMT test set in Figure 4.

368



Figure 2: A sequence of words from WMT and its four nearest neighbors at each position. We break down

the sequence into four blocks. The bottom row of each block in blue represents the original sequence, which

is Elizabeth Warren on Friday ... the middle class. Each row above it represents a nearest

neighbor token (starting from the first neighbor at the second-bottom to the fourth neighbor at the top) that is used

when predicting that particular word. We highlight matching neighbor–target words in green. We provide a more

detailed discussion in §5.1.

Figure 3: A sequence of characters from enwik8 and its two nearest neighbors at each position. We break down the

sequence into two blocks. The bottom row of each block in blue represents the original character sequence, which

is Even before ... [[1979]]. The two rows above it represent the nearest neighbors (the first nearest

neighbors at the second bottom row and the second nearest neighbors at the top row) that are used when predicting

that particular character. We highlight matching neighbor–target characters in green. We provide a more detailed

discussion in §5.1.

Figure 4: Three example sequences from the WMT test set. We highlight words where both pTXL and pSPALM are

larger than ptransformer + 0.1 in green and pSPALM > pTXL + 0.1 in blue. See §5.2 for details.

While it is difficult to find consistent pat-

terns, we observe that SPALM is generally better

than both transformer and transformer-XL for

predicting (completing) common phrases and

named entities (that exist in the training set),

especially when they are encountered for the

first time and have not appeared in the extended

context (e.g., pulled their advertising

from, Liberal Democrat, Jo Swinson,

Boeing 787-9 Dreamliner).

On the other hand, we also see a few cases when

transformer-XL outperforms SPALM. These are

usually associated with scenarios where the same

word has appeared in the extended context. While

SPALM uses information from the extended context

as well, the probability is smoothed over by

369



Figure 5: Distributions of values of g for WMT (left)

and enwik8 (right) development sets.

information from the long-term memory, resulting

in a more peaky distribution for transformer-XL.

5.3 Gate Vectors

Our model has a gating mechanism to regulate

information flow from the current context, short-

term, and long-term memory. We analyze the

values of the gate for tokens in WMT and enwik8.

Figure 5 shows histograms of the distribution of

gate values.

We observe different characterstics for WMT

and enwik8. On enwik8, the gate values are

concentrated around 1. This indicates that the

model relies on local context most of the time.

This can explain why kNN-LM does not work

well on this dataset. On WMT, the values are

less concentrated around 1. This suggests that

the model uses long-term memory more than on

enwik8. SPALM is able to learn when the long-

term memory is needed and when it is not in

both cases.

We next look into the value of the gates

for a specific sequence in the development set

in Figure 6. We note that we only show a

small dimension subset from the gate vector

for readability, so we caution against drawing a

conclusion about how the model works from this.

Our goal is only to get a better understanding of

what happens when the model makes predictions.

Comparing WMT and enwik8, we see that in

general on WMT the model tends to reserve

some dimensions to propagate information from

the long-term memory, as indicated by vertical

red lines. On enwik8, the model relies on long

term information when completing a known word

such as Egypt, as shown by more horizontal

red patterns when forming this word. For other

characters, the value of the gates are closer to one,

which shows that the model relies more on local

and extended short-term context.

5.4 Number of Neighbors

We use four neighbors for our word-based and

two neighbors for our character-based language

models. These values are chosen from preliminary

experiments on a small subset of the datasets.

We show SPALM perplexity on development set

for WikiText-103 when we vary the number of

neighbors in Table 5. We see that using one nearest

neighbor is enough to obtain good performance,

with a slight advantage when we use four neigh-

bors. The performance starts to degrade as we use

8 and 16 neighbors. We choose to use four neigh-

bors in our experiments since kNN-LM–which

also uses the same set of neighbors–performs

better with four neighbors instead of one, and we

want to keep the comparison as fair as possible.

One notable difference between our neighbors

and those that are used in kNN-LM (Khandelwal

et al., 2020) is that we do not limit the search of the

neighbors to the same token as the current input

token (I(xi = xt)). While this allows the model

to combine information from related words (not

constrained to an exact match), it could introduce

noise when the number of neighbors is large.

We observe that our representation learning

model (i.e., the baseline transformer) is able to

retrieve relevant neighbors most of the time.

It retrieves the exact output token as the first

neighbor 33%, 44%, and 70% on WikiText-103,

WMT, and enwik8 development sets, respectively.

6 Discussion

Summary of Contributions. We present a

semiparametric language model (SPALM) that

combines local context, short-term memory,

and long-term memory to make predictions.

Experiments on word-based and character-based

language models demonstrate the benefit of our

proposed method.

Limitations. The biggest limitation is the

necessity to retrieve neighbors for each training

token. Such a process—even though can be

fully parallelized—is time consuming. In our

experiments, it takes 6–8 hours to obtain neighbors

for WikiText-103 and enwik8 with 1,000 CPUs

and 18 hours for WMT with 9,000 CPUs.

Future Directions. Our modular approach that

combines multiple memory systems at the

370



Figure 6: Heatmaps of g values on a partial sequence from WMT development set (left) and enwik8 (right). Each

row is a token (word or character), each colum is a dimension from g. blue indicates value closer to 1.0, whereas

red indicates value closer to 0.0. The darker the shade the closer the value is to the extreme. We see vertical

patterns on WMT, indicating that these dimensions are reserved to flow information from long-term memory.

Horizontal patterns on enwik8 indicates the model relies on long-term memory to predict a target token (e.g.,

when forming the word Egypt). The g vector has 512 dimension, we only zoom in to a small dimension subset

here. There are more horizontal and vertical patterns on both datasets as a whole.

# NNs Perplexity

1 18.0

2 18.0

4 17.9

8 18.2

16 18.4

Table 5: SPALM perplex-

ity on the WikiText-103

development set with

different numbers of

neighbors.

architectural level opens up the possibility

to incorporate additional memory from other

modalities (e.g., images) or structured knowledge

bases. We also envision a next-generation model

that does not have to retrieve information from

long-term memory for every token and only does it

for those that require global context. A model that

learns how to do this would save a considerable

amount of training and test time—since it would

significantly reduce the number of search that

needs to be performed. Our language model that

integrates retrieval into training is a first step in

this direction.

Acknowledgments

We thank the action editor (Mihai Surdeanu) and

three anonymous reviewers for helpful comments

on an earlier draft of this article.

References

Alexei Baevski and Michael Auli. 2019. Adap-

tive input representations for neural language

modeling. In Proceedings of ICLR.

Ankur Bapna and Orhan Firat. 2019. Non-

parametric adaptation for neural machine

translation. In Proceedings of NAACL-HLT .

DOI: https://doi.org/10.18653/v1

/N19-1191

Iz Beltagy, Matthew E. Peters, and Arman Cohan.

2020. Longformer: The long-document trans-

former. arXiv preprint arXiv:2004.05150v2.

Tom B. Brown, Benjamin Mann, Nick Ryder,

Melanie Subbiah, Jared Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam,

Girish Sastry, Amanda Askell, Sandhini

Agarwal, Ariel Herbert-Voss, Gretchen

Krueger, Tom Henighan, Rewon Child, Aditya

Ramesh, Daniel M. Ziegler, Jeffrey Wu,

Clemens Winter, Christopher Hesse, Mark

Chen, Eric Sigler, Mateusz Litwin, Scott

Gray, Benjamin Chess, Jack Clark, Christopher

Berner, Sam McCandlish, Alec Radford, Ilya

Sutskev, and Dario Amodei. 2020. Language

models are few-shot learners. In Proceedings

of NeurIPS.

Krzysztof Choromanski, Valerii Likhosherstov,

David Dohan, Xingyou Song, Andreea Gane,

Tamas Sarlos, Peter Hawkins, Jared Davis,

Afroz Mohiuddin, Lukasz Kaiser, David

Belanger, Lucy Colwell, and Adrian Weller.

2021. Rethinking attention with performers. In

Proceedings of ICLR.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime

Carbonell, Quoc V. Le, and Ruslan

Salakhutdinov. 2019. Transformer-XL: Atten-

tive language models beyond a fixed-length

context. In Proceedings of ACL.

371

https://doi.org/10.18653/v1/N19-1191
https://doi.org/10.18653/v1/N19-1191


Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2018. BERT: Pre-training

of deep bidirectional transformers for language

understanding. In Proceedings of NAACL.

Howard Eichenbaum. 2012. Memory systems.

Handbook of Psychology, Second Edition,

3. DOI: https://doi.org/10.1002

/9781118133880.hop203020

Edouard Grave, Moustapha M. Cisse, and

Armand Joulin. 2017a. Unbounded cache

model for online language modeling with open

vocabulary. In Proceedings of NeurIPS.

Edouard Grave, Armand Joulin, Moustapha Cisse,

David Grangier, and Herve Jegou. 2017b.

Efficient softmax approximation for GPUs. In

Proceedings of ICML.

Edouard Grave, Armand Joulin, and Nicolas

Usunier. 2017c. Improving neural language

models with a continuous cache. In Proceedings

of ICLR.

Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng,

David Simcha, Felix Chern, and Sanjiv Kumar.

2020. Accelerating large-scale inference with

anisotropic vector quantization. In Proceedings

of ICML.

Kelvin Guu, Tatsunori B. Hashimoto, Yonatan

Oren, and Percy Liang. 2018. Generating

sentences by editing prototypes. Transactions of

the Association for Computational Linguistics,

6:437–450. DOI: https://doi.org/10

.1162/tacl a 00030

Kelvin Guu, Kenton Lee, Zora Tung, Panupong

Pasupat, and Ming-Wei Chang. 2020. Realm:

Retrieval-augmented language model pre-

training. In Proceedings of ICML.

Marcus Hutter. 2012. The human knowl-

edge compression contest. http://prize

.hutter1.net/

Hakan Inan, Khashayar Khosravi, and Richard

Socher. 2017. Tying word vectors and word

classifiers: A loss framework for language

modeling. In Proceedings of ICLR.

Lukasz Kaiser, Ofir Nachum, Aurko Roy, and

Samy Bengio. 2017. Learning to remember rare

events. In Proceedings of ICLR.

Nora Kassner and Hinrich Schutze. 2020. BERT-

kNN: Adding a kNN search component to

pretrained language models for better QA.

In Proceedings of Findings of EMNLP.

DOI: https://doi.org/10.18653/v1

/2020.findings-emnlp.307.

Urvashi Khandelwal, Angela Fan, Dan Jurafsky,

Luke Zettlemoyer, and Mike Lewis. 2021.

Nearest neighbor machine translation. In

Proceedings of ICLR.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky,

Luke Zettlemoyer, and Mike Lewis. 2020.

Generalization through memorization: Nearest

neighbor language models. In Proceedings of

ICLR.

Diederik P. Kingma and Jimmy Lei Ba. 2015.

Adam: A method for stochastic optimization.

In Proceedings of ICLR.

Nikita Kitaev, Lukasz Kaiser, and Anselm

Kevskaya. 2020. Reformer: The efficient

transformer. In Proceedings of ICLR.

Ben Krause, Emmanuel Kahembwe, Iain Murray,

and Steve Renals. 2018. Dynamic evaluation

of neural sequence models. In Proceedings of

ICML.

Ben Krause, Emmanuel Kahembwe, Iain Murray,

and Steve Renals. 2019. Dynamic evaluation

of transformer language models. arXiv preprint

arXiv:1904.08378v1.

Cyprien de Masson d’Autume, Sebastian Ruder,

Lingpeng Kong, and Dani Yogatama. 2019.

Episodic memory in lifelong language learning.

In Proceedings of NeurIPS.

Stephen Merity, Caiming Xiong, James Bradbury,

and Richard Socher. 2017. Pointer sentinel

mixture models. In Proceedings of ICLR.

Aida Nematzadeh, Sebastian Ruder, and Dani

Yogatama. 2020. On memory in human and

artificial language processing systems. In

Proceedings of ICLR Workshop on Bridging

AI and Cognitive Science.

Graham Neubig and Chris Dyer. 2016.

Generalizing and hybridizing count-based

and neural language models. In Proceedings

of EMNLP. DOI: https://doi.org/10

.18653/v1/D16-1124

372

https://doi.org/10.1002/9781118133880.hop203020 
https://doi.org/10.1002/9781118133880.hop203020
https://doi.org/10.1162/tacl_a_00030
https://doi.org/10.1162/tacl_a_00030
http://prize.hutter1.net/
http://prize.hutter1.net/
https://doi.org/10.18653/v1/2020.findings-emnlp.307
https://doi.org/10.18653/v1/2020.findings-emnlp.307
https://doi.org/10.18653/v1/D16-1124
https://doi.org/10.18653/v1/D16-1124


Fabio Petroni, Tim Rocktaschel, Patrick Lewis,

Anton Bakhtin, Yuxiang Wu, Alexander H.

Miller, and Sebastian Riedel. 2020. Language

models as knowledge bases? In Proceedings

of EMNLP. DOI: https://doi.org/10

.18653/v1/D19-1250

Alec Radford, Karthik Narasimhan, Tim Salimans,

and Ilya Sutskever. 2018. Improving lan-

guage understanding by generative pre-training.

https://cdn.openai.com/research

-covers/language-unsupervised

/language understanding paper.pdf

Alec Radford, Jeff Wu, Rewon Child, David

Luan, Dario Amodei, and Ilya Sutskever. 2019.

Language models are unsupervised multitask

learners.https://cdn.openai.com/better

-language-models/language models

are unsupervised multitask learners

.pdf

Jack W. Rae, Anna Potapenko, Siddhant M.

Jayakumar, Chloe Hillier, and Timothy P.

Lillicrap. 2020. Compressive transformers for

long-range sequence modelling. In Proceedings

of ICLR.

Edmund T. Rolls. 2000. Memory systems in

the brain. Annual Review of Psychology,

51(1):599–630. DOI: https://doi.org/

10.1146/annurev.psych.51.1.599,

PMID: 10751982

Mohammad Shoeybi, Mostofa Patwary, Raul

Puri, Patrick LeGresley, Jared Casper, and

Bryan Catanzaro. 2019. Megatron-LM: Train-

ing multi-billion parameter language models

using model parallelism. arXiv preprint

arXiv:1909.08053v4.

E. Tulving. 1985. How many memory systems

are there? American Psychologist, 40:385–398.

DOI: https://doi.org/10.1037/0003

-066X.40.4.385

Ashish Vaswani, Noam Shazeer, Niki Parmar,

Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Lukasz Kaiser, and Illia Polosukhin. 2017.

Attention is all you need. In Proceedings of

NIPS.

Wenhan Xiong, Xiang Lorraine Li, Srini Iyer,

Jingfei Du, Patrick Lewis, William Yang

Wang, Yashar Mehdad, Wen tau Yih, Sebastian

Riedel, Douwe Kiela, and Barlas Oguz. 2021.

Answering complex open-domain questions

with multi-hop dense retrieval. In Proceedings

of ICLR.

Peng Xu, Mostofa Patwary, Mohammad Shoeybi,

Raul Puri, Pascale Fung, Anima Anandkumar,

and Bryan Catanzaro. 2020. Megatron-CNTRL:

Controllable story generation with external

knowledge using large-scale language models.

In Proceedings of EMNLP.

373

https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised\_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://doi.org/10.1146/annurev.psych.51.1.599
https://doi.org/10.1146/annurev.psych.51.1.599
https://europepmc.org/article/MED/10751982
https://doi.org/10.1037/0003-066X.40.4.385
https://doi.org/10.1037/0003-066X.40.4.385

	Introduction
	Model
	Base Model
	Short-term Memory
	Long-term Memory
	Training Details

	Comparisons to Previous Work
	Experiments
	Implementation Details
	WikiText-103
	WMT
	enwik8

	Analysis
	Examples of Neighbors
	Output Analysis
	Gate Vectors
	Number of Neighbors

	Discussion

