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Abstract

Dual encoders perform retrieval by encoding

documents and queries into dense low-

dimensional vectors, scoring each document

by its inner product with the query. We

investigate the capacity of this architecture

relative to sparse bag-of-words models and

attentional neural networks. Using both

theoretical and empirical analysis, we establish

connections between the encoding dimension,

the margin between gold and lower-

ranked documents, and the document length,

suggesting limitations in the capacity of

fixed-length encodings to support precise

retrieval of long documents. Building on these

insights, we propose a simple neural model

that combines the efficiency of dual encoders

with some of the expressiveness of more costly

attentional architectures, and explore sparse-

dense hybrids to capitalize on the precision

of sparse retrieval. These models outperform

strong alternatives in large-scale retrieval.

1 Introduction

Retrieving relevant documents is a core task for

language technology, and is a component of

applications such as information extraction and

question answering (e.g., Narasimhan et al.,

2016; Kwok et al., 2001; Voorhees, 2001).

While classical information retrieval has focused

on heuristic weights for sparse bag-of-words

representations (Spärck Jones, 1972), more recent

work has adopted a two-stage retrieval and

ranking pipeline, where a large number of

documents are retrieved using sparse high

dimensional query/document representations, and

are further reranked with learned neural models

(Mitra and Craswell, 2018). This two-stage

approach has achieved state-of-the-art results on

∗Equal contribution.

IR benchmarks (Nogueira and Cho, 2019; Yang

et al., 2019; Nogueira et al., 2019a), especially

since sizable annotated data has become available

for training deep neural models (Dietz et al., 2018;

Craswell et al., 2020). However, this pipeline

suffers from a strict upper bound imposed by any

recall errors in the first-stage retrieval model: For

example, the recall@1000 for BM25 reported by

Yan et al. (2020) is 69.4.

A promising alternative is to perform first-stage

retrieval using learned dense low-dimensional

encodings of documents and queries (Huang

et al., 2013; Reimers and Gurevych, 2019; Gillick

et al., 2019; Karpukhin et al., 2020). The dual

encoder model scores each document by the

inner product between its encoding and that of

the query. Unlike full attentional architectures,

which require extensive computation on each

candidate document, the dual encoder can be

easily applied to very large document collections

thanks to efficient algorithms for inner product

search; unlike untrained sparse retrieval models, it

can exploit machine learning to generalize across

related terms.

To assess the relevance of a document to an

information-seeking query, models must both (i)

check for precise term overlap (for example,

presence of key entities in the query) and (ii)

compute semantic similarity generalizing across

related concepts. Sparse retrieval models excel at

the first sub-problem, while learned dual encoders

can be better at the second. Recent history in NLP

might suggest that learned dense representations

should always outperform sparse features overall,

but this is not necessarily true: as shown in

Figure 1, the BM25 model (Robertson et al., 2009)

can outperform a dual encoder based on BERT,

particularly on longer documents and on a task

that requires precise detection of word overlap.1

This raises questions about the limitations of dual

1See §4 for experimental details.
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Figure 1: Recall@1 for retrieving passage containing

a query from three million candidates. The figure

compares a fine-tuned BERT-based dual encoder (DE-

BERT-768), an off-the-shelf BERT-based encoder with

average pooling (BERT-init), and sparse term-based

retrieval (BM25), while binning passages by length.

encoders, and the circumstances in which these

powerful models do not yet reach the state of

the art. Here we explore these questions using

both theoretical and empirical tools, and propose

a new architecture that leverages the strengths

of dual encoders while avoiding some of their

weaknesses.

We begin with a theoretical investigation

of compressive dual encoders—dense encodings

whose dimension is below the vocabulary

size—and analyze their ability to preserve distinc-

tions made by sparse bag-of-words retrieval

models, which we term their fidelity. Fidelity

is important for the sub-problem of detecting

precise term overlap, and is a tractable proxy

for capacity. Using the theory of dimensionality

reduction, we relate fidelity to the normalized

margin between the gold retrieval result and

its competitors, and show that this margin is

in turn related to the length of documents in

the collection. We validate the theory with an

empirical investigation of the effects of random

projection compression on sparse BM25 retrieval

using queries and documents from TREC-CAR, a

recent IR benchmark (Dietz et al., 2018).

Next, we offer a multi-vector encoding model,

which is computationally feasible for retrieval

like the dual-encoder architecture and achieves

significantly better quality. A simple hybrid that

interpolates models based on dense and sparse

representations leads to further improvements.

We compare the performance of dual encoders,

multi-vector encoders, and their sparse-dense

hybrids with classical sparse retrieval mod-

els and attentional neural networks, as well as

state-of-the-art published results where avail-

able. Our evaluations include open retrieval

benchmarks (MS MARCO passage and document),

and passage retrieval for question answering

(Natural Questions). We confirm prior find-

ings that full attentional architectures excel at

reranking tasks, but are not efficient enough

for large-scale retrieval. Of the more efficient

alternatives, the hybridized multi-vector encoder

is at or near the top in every evaluation, out-

performing state-of-the-art retrieval results in

MS MARCO. Our code is publicly available at

https://github.com/google-research

/language/tree/master/language

/multivec.

2 Analyzing Dual Encoder Fidelity

A query or a document is a sequence of words

drawn from some vocabulary V . Throughout this

section we assume a representation of queries

and documents typically used in sparse bag-of-

words models: Each query q and document d is a

vector in R
v where v is the vocabulary size. We

take the inner product 〈q, d〉 to be the relevance

score of document d for query q. This framework

accounts for a several well-known ranking models,

including Boolean inner product, TF-IDF, and BM25.

We will compare sparse retrieval models with

compressive dual encoders, for which we write

f(d) and f(q) to indicate compression of d
and q to R

k, with k ≪ v, and where k does

not vary with the document length. For these

models, the relevance score is the inner product

〈f(q), f(d)〉. (In §3, we consider encoders that

apply to sequences of tokens rather than vectors

of counts.)

A fundamental question is how the capacity of

dual encoders varies with the embedding size k. In

this section we focus on the related, more tractable

notion of fidelity: How much can we compress

the input while maintaining the ability to mimic

the performance of bag-of-words retrieval? We

explore this question mainly through the encoding

model of random projections, but also discuss

more general dimensionality reduction in §2.2.

2.1 Random Projections

To establish baselines on the fidelity of

compressive dual encoder retrieval, we now

consider encoders based on random projections

(Vempala, 2004). The encoder is defined as

f(x) = Ax, where A ∈ R
k×v is a random matrix.

In Rademacher embeddings, each element ai,j
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of the matrix A is sampled with equal probabil-

ity from two possible values: {− 1√
k
, 1√

k
}. In

Gaussian embeddings, each ai,j ∼ N(0, k−1/2).
A pairwise ranking error occurs when 〈q, d1〉 >
〈q, d2〉 but 〈Aq,Ad1〉 < 〈Aq,Ad2〉. Using such

random projections, it is possible to bound the

probability of any such pairwise error in terms of

the embedding size.

Definition 2.1. For a query q and pair of

documents (d1, d2) such that 〈q, d1〉 ≥ 〈q, d2〉, the

normalized margin is defined as, µ(q, d1, d2) =
〈q,d1−d2〉

‖q‖×]‖d1−d2‖ .

Lemma 1. Define a matrixA ∈ R
k×d of Gaussian

or Rademacher embeddings. Define vectors

q, d1, d2 such that µ(q, d1, d2) = ǫ > 0. A ranking

error occurs when 〈Aq,Ad2〉 ≥ 〈Aq,Ad1〉. If β
is the probability of such an error then,

β ≤ 4 exp

(

−k
2
(ǫ2/2− ǫ3/3)

)

. (1)

The proof, which builds on well-known results

about random projections, is found in §A.1. By

solving (1) for k, we can derive an embedding

size that guarantees a desired upper bound on the

pairwise error probability,

k ≥ 2(ǫ2/2− ǫ3/3)−1ln
4

β
. (2)

It is convenient to derive a simpler but looser

quadratic bound (proved in §A.2):

Corollary 1. Define vectors q, d1, d2 such that

ǫ = µ(q, d1, d2) > 0. If A ∈ R
k×v is a matrix

of random Gaussian or Rademacher embeddings

such that k > 12ǫ−2ln 4
β , then Pr(〈Aq,Ad1〉 ≤

〈Aq,Ad2〉) ≤ β.

On the Tightness of the Bound. Let k∗(q, d1, d2)
denote the lowest dimension Gaussian or

Rademacher random projection following the

definition in Lemma 1, for which Pr(〈Aq,Ad1〉 <
〈Aq,Ad2〉) ≤ β, for a given document pair

(d1, d2) and query q with normalized margin

ǫ. Our lemma places an upper bound on k∗,
saying that k∗(q, d1, d2) ≤ 2(ǫ2/2 − ǫ3/3)−1ln 4

β .

Any k ≥ k∗(q, d1, d2) has sufficiently low

probability of error, but lower values of k could

potentially also have the desired property. Later

in this section we perform empirical evaluation

to study the tightness of the bound; although

theoretical tightness (up to a constant factor)

is suggested by results on the optimality of

the distributional Johnson-Lindenstrauss lemma

(Johnson and Lindenstrauss, 1984; Jayram and

Woodruff, 2013; Kane et al., 2011), here we study

the question only empirically.

2.1.1 Recall-at-r

In retrieval applications, it is important to return

the desired result within the top r search results.

For query q, define d1 as the document that

maximizes some inner product ranking metric.

The probability of returning d1 in the top r results

after random projection can be bounded by a

function of the embedding size and normalized

margin:

Lemma 2. Consider a query q, with target

document d1, and document collection D that

excludes d1, and such that∀d2 ∈ D, µ(q, d1, d2) >
0. Define r0 to be any integer such that 1 ≤ r0 ≤
|D|. Define ǫ to be the r0’th smallest normalized

margin µ(q, d1, d2) for any d2 ∈ D, and for

simplicity assume that only a single document

d2 ∈ D has µ(q, d1, d2) = ǫ.2

Define a matrix A ∈ R
k×d of Gaussian

or Rademacher embeddings. Define R to be

a random variable such that R = |{d2 ∈
D : 〈Aq,Ad1〉 ≤ 〈Aq,Ad2〉}|, and let C =
4(|D| − r0 + 1). Then

Pr(R ≥ r0) ≤ C exp

(

−k
2
(ǫ2/2− ǫ3/3)

)

.

The proof is in §A.3. A direct consequence of

the lemma is that to achieve recall-at-r0 = 1 for a

given (q, d1,D) triple with probability ≥ 1− β, it

is sufficient to set

k ≥ 2

ǫ2/2− ǫ3/3
ln
4(|D| − r0 + 1)

β
, (3)

where ǫ is the r0’th smallest normalized margin.

As with the bound on pairwise relevance errors

in Lemma 1, Lemma 2 implies an upper bound

on the minimum random projection dimension

k∗(q, d1,D) that recalls d1 in the top r0 results

with probability ≥ 1 − β. Due to the application

of the union bound and worst-case assumptions

about the normalized margins of documents in Dǫ,

2The case where multiple documents are tied with nor-

malized margin ǫ is straightforward but slightly complicates

the analysis.
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this bound is potentially loose. Later in this section

we examine the empirical relationship between

maximum document length, the distribution of

normalized margins, and k∗.

2.1.2 Application to Boolean Inner Product

Boolean inner product is a retrieval function in

which d, q ∈ {0, 1}v over a vocabulary of size v,

with di indicating the presence of term i in the

document (and analogously for qi). The relevance

score 〈q, d〉 is then the number of terms that appear

in both q and d. For this simple retrieval function,

it is possible to compute an embedding size that

guarantees a desired pairwise error probability

over an entire dataset of documents.

Corollary 2. For a set of documents D = {d ∈
{0, 1}v} and a query q ∈ {0, 1}v, let LD =
maxd∈D ‖d‖2 and LQ = ‖q‖2. Let A ∈ R

k×v

be a matrix of random Rademacher or Gaussian

embeddings such that k ≥ 24LQLDln 4
β . Then for

any d1, d2 ∈ D such that 〈q, d1〉 > 〈q, d2〉, the

probability that 〈Aq,Ad1〉 ≤ 〈Aq,Ad2〉 is ≤ β.

The proof is in §A.4. The corollary shows

that for Boolean inner product ranking, we can

guarantee any desired error bound β by choosing

an embedding size k that grows linearly inLD, the

number of unique terms in the longest document.

2.1.3 Application to TF-IDF and BM25

Both TF-IDF (Spärck Jones, 1972) and BM25

(Robertson et al., 2009) can be written as inner

products between bag-of-words representations of

the document and query as described earlier in this

section. Set the query representation q̃i = qi×IDFi,

where qi indicates the presence of the term in the

query and IDFi indicates the inverse document

frequency of term i. The TF-IDF score is then 〈q̃, d〉.
For BM25, we define d̃ ∈ R

v, with each d̃i a

function of the count di and the document length

(and hyperparameters); BM25(q, d) is then 〈q̃, d̃〉.
Due to its practical utility in retrieval, we now

focus on BM25.

Pairwise Accuracy. We use empirical data

to test the applicability of Lemma 1 to the

BM25 relevance model. We select query-document

triples (q, d1, d2) from the TREC-CAR dataset

(Dietz et al., 2018) by considering all possible

(q, d2), and selecting d1 = argmaxd BM25(q, d).
We bin the triples by the normalized margin ǫ, and

compute the quantity (ǫ2/2− ǫ3/3)−1. According

to Lemma 1, the minimum embedding size of a

Figure 2: Minimum k sufficient for Rademacher

embeddings to approximate BM25 pairwise rankings

on TREC-CAR with error rate β < .05.

random projection k∗ which has ≤ β probability

of making an error on a triple with normalized

margin ǫ is upper bounded by a linear function

of this quantity. In particular, for β = .05, the

Lemma entails that k∗ ≤ 8.76(ǫ2/2− ǫ3/3)−1. In

this experiment we measure the empirical value

of k∗ to evaluate the tightness of the bound.

The results are shown on the x-axis of Figure 2.

For each bin we compute the minimum embedding

size required to obtain 95% pairwise accuracy in

ranking d1 vs d2, using a grid of 40 possible values

for k between 32 and 9472, shown on the y-axis.

(We exclude examples that had higher values of

(ǫ2/2 − ǫ3/3)−1 than the range shown because

they did not reach 95% accuracy for the explored

range of k.) The figure shows that the theoretical

bound is tight up to a constant factor, and that

the minimum embedding size that yields desired

fidelity grows linearly with (ǫ2/2− ǫ3/3)−1.

Margins and Document Length. For boolean

inner product, it was possible to express

the minimum possible normalized margin (and

therefore a sufficient embedding size) in terms of

LQ andLD, the maximum number of unique terms

across all queries and documents, respectively.

Unfortunately, it is difficult to analytically derive

a minimum normalized margin ǫ for either TF-IDF

or BM25: Because each term may have a unique

inverse document frequency, the minimum non-

zero margin 〈q, d1 − d2〉 decreases with the num-

ber of terms in the query as each additional

term creates more ways in which two documents

can receive nearly the same score. We

therefore study empirically how normalized

margins vary with maximum document length.

Using the TREC-CAR retrieval dataset, we

bin documents by length. For each query,

we compute the normalized margins between
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Figure 3: Random projection on BM25 retrieval in TREC-CAR dataset, with documents binned by length.

the document with best BM25 in the bin and

all other documents in the bin, and look at

the 10th, 100th, and 1000th smallest normalized

margins. The distribution over these normalized

margins is shown in Figure 3a, revealing that

normalized margins decrease with document

length. In practice, the observed minimum

normalized margin for a collection of documents

and queries is found to be much lower for BM25

compared to Boolean inner product. For example,

for the collection used in Figure 2, the minimum

normalized margin for BM25 is 6.8e-06, while for

Boolean inner product it is 0.0169.

Document Length and Encoding Dimension.

Figure 3b shows the growth in minimum random

projection dimension required to reach desired

recall-at-10, using the same document bins as in

Figure 3a. As predicted, the required dimension

increases with the document length, while the

normalized margin shrinks.

2.2 Bounds on General Encoding Functions

We derived upper bounds on minimum required

encoding for random linear projections above,

and found the bounds on (q, d1, d2) triples to be

empirically tight up to a constant factor. More

general non-linear and learned encoders could

be more efficient. However, there are general

theoretical results showing that it is impossible

for any encoder to guarantee an inner product

distortion |〈f(x), f(y)〉 − 〈x, y〉| ≤ ǫ with an

encoding that does not grow as Ω(ǫ−2)
(Larsen and Nelson, 2017; Alon and Klartag,

2017), for vectors x, y with norm ≤ 1. These

results suggest more general capacity limitations

for fixed-length dual encoders when document

length grows.

In our setting, BM25, TF-IDF, and Boolean inner

product can all be reformulated equivalently as

inner products in a space with vectors of norm

at most 1 by L2-normalizing each query vector

and rescaling all document vectors by
√
LD =

maxd ||d||, a constant factor that grows with the

length of the longest document. Now suppose we

desire to limit the distortion on the unnormalized

inner products to some value ≤ ǫ̃, which might

guarantee a desired performance characteristic.

This corresponds to decreasing the maximum

normalized inner product distortion ǫ by a factor

of
√
LD. According to the general bounds

on dimensionality reduction mentioned in the

previous paragraph, this could necessitate an

increase in the encoding size by a factor of LD.

However, there are a number of caveats to

this theoretical argument. First, the theory states

only that there exist vector sets that cannot be

encoded into representations that grow more

slowly than Ω(ǫ−2); actual documents and queries

might be easier to encode if, for example,

they are generated from some simple underlying

stochastic process. Second, our construction

achieves ||d|| ≤ 1 by rescaling all document

vectors by a constant factor, but there may be

other ways to constrain the norms while using

the embedding space more efficiently. Third,

in the non-linear case it might be possible to

eliminate ranking errors without achieving low

inner product distortion. Finally, from a practical

perspective, the generalization offered by learned

dual encoders might overwhelm any sacrifices

in fidelity, when evaluated on real tasks of
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interest. Lacking theoretical tools to settle these

questions, we present a set of empirical in-

vestigations in later sections of this paper. But

first we explore a lightweight modification to the

dual encoder, which offers gains in expressivity at

limited additional computational cost.

3 Multi-Vector Encodings

The theoretical analysis suggests that fixed-

length vector representations of documents may

in general need to be large for long documents, if

fidelity with respect to sparse high-dimensional

representations is important. Cross-attentional

architectures can achieve higher fidelity, but are

impractical for large-scale retrieval (Nogueira

et al., 2019b; Reimers and Gurevych, 2019;

Humeau et al., 2020). We therefore propose a

new architecture that represents each document as

a fixed-size set of m vectors. Relevance scores

are computed as the maximum inner product over

this set.

Formally, let x = (x1, . . . , xT ) represent a

sequence of tokens, with x1 equal to the special

token [CLS], and define y analogously. Then

[h1(x), . . . , hT (x)] represents the sequence of

contextualized embeddings at the top level of

a deep transformer. We define a single-vector

representation of the query x as f (1)(x) = h1(x),
and a multi-vector representation of document

y as f (m)(y) = [h1(y), . . . , hm(y)], the first m
representation vectors for the sequence of tokens

in y, with m < T . The relevance score is defined

as maxj=1...m〈f (1)(x), f
(m)
j (y)〉.

Although this scoring function is not a dual

encoder, the search for the highest-scoring

document can be implemented efficiently with

standard approximate nearest-neighbor search by

adding multiple (m) entries for each document to

the search index data structure. If some vector

f
(m)
j (y) yields the largest inner product with

the query vector f (1)(x), it is easy to show the

corresponding document must be the one that

maximizes the relevance score ψ(m)(x, y). The

size of the index must grow by a factor of m, but

due to the efficiency of contemporary approximate

nearest neighbor and maximum inner product

search, the time complexity can be sublinear in the

size of the index (Andoni et al., 2019; Guo et al.,

2016b). Thus, a model usingm vectors of size k to

represent documents is more efficient at run-time

than a dual encoder that uses a single vector of

size mk.

This efficiency is a key difference from the

POLY-ENCODER (Humeau et al., 2020), which

computes a fixed number of vectors per query,

and aggregates them by softmax attention against

document vectors. (Yang et al., 2018b) propose

a similar architecture for language modeling.

Because of the use of softmax in these approaches,

it is not possible to decompose the relevance score

into a max over inner products, and so fast nearest-

neighbor search cannot be applied. In addition,

these works did not address retrieval from a large

document collection.

Analysis. To see why multi-vector encodings

can enable smaller encodings per vector, consider

an idealized setting in which each document vector

is the sum of m orthogonal segments such that

d =
∑m

i=1 d
(i) and each query refers to exactly one

segment in the gold document.3 An orthogonal

segmentation can be obtained by choosing the

segments as a partition of the vocabulary.

Theorem 1. Define vectors q, d1, d2 ∈ R
v such

that 〈q, d1〉 > 〈q, d2〉, and assume that both d1 and

d2 can be decomposed into m segments such

that: d1 =
∑m

i=1 d
(i)
1 , and analogously for d2; all

segments across both documents are orthogonal.

If there exists an i such that 〈q, d1〉 = 〈q, d(i)1 〉
and 〈q, d2〉 ≥ 〈q, d(i)2 〉, then µ(q, d

(i)
1 , d

(i)
2 ) ≥

µ(q, d1, d2). (The proof is in §A.5.)

Remark 1. The BM25 score can be computed

from non-negative representations of the docu-

ment and query; if the segmentation corresponds

to a partition of the vocabulary, then the segments

will also be non-negative, and thus the condition

〈q, d2〉 ≥ 〈q, d(i)2 〉 holds for all i.

The relevant case is when the same segment

is maximal for both documents, 〈q, d(i)2 〉 =

maxj〈q, d(j)2 〉, as will hold for ‘‘simple’’ queries

that are well-aligned with the segmentation. Then

the normalized margin in the multi-vector model

will be at least as large as in the equivalent

single vector representation. The relationship to

encoding size follows from the theory in the

previous section: Theorem 1 implies that if we

set f
(m)
i ((y) = Ad(i) (for appropriate A), then

3Here we use (d, q) rather than (x, y) because we describe

vector encodings rather than token sequences.
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an increase in the normalized margin enables the

use of a smaller encoding dimension k while

still supporting the same pairwise error rate.

There are now m times more ‘‘documents’’ to

evaluate, but Lemma 2 shows that this exerts only

a logarithmic increase on the encoding size for a

desired recall@r. But while we hope this argument

is illuminating, the assumptions of orthogonal

segments and perfect segment match against the

query are quite strong. We must therefore rely

on empirical analysis to validate the efficacy of

multi-vector encoding in realistic applications.

Cross-Attention. Cross-attentional architec-

tures can be viewed as a generalization of the

multi-vector model: (1) set m = Tmax (one vector

per token); (2) compute one vector per token in

the query; (3) allow more expressive aggregation

over vectors than the simplemaxemployed above.

Any sparse scoring function (e.g., BM25) can be

mimicked by a cross-attention model, which need

only compute identity between individual words;

this can be achieved by random projection word

embeddings whose dimension is proportional to

the log of the vocabulary size. By definition, the

required representation also grows linearly with

the number of tokens in the passage and query.

As with the POLY-ENCODER, retrieval in the cross-

attention model cannot be performed efficiently at

scale using fast nearest-neighbor search. In con-

temporaneous work, Khattab and Zaharia (2020)

propose an approach with TY vectors per query

and TX vectors per document, using a simple

sum-of-max for aggregation of the inner products.

They apply this approach to retrieval via re-

ranking results of TY nearest-neighbor searches.

Our multi-vector model uses fixed length repre-

sentations instead, and a single nearest neighbor

search per query.

4 Experimental Setup

The full IR task requires detection of both precise

word overlap and semantic generalization. Our

theoretical results focus on the first aspect, and

derive theoretical and empirical bounds on the

sufficient dimensionality to achieve high fidelity

with respect to sparse bag-of-words models as

document length grows, for two types of linear

random projections. The theoretical setup differs

from modeling for realistic information-seeking

scenarios in at least two ways.

First, trained non-linear dual encoders might

be able to detect precise word overlap with

much lower-dimensional encodings, especially for

queries and documents with a natural distribution,

which may exhibit a low-dimensional subspace

structure. Second, the semantic generalization

aspect of the IR task may be more important

than the first aspect for practical applications, and

our theory does not make predictions about how

encoder dimensionality relates to such ability to

compute general semantic similarity.

We relate the theoretical analysis to text

retrieval in practice through experimental studies

on three tasks. The first task, described in

§5, tests the ability of models to retrieve

natural language documents that exactly contain a

query and evaluates both BM25 and deep neural

dual encoders on a task of detecting precise

word overlap, defined over texts with a natural

distribution. The second task, described in §6, is

the passage retrieval sub-problem of the open-

domain QA version of the Natural Questions

(Kwiatkowski et al., 2019; Lee et al., 2019); this

benchmark reflects the need to capture graded

notions of similarly and has a natural query text

distribution. For both of these tasks, we perform

controlled experiments varying the maximum

length of the documents in the collection,

which enables assessing the relationship between

encoder dimension and document length.

To evaluate the performance of our best

models in comparison to state-of-the-art works

on large-scale retrieval and ranking, in §7 we

report results on a third group of tasks focusing

on passage/document ranking: the passage and

document-level MS MARCO retrieval datasets

(Nguyen et al., 2016; Craswell et al., 2020). Here

we follow the standard two-stage retrieval and

ranking system: a first-stage retrieval from a large

document collection, followed by reranking with

a cross-attention model. We focus on the impact

of the first-stage retrieval model.

4.1 Models

Our experiments compare compressive and sparse

dual encoders, cross attention, and hybrid models.

BM25. We use case-insensitive wordpiece tok-

enizations of texts and default BM25 parameters

from the gensim library. We apply either unigram

(BM25-uni) or combined unigram+bigram repre-

sentations (BM25-bi).
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Dual Encoders from BERT (DE-BERT). We

encode queries and documents using BERT-base,

which is a pre-trained transformer network

(12 layers, 768 dimensions) (Devlin et al., 2019).

We implement dual encoders from BERT as a

special case of the multi-vector model formalized

in §3, with number of vectors for the document

m = 1: The representations for queries and

documents are the top layer representations at

the [CLS] token. This approach is widely used

for retrieval (Lee et al., 2019; Reimers and

Gurevych, 2019; Humeau et al., 2020; Xiong

et al., 2020).4 For lower-dimensional encodings,

we learn down-projections from d = 768 to k ∈
32, 64, 128, 512,5 implemented as a single feed-

forward layer, followed by layer normalization.

All parameters are fine-tuned for the retrieval

tasks. We refer to these models as DE-BERT-k.

Cross-Attentional BERT. The most expressive

model we consider is cross-attentional BERT, which

we implement by applying the BERT encoder to

the concatenation of the query and document,

with a special [SEP] separator between x and y.

The relevance score is a learned linear function

of the encoding of the [CLS] token. Due to

the computational cost, cross-attentional BERT

is applied only in reranking as in prior work

(Nogueira and Cho, 2019; Yang et al., 2019).

These models are referred to as CROSS-ATTENTION.

Multi-Vector Encoding from BERT (ME-BERT).

In §3 we introduced a model in which every

document is represented by exactly m vectors.

We use m = 8 as a good compromise between

cost and accuracy in §5 and §6, and find values

of 3 to 4 for m more accurate on the datasets

in §7. In addition to using BERT output repre-

sentations directly, we consider down-projected

representations, implemented using a feed-

forward layer with dimension 768 × k. A model

with k-dimensional embeddings is referred to as

ME-BERT-k.

Sparse-Dense Hybrids (HYBRID). A natural

approach to balancing between the fidelity of

sparse representations and the generalization of

learned dense ones is to build a hybrid. To do this,

4Based on preliminary experiments with pooling

strategies we use the [CLS] vectors (without the feed-forward

projection learned on the next sentence prediction task).
5We experimented with adding a similar layer for

d = 768, but this did not offer empirical gains.

we linearly combine a sparse and dense system’s

scores using a single trainable weight λ, tuned on

a development set. For example, a hybrid model

of ME-BERT and BM25-uni is referred to as HYBRID-

ME-BERT-uni. We implement approximate search to

retrieve using a linear combination of two systems

by re-ranking n-best top scoring candidates from

each system. Prior and concurrent work has also

used hybrid sparse-dense models (Guo et al.,

2016a; Seo et al., 2019; Karpukhin et al., 2020;

Ma et al., 2020; Gao et al., 2020). Our contribution

is to assess the impact of sparse-dense hybrids as

the document length grows.

4.2 Learning and Inference

For the experiments in §5 and §6, all trained

models are initialized from BERT-base, and

all parameters are fine-tuned using a cross-

entropy loss with 7 sampled negatives from a

pre-computed 200-document list and additional

in-batch negatives (with a total number of

1024 candidates in a batch); the pre-computed

candidates include 100 top neighbors from BM25

and 100 random samples. This is similar to the

method by Lee et al. (2019), but with additional

fixed candidates, also used in concurrent work

(Karpukhin et al., 2020). Given a model trained in

this way, for the scalable methods, we also applied

hard-negative mining as in Gillick et al. (2019)

and used one iteration when beneficial. More

sophisticated negative selection is proposed in

concurrent work (Xiong et al., 2020). For retrieval

from large document collections with the scalable

models, we used ScaNN: an efficient approximate

nearest neighbor search library (Guo et al., 2020);

in most experiments, we use exact search settings

but also evaluate approximate search in Section

§7. In §7, the same general approach with slightly

different hyperparameters (detailed in that section)

was used, to enable more direct comparisons to

prior work.

5 Containing Passage ICT Task

We begin with experiments on the task of retriev-

ing a Wikipedia passage y containing a sequence

of words x. We create a dataset using Wikipedia,

following the Inverse Cloze Task definition by

Lee et al. (2019), but adapted to suit the goals of

our study. The task is defined by first breaking

Wikipedia texts into segments of length at most l.
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Figure 4: Results on the containing passage ICT task as maximum passage length varies (50 to 400 tokens). Left:

Reranking 200 candidates; Right: Retrieval from 3 million candidates. Exact numbers refer to Table A.1.

These form the document collection D. Queries xi
are generated by sampling sub-sequences from the

documents yi. We use queries of lengths between

5 and 25, and do not remove the queries xi from

their corresponding documents yi.

We create a dataset with 1 million queries

and evaluate retrieval against four document

collections Dl, for l ∈ 50,100,200,400. Each

Dl contains 3 million documents of maximum

length l tokens. In addition to original Wikipedia

passages, each Dl contains synthetic distractor

documents, which contain the large majority of

words in x but differ by one or two tokens.

5 K queries are used for evaluation, leaving the

rest for training and validation. Although checking

containment is a straightforward machine learning

task, it is a good testbed for assessing the

fidelity of compressive neural models. BM25-bi

achieves over 95 MRR@10 across collections for

this task.

Figure 4 (left) shows test set results on

reranking, where models need to select one of

200 passages (top 100 BM25-bi and 100 random

candidates). It is interesting to see how strong

the sparse models are relative to even a 768-

dimensional DE-BERT. As the document length

increases, the performance of both the sparse and

dense dual encoders worsens; the accuracy of the

DE-BERT models falls most rapidly, widening the

gap to BM25.

Full cross-attention is nearly perfect and does

not degrade with document length. DE-BERT-768,

which uses 8 vectors of dimension 768 to represent

documents, strongly outperforms the best DE-BERT

model. Even DE-BERT-64, which uses 8 vectors of

size only 64 instead (thus requiring the same

document collection size as DE-BERT-512 and being

faster at inference time), outperforms the DE-BERT

models by a large margin.

Figure 4 (right) shows results for the much more

challenging task of retrieval from 3 million can-

didates. For the latter setting, we only evaluate

models that can efficiently retrieve nearest neigh-

bors from such a large set. We see similar behavior

to the reranking setting, with the multi-vector

methods exceeding BM25-uni performance for all

lengths and DE-BERT models under-performing

BM25-uni. The hybrid model outperforms both

components in the combination with largest

improvements over ME-BERT for the longest-

document collection.

6 Retrieval for Open-Domain QA

For this task we similarly use English Wikipedia6

as four different document collections, of

maximum passage length l ∈ {50, 100, 200, 400},

and corresponding approximate sizes of 39

million, 27.3 million, 16.1 million, and 10.2

million documents, respectively. Here we use real

user queries contained in the Natural Questions

dataset (Kwiatkowski et al., 2019). We follow the

setup in Lee et al. (2019). There are 87,925 QA

pairs in training and 3,610 QA pairs in the test set.

We hold out a subset of training for development.

For document retrieval, a passage is correct

for a query x if it contains a string that matches

exactly an annotator-provided short answer for the

question. We form a reranking task by considering

the top 100 results from BM25-uni and 100 random

samples, and also consider the full retrieval setting.

BM25-uni is used here instead of BM25-bi, because

it is the stronger model for this task.

Our theoretical results do not make direct

predictions for performance of compressive dual

encoder models relative to BM25 on this task. They

6https://archive.org/download/enwiki

-20181220.
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Figure 5: Results on NQ passage recall as maximum passage length varies (50 to 400 tokens). Left: Reranking of

200 passages; Right: Open domain retrieval result on all of (English) Wikipedia. Exact numbers refer to Table A.1.

do tell us that as the document length grows,

low-dimensional compressive dual encoders

may not be able to measure weighted term

overlap precisely, potentially leading to lower

performance on the task. Therefore, we would

expect that higher dimensional dual encoders,

multi-vector encoders, and hybrid models become

more useful for collections with longer documents.

Figure 5 (left) shows heldout set results on

the reranking task. To fairly compare systems

that operate over collections of different-sized

passages, we allow each model to select

approximately the same number of tokens (400)

and evaluate on whether an answer is contained

in them. For example, models retrieving from

D50 return their top 8 passages, and ones

retrieving from D100 retrieve top 4. The figure

shows this recall@400 tokens across models.

The relative performance of BM25-uni and DE-

BERT is different from that seen in the ICT

task, due to the semantic generalizations needed.

Nevertheless, higher-dimensional DE-BERT models

generally perform better, and multi-vector models

provide further benefits, especially for longer-

document collections; ME-BERT-768 outperforms DE-

BERT-768 and ME-BERT-64 outperforms DE-BERT-512;

CROSS-ATTENTION is still substantially stronger.

Figure 5 (right) shows heldout set results for

the task of retrieving from Wikipedia for each

of the four document collections Dl. Unlike

the reranking setting, only higher-dimensional

DE-BERT models outperform BM25 for passages

longer than 50. The hybrid models offer large

improvements over their components, capturing

both precise word overlap and semantic similarity.

The gain from adding BM25 to ME-BERT and DE-

BERT increases as the length of the documents in

the collection grows, which is consistent with our

expectations based on the theory.

7 Large-Scale Supervised IR

The previous experimental sections focused on

understanding the relationship between compres-

sive encoder representation dimensionality and

document length. Here we evaluate whether

our newly proposed multi-vector retrieval model

ME-BERT, its corresponding dual encoder base-

line DE-BERT, and sparse-dense hybrids compare

favorably to state-of-the-art models for large-

scale supervised retrieval and ranking on IR

benchmarks.

Datasets. The MS MARCO passage ranking task

focuses on ranking passages from a collection

of about 8.8 mln. About 532k queries paired with

relevant passages are provided for training. The MS

MARCO document ranking task is on ranking full

documents instead. The full collection contains

about 3 million documents and the training set

has about 367 thousand queries. We report results

on the passage and document development sets,

comprising 6,980 and 5,193 queries, respectively

in Table 1. We report MS MARCO and TREC DL

2019 (Craswell et al., 2020) test results in Table 2.

Model Settings. For MS MARCO passage we apply

models on the provided passage collections. For MS

MARCO document, we follow Yan et al. (2020) and

break documents into a set of overlapping passages

with length up to 482 tokens, each including the

document URL and title. For each task, we train

the models on that task’s training data only. We

initialize the retriever and reranker models with

BERT-large. We train dense retrieval models on

positive and negative candidates from the 1000-

best list of BM25, additionally using one iteration

of hard negative mining when beneficial. For ME-

BERT, we used m = 3 for the passage and m = 4
for the document task.
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MS-Passage MS-Doc

Model MRR MRR

Retrieval BM25 0.167 0.249

BM25-E 0.184 0.209

DOC2QUERY 0.215 -

DOCT5QUERY 0.278 -

DEEPCT 0.243 -

HDCT - 0.300

DE-BERT 0.302 0.288

ME-BERT 0.334 0.333

DE-HYBRID 0.304 0.313

DE-HYBRID-E 0.309 0.315

ME-HYBRID 0.338 0.346

ME-HYBRID-E 0.343 0.339

Reranking MULTI-STAGE 0.390 -

IDST 0.408 -

Leaderboard 0.439 -

DE-BERT 0.391 0.339

ME-BERT 0.395 0.353

ME-HYBRID 0.394 0.353

Table 1: Development set results on MS MARCO-

Passage (MS-Passage), MS MARCO-Document

(MS-Doc) showing MRR@10.

Model MRR(MS) RR NDCG@10 Holes@10

Passage Retrieval

BM25-Anserini 0.186 0.825 0.506 0.000

DE-BERT 0.295 0.936 0.639 0.165

ME-BERT 0.323 0.968 0.687 0.109

DE-HYBRID-E 0.306 0.951 0.659 0.105

ME-HYBRID-E 0.336 0.977 0.706 0.051

Document Retrieval

Base-Indri 0.192 0.785 0.517 0.002

DE-BERT - 0.841 0.510 0.188

ME-BERT - 0.877 0.588 0.109

DE-HYBRID-E 0.287 0.890 0.595 0.084

ME-HYBRID-E 0.310 0.914 0.610 0.063

Table 2: Test set first-pass retrieval results on

the passage and document TREC 2019 DL

evaluation as well as MS MARCO eval MRR@10

(passage) and MRR@100 (document) under

MRR(MS).

Results. Table 1 comparatively evaluates our

models on the dev sets of two tasks. The state of

the art prior work follows the two-stage retrieval

and reranking approach, where an efficient first-

stage system retrieves a (usually large) list of

candidates from the document collection, and

a second stage more expensive model such as

cross-attention BERT reranks the candidates.

Our focus is on improving the first stage, and we

compare to prior works in two settings: Retrieval,

top part of Table 1, where only first-stage efficient

retrieval systems are used and Reranking, bottom

part of the table, where more expensive second-

stage models are employed to re-rank candidates.

Figure 6 delves into the impact of the first-stage

retrieval systems as the number of candidates the

second stage reranker has access to is substantially

reduced, improving efficiency.

We report results in comparison to the following

systems: 1) MULTI-STAGE (Nogueira and Lin, 2019),

which reranks BM25 candidates with a cascade of

BERT models, 2) DOC2QUERY (Nogueira et al.,

2019b) and DOCT5QUERY (Nogueira and Lin,

2019), which use neural models to expand docu-

ments before indexing and scoring with sparse

retrieval models, 3) DEEPCT (Dai and Callan,

2020b), which learns to map BERT’s contextualized

text representations to context-aware term

weights, 4) HDCT (Dai and Callan, 2020a),

which uses a hierachical approach that combines

passage-level term weights into document level

term weights, 5) IDST, a two-stage cascade

ranking pipeline by Yan et al. (2020), and 6)

Leaderboard, which is the best score on the MS

MARCO-passage leaderboard as of Sept. 18, 2020.7

We also compare our models both to our own

BM25 implementation described in §4.1, and the ex-

ternal publicly available sparse model implemen-

tations, denoted with BM25-E. For the passage task,

BM25-E is the Anserini (Yang et al., 2018a) sys-

tem with default parameters. For the document

task, BM25-E is the official IndriQueryLikelihood

baseline. We report on dense-sparse hybrids using

both our own BM25, and the external sparse

systems; the latter hybrids are indicated by a

suffix -E.

Looking at the top part of Table 1, we can

see that our DE-BERT model already outperforms

or is competitive with prior systems. The multi-

vector model brings larger improvement on the

dataset containing longer documents (MS MARCO

document), and the sparse-dense hybrid models

bring improvements over dense-only models on

both datasets. According to a Wilcoxon signed

rank test for statistical significance, all differences

between DE-BERT, ME-BERT, DE-HYBRID-E, and ME-

HYBRID-E are statistically significant on both

development sets with p-value < .0001.

When a large number of candidates can be

reranked, the impact of the first-stage system

decreases. In the bottom part of the table we

7https://microsoft.github.io/msmarco/.
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Figure 6: MRR@10 when reranking at different retrieval depth (10 to 1000 candidates) for MS MARCO.

see that our models are comparable to sys-

tems reranking BM25 candidates. The accuracy

of the first-stage system is particularly impor-

tant when the cost of reranking a large set of

candidates is prohibitive. Figure 6 shows the

performance of systems that rerank a smaller

number of candidates. We see that, when a

very small number of candidates can be scored

with expensive cross-attention models, the multi-

vector ME-BERT and hybrid models achieve large

improvements compared to prior systems on both

MS MARCO tasks.

Table 2 shows test results for dense models,

external sparse model baselines, and hybrids of

the two (without reranking). In addition to test set

(eval) results on the MS MARCO passage task, we

report metrics on the manually annotated passage

and document retrieval test set at TREC DL

2019. We report the fraction of unrated items

as Holes@10 following Xiong et al. (2020).

Time and Space Analysis Figure 7 compares

the running time/quality trade-off curves for DE-

BERT and ME-BERT on the MS MARCO passage task

using the ScaNN (Guo et al., 2020) library on a 160

Intel(R) Xeon(R) CPU @ 2.20GHz cores machine

with 1.88TB memory. Both models use one vector

of size k = 1024 per query; DE-BERT uses one and

ME-BERT uses 3 vectors of size k = 1024 per

document. The size of the document index for

DE-BERT is 34.2GB and the size of the index for

ME-BERT is about 3 times larger. The indexing time

was 1.52h and 3.02h for DE-BERT and ME-BERT,

respectively. The ScaNN configuration we use

is num leaves=5000, and num leaves to search

ranges from 25 to 2000 (from less to more exact

search) and time per query is measured when using

parallel inference on all 160 cores. In the higher

quality range of the curves, ME-BERT achieves

Figure 7: Quality/running time tradeoff for DE-BERT and

ME-BERT on the MS MARCO passage dev set. Dashed lines

show quality with exact search.

substantially higher MRR than DE-BERT for the

same inference time per query.

8 Related Work

We have mentioned research on improving the

accuracy of retrieval models throughout the paper.

Here we focus on work related to our central

focus on the capacity of dense dual encoder

representations relative to sparse bags-of-words.

In compressive sensing it is possible to recover

a bag of words vector x from the projection

Ax for suitable A. Bounds for the sufficient

dimensionality of isotropic Gaussian projections

(Candes and Tao, 2005; Arora et al., 2018) are

more pessimistic than the bound described in

§2, but this is unsurprising because the task

of recovering bags-of-words from a compressed

measurement is strictly harder than recovering

inner products.

Subramani et al. (2019) ask whether it is possi-

ble to exactly recover sentences (token sequences)

from pretrained decoders, using vector embed-

dings that are added as a bias to the decoder hidden

state. Because their decoding model is more

expressive (and thus more computationally inten-

sive) than inner product retrieval, the theoretical
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issues examined here do not apply. Nonetheless,

(Subramani et al., 2019) empirically observe a

similar dependence between sentence length and

embedding size. Wieting and Kiela (2019) rep-

resent sentences as bags of random projections,

finding that high-dimensional projections (k =
4096) perform nearly as well as trained encoding

models. These empirical results provide further

empirical support for the hypothesis that bag-of-

words vectors from real text are ‘‘hard to embed’’

in the sense of Larsen and Nelson (2017). Our

contribution is to systematically explore the rela-

tionship between document length and encoding

dimension, focusing on the case of exact inner

product-based retrieval. We leave the combina-

tion of representation learning and approximate

retrieval for future work.

9 Conclusion

Transformers perform well on an unreasonable

range of problems in natural language processing.

Yet the computational demands of large-scale

retrieval push us to seek other architectures:

cross-attention over contextualized embeddings

is too slow, but dual encoding into fixed-

length vectors may be insufficiently expressive,

sometimes failing even to match the performance

of sparse bag-of-words competitors. We have

used both theoretical and empirical techniques

to characterize the fidelity of fixed-length dual

encoders, focusing on the role of document

length. Based on these observations, we propose

hybrid models that yield strong performance while

maintaining scalability.
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A Proofs

A.1 Lemma 1

Proof. For both distributions of embeddings, the

error on the squared norm can be bounded with

high probability (Achlioptas, 2003, Lemma 5.1):

Pr(
∣

∣

∣
‖Ax‖2 − ‖x‖2

∣

∣

∣
> ǫ‖x‖2)

< 2 exp(−k
2
(ǫ2/2− ǫ3/3)).

(4)

This bound implies an analogous bound on the

absolute error of the inner product (Ben-David

et al., 2002, corollary 19),

Pr(| 〈Ax,Ay〉 − 〈x, y〉 | ≥ ǫ

2
(‖x|‖2 + ‖y‖2))

≤ 4 exp(−k
2
(ǫ2/2− ǫ3/3)).

(5)

Let q̄ = q/‖q‖ and d̄ = (d1 − d2)/‖d1 − d2‖.

Then µ(q, d1, d2) = 〈q̄, d̄〉. A ranking error occurs

if and only if 〈Aq̄,Ad̄〉 ≤ 0, which implies

| 〈Aq̄, Ad̄〉 − 〈q̄, d̄〉 | ≥ ǫ. By construction ‖q̄‖ =
‖d̄‖ = 1, so the probability of an inner product

distortion ≥ ǫ is bounded by the right-hand side

of (5).

A.2 Corollary 1

Proof. We have ǫ = µ(q, d1, d2) = 〈q̄, d̄〉 ≤ 1 by

the Cauchy-Schwarz inequality. For ǫ ≤ 1, we

have ǫ2/6 ≤ ǫ2/2 − ǫ3/3. We can then loosen

the bound in (1) to β ≤ 4 exp(−k
2
ǫ2

6 ). Taking

the natural log yields lnβ ≤ ln4− ǫ2k/12, which

can be rearranged into k ≥ 12ǫ−2ln 4
β .

A.3 Lemma 2

Proof. For convenience define µ(d2) =
µ(q, d1, d2). Define ǫ as in the theorem statement,

and Dǫ = {d2 ∈ D : µ(q, d1, d2) ≥ ǫ}. We have

Pr(R ≥ r0) ≤ Pr(∃d2 ∈ Dǫ : Aq1 ≤ Aq2)

≤
∑

d2∈Dǫ

4 exp(−k
2
(µ(d2)

2/2− µ(d2)
3/3))

≤ 4|Dǫ| exp(−
k

2
(ǫ2/2− ǫ3/3)).

The first inequality follows because the event

R ≥ r0 implies the event ∃d2 ∈ Dǫ : Aq1 ≤ Aq2.
The second inequality follows by a combination

of Lemma 1 and the union bound. The final

inequality follows because for any d2 ∈ Dǫ,

µ(q, d1, d2) ≥ ǫ. The theorem follows because

|Dǫ| = |D| − r0 + 1.

A.4 Corollary 2

Proof. For the retrieval function maxd〈q, d〉,
the minimum non-zero unnormalized margin

〈q, d1〉 − 〈q, d2〉 is 1 when q and d are

Boolean vectors. Therefore the normalized margin

has lower bound µ(q, d1, d2) ≥ 1/(‖q‖ ×
‖d1 − d2‖). For non-negative d1 and d2 we

have ‖d1 − d2‖ ≤
√

‖d1‖2 + ‖d2‖2 ≤
√
2LD.

Preserving a normalized margin of ǫ =
(2LQLD)

− 1
2 is therefore sufficient to avoid any

pairwise errors. By plugging this value into

Corollary 1, we see that setting k ≥ 24LQLDln 4
β

ensures that the probability of any pairwise

error is ≤ β.
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Model Reranking Retrieval

Passage length 50 100 200 400 50 100 200 400

ICT task (MRR@10)

CROSS-ATTENTION 99.9 99.9 99.8 99.6 - - - -

HYBRID-ME-BERT-uni - - - - 98.2 97.0 94.4 91.9

HYBRID-ME-BERT-bi - - - - 99.3 99.0 97.3 96.1

ME-BERT-768 98.0 96.7 92.4 89.8 96.8 96.1 91.1 85.2

ME-BERT-64 96.3 94.2 89.0 83.7 92.9 91.7 84.6 72.8

DE-BERT-768 91.7 87.8 79.7 74.1 90.2 85.6 72.9 63.0

DE-BERT-512 91.4 87.2 78.9 73.1 89.4 81.5 66.8 55.8

DE-BERT-128 90.5 85.0 75.0 68.1 85.7 75.4 58.0 47.3

DE-BERT-64 88.8 82.0 70.7 63.8 82.8 68.9 48.5 38.3

DE-BERT-32 83.6 74.9 62.6 55.9 70.1 53.2 34.0 27.6

BM25-uni 92.1 88.6 84.6 81.8 92.1 88.6 84.6 81.8

BM25-bi 98.0 97.1 95.9 94.5 98.0 97.1 95.9 94.5

NQ (Recall@400 tokens)

CROSS-ATTENTION 48.9 55.5 54.2 47.6 - - - -

HYBRID-ME-BERT-uni - - - - 45.7 49.5 48.5 42.9

ME-BERT-768 43.6 49.6 46.5 38.7 42.0 43.3 40.4 34.4

ME-BERT-64 44.4 48.7 44.5 38.2 42.2 43.4 38.9 33.0

DE-BERT-768 42.9 47.7 44.4 36.6 44.2 44.0 40.1 32.2

DE-BERT-512 43.8 48.5 44.1 36.5 43.3 43.2 38.8 32.7

DE-BERT-128 42.8 45.7 41.2 35.7 38.0 36.7 32.8 27.0

DE-BERT-64 42.6 45.7 42.5 35.4 37.4 35.1 32.6 26.6

DE-BERT-32 42.4 45.8 42.1 34.0 36.3 34.7 31.0 24.9

BM25-uni 30.1 35.7 34.1 30.1 30.1 35.7 34.1 30.1

Table A.1: Results on ICT task and NQ task (correspond to Figure 4 and Figure 5).

A.5 Theorem 1

Proof. Recall that µ(q, d1, d2) = 〈q,d1−d2〉
‖q‖×‖d1−d2‖ .

By assumption we have 〈q, d(i)1 〉 = 〈q, d1〉 and

maxj〈q, d(j)2 〉 ≤ 〈q, d2〉, implying that

〈q, d(i)1 − d
(i)
2 〉 ≥ 〈q, d1 − d2〉 (6)

In the denominator, we expand ‖d1 − d2‖ =

‖(d(i)1 − d
(i)
2 ) + (d

(¬i)
1 − d

(¬i)
2 )‖, where d(¬i) =

∑

j 6=i d
(j). Plugging this into the squared norm,

‖d1 − d2‖2

= ‖(d(i)1 − d
(i)
2 ) + (d

(¬i)
1 − d

(¬i)
2 )‖

2
(7)

= ‖d(i)1 − d
(i)
2 ‖

2
+ ‖d(¬i)1 − d

(¬i)
2 ‖

2

+ 2〈d(i)1 − d
(i)
2 〉, d(¬i)1 − d

(¬i)
2

(8)

= ‖d(i)1 − d
(i)
2 ‖

2
+ ‖d(¬i)1 − d

(¬i)
2 ‖

2
(9)

≥ ‖d(i)1 − d
(i)
2 ‖

2
. (10)

The inner product 〈d(i)1 − d
(i)
2 , d

(¬i)
1 − d

(¬i)
2 〉 = 0

because the segments are orthogonal. The combi-

nation of (6) and (10) completes the theorem.
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