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Abstract

A growing body of work makes use of probing
in order to investigate the working of neural
models, often considered black boxes. Recently,
an ongoing debate emerged surrounding the
limitations of the probing paradigm. In this
work, we point out the inability to infer beha-
vioral conclusions from probing results, and
offer an alternative method that focuses on
how the information is being used, rather than
on what information is encoded. Our method,
Amnesic Probing, follows the intuition that the
utility of a property for a given task can be as-
sessed by measuring the influence of a causal
intervention that removes it from the represen-
tation. Equipped with this new analysis tool,
we can ask questions that were not possible
before, for example, is part-of-speech informa-
tion important for word prediction? We per-
form a series of analyses on BERT to answer
these types of questions. Our findings demon-
strate that conventional probing performance
is not correlated to task importance, and we
call for increased scrutiny of claims that draw
behavioral or causal conclusions from probing
results.1

1 Introduction

What drives a model to perform a specific pre-
diction? What information is being used for
prediction, and what would have happen if that
information went missing? Because neural repre-
sentation is opaque and hard to interpret, answer-
ing these questions is challenging.

The recent advancements in Language Models
(LMs) and their success in transfer learning of
many NLP tasks (e.g., Peters et al., 2018; Devlin
et al., 2019; Liu et al., 2019b) spiked interest

1The code is available at: https://github.com
/yanaiela/amnesic probing.

in understanding how these models work and what
is being encoded in them. One prominent meth-
odology that attempts to shed light on those ques-
tions is probing (Conneau et al., 2018) (also
known as auxilliary prediction [Adi et al., 2016]
and diagnostic classification [Hupkes et al., 2018]).
Under this methodology, one trains a simple model
—a probe—to predict some desired information
from the latent representations of the pre-trained
model. High prediction performance is interpreted
as evidence for the information being encoded
in the representation. A key drawback of such an
approach is that while it may indicate that the
information can be extracted from the represen-
tation, it provides no evidence for or against the
actual use of this information by the model.
Indeed, Hewitt and Liang (2019) have shown that
under certain conditions, above-random probing
accuracy can be achieved even when the infor-
mation that one probes for is linguistically mean-
ingless noise, which is unlikely to have any use
by the actual model. More recently, Ravichander
et al. (2020) showed that models encode linguis-
tic properties, even when not required at all for
solving the task, questioning the usefulness and
common interpretation of probing. These results
call for higher scrutiny of causal claims based on
probing results.

In this paper, we propose a counterfactual ap-
proach that serves as a step towards causal at-
tribution: Amnesic Probing (see Figure 1 for a
schematic view). We build on the intuition that
if a property Z (e.g., part-of-speech) is being
used for a task T (e.g., language modeling), then
the removal of Z should negatively influence the
ability of the model to solve the task. Conversely,
when the removal of Z has little or no influence on
the ability to solve T , one can argue that knowing
Z is not a significant contributing factor in the
strategy the model employs in solving T .

As opposed to previous work that focused on
intervention in the input space (Goyal et al., 2019;
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Figure 1: A schematic description of the proposed
amnesic intervention: We transform the contextualized
representation of the word ‘‘ran’’ so as to remove
information (here, POS), resulting in a ‘‘cleaned’’
version h¬POS

ran . This representation is fed to the word-
prediction layer and the behavioral influence of POS
erasure is measured.

Kaushik et al., 2020; Vig et al., 2020) or in specific
neurons (Vig et al., 2020), our intervention is done
on the representation layers. This makes it easier
than changing the input (which is non-trivial) and
more efficient than querying hundred of neurons
(which become combinatorial when considering
the effect of multiple neurons simultaneously).

We demonstrate that amnesic probing can func-
tion as a debugging and analysis tool for neural
models. Specifically, by using amnesic probing
we show how to deduce whether a property is
used by a given model in prediction.

In order to build the counterfactual represen-
tations, we need a function that operates on a pre-
trained representation and returns a counterfactual
version which no longer encodes the property we
focus on. We use the recently proposed algorithm
for neutralizing linear information: Iterative Null-
space Projection (INLP) (Ravfogel et al., 2020).
This approach allows us to ask the counterfactual
question: ‘‘How will the prediction of a task differ
without access to some property?’’ (Pearl and
Mackenzie, 2018). This approach relies on the as-
sumption that the usefulness of some information
can be measured by neutralizing it from the repre-
sentation, and witnessing the resulting behavioral
change. It echoes the basic idea of ablation tests

where one removes some component and mea-
sures the influence of that intervention.

We study several linguistic properties such
as part-of-speech (POS) and dependency labels.
Overall, we find that as opposed to the common
belief, high probing performance does not mean
that the probed information is used for predicting
the main task (§4). This is consistent with the
recent findings of Ravichander et al. (2020). Our
analysis also reveals that the properties we exam-
ine are often being used differently in the masked
setting (which is mostly used in LM training) and
in the non-masked setting (which is commonly
used for probing or fine-tuning) (§5). We then
dive deeper into a more fine-grained analysis, and
show that not all of the linguistic property labels
equally influence prediction (§6). Finally, we re-
evaluate previous claims about the way that BERT
process the traditional NLP pipeline (Tenney et al.,
2019a) with amnesic probing and provide a novel
interpretation on the utility of different layers (§7).

2 Amnesic Probing

2.1 Setup and Formulation

Given a set of labeled data of data points X =
x1, . . . , xn

2 and task labels Y = y1, . . . , yn we
analyze a model f that predicts the labels Y
from X: ŷi = f(xi). We assume that this model
is composed of two parts: an encoder h that
transforms input xi into a representation vector
hxi and a classifier c that is used for predicting ŷi
based on hxi : ŷi = c(h(xi)). We refer by model to
the component that follows the encoding function
h and is used for the classification of the task of
interest y. Each data point xi is also associated
with a property of interest zi which represents
additional information, which may or may not
affect the decision of the classifier c.

In this work, we are interested in the change in
prediction of the classifier c on the prediction ŷi
which is caused due to the removal of the property
Z from the representation h(xi), that is h(xi)¬Z .

2.2 Amnesic Probing with INLP

Under the counterfactual approach, we aim to
evaluate the behavioral influence of a specific
type of information Z (e.g., POS) on some task

2The data points can be words, documents, images, etc.,
based on the application.
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(e.g., language modeling). To do so, we selectively
remove this information from the representation
and observe the change in the behavior of the
model on the main task.

One commonly used method for information
removal relies on adversarial training through the
gradient reversal layer technique (Ganin et al.,
2016). However, this techniques requires chang-
ing the original encoding by retraining the model,
which is not desired in our case as we wish to
study the original model’s behavior. Additionally,
Elazar and Goldberg (2018) found that this
technique does not completely remove all the
information from the learned representation.

Instead, we make use of a recently proposed
algorithm called Iterative Nullspace Projection
(INLP) (Ravfogel et al., 2020). Given a labeled
dataset of representations H , and a property to
remove, Z, INLP neutralizes the ability to linearly
predictZ fromH . It does so by training a sequence
of linear classifiers (probes) c1, . . . , ck that predict
Z, interpreting each one as conveying information
on a unique direction in the latent space that
corresponds to Z, and iteratively removing each
of these directions. Concretely, we assume that
the ith probe ci is parameterized by a matrix Wi.
In the ith iteration, ci is trained to predict Z from
H3, and the data is projected onto its nullspace
using a projection matrix PN(Wi). This operation
guarantees WiPN(Wi)H = 0, i.e., it neutralizes
the features in the latent space which were found
by Wi to be indicative to Z. By repeating this
process until no classifier achieves above-majority
accuracy, INLP removes all such features.4

Amnesic Probing vs. Probing Note that
amnesic probing extends conventional probing,
as it is only relevant in cases where the property of
interest can be predicted from the representation.
If a probe gets random accuracy, the information
cannot be used by the model to begin with. As
such, amnesic probing can be seen as a comple-
mentary method, which inspects probe accuracy as
a first step, but then proceeds to derive behavioral
outcomes from the directions associated with the
probe, with respect to a specific task.

3Concretely, we use linear SVM (Pedregosa et al., 2011).
4All relevant directions are removed to the extent they

are identified by the classifiers we train. Therefore, we run
INLP until the last linear classifier achieves a score within
one point above majority accuracy on the development set.

2.3 Controls

The usage of INLP in this setup involves some
subtleties we aim to account for: (1) Any modifi-
cation to the representation, regardless of whether
it removes information necessary to the task, may
cause a decrease in performance. Can the drop
in performance be attributed solely to the modi-
fication of the representation? (2) The removal
of any property using INLP may also cause re-
moval of correlating properties. Does the re-
moved information only pertain to the property
in question?

Control Over Information In order to control
for the information loss of the representations, we
make use of a baseline that removes the same
number of directions as INLP does, but randomly.

For every INLP iteration the data matrix’s rank
decreases by the number of labels of the inspected
property. This operation removes information
from the representation which might be used for
prediction. Using this control, Rand, instead of
finding the directions using a classifier that learned
some task, we generate random vectors from a
uniform distribution, that accounts for random
directions. Then, we construct the projection ma-
trix as in INLP, by finding the intersection of
nullspaces.

If the Rand impact on performance is lower
than the impact of amnesic probing for some
property, we conclude that we removed important
directions for the main task. Otherwise, when the
Rand control has a similar or higher impact, we
conclude that there is no evidence for property
usage for the main task.

Control over Selectivity5 The result of the am-
nesic probing is taken as an indication to whether
or not the model we query makes use of the
inspected property for prediction. However, the
removed features might solely correlate with the
property (e.g., word position in the sentence has
a nonzero correlation to syntactic function). To
what extent is the information removal process we
employ selective to the property in focus?

We test that by explicitly providing the gold
information that has been removed from the

5Not to be confused with Hewitt and Liang (2019)
Selectivity. Although recommended to use when performing
standard probing, we argue it does not fit as a control
for amnesic probing and provide a detailed explanation in
Appendix B.
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representation, and finetuning the subsequent
layers (while the rest of the network is frozen).
Restoring the original performance is taken as
evidence that the property we aimed to remove
is enough to account for the damage sustained
by the amnesic intervention (it may still be the
case that the intervention removes unrelated
properties; but given the explicitly-provided pro-
perty information, the model can make up for the
damage). However, if the original performance is
not restored, this indicates that the intervention
removed more information than intended, and
this cannot be accounted for by merely explicitly
providing the value of the single property we
focused on.

Concretely, we concatenate feature vectors of
the studied property to the amnesic representa-
tions. Those vectors are 32-dimensional, and are
initialized randomly, with a unique vector for each
value of the property of interest. Those are fine-
tuned until convergence. We note that as the new
representation vectors are of a higher dimension
than the original ones, we cannot use the original
matrix. For an easier learning process, we use the
original embedding matrix and concatenate it with
a new embedding matrix, randomly initialized, and
treat it as the new decision function.

3 Studying BERT: Experimental Setup

3.1 Model

We use our proposed method to investigate BERT
(Devlin et al., 2019),6 a popular and competitive
masked language model (MLM) that has recently
been the subject of many analysis works (e.g.,
Hewitt and Manning, 2019; Liu et al., 2019a;
Tenney et al., 2019a). While most probing works
focus on the ability to decode a certain linguistic
property of the input text from the representation,
we aim to understand which information is being
used by it when predicting words from context.
For example, we seek to answer questions such
as the following: ‘‘Is POS information used by
the model in word prediction?’’ The following
experiments focus on language modeling, as a
basic and popular task, but our method is more
widely applicable.

6Specifically, BERT-BASE-UNCASED (Wolf et al., 2019).

3.2 Studied Properties

We focus on six tasks of sequence tagging: coarse
and fine-grained part-of-speech tags (c-pos and
f-pos, respectively); syntactic dependency labels
(dep); named-entity labels (ner); and syntactic
constituency boundaries7 that mark the beginning
and the end of a phrase (phrase start, and phrase
end, respectively).

We use the training and dev data of the follow-
ing datasets for each task: English UD Treebank
(McDonald et al., 2013) for c-pos, f-pos, and dep;
and English OntoNotes (Weischedel et al., 2013)
for ner, phrase start, and phrase end. For train-
ing, we use 100,000 random tokens from those
datasets.

3.3 Metrics

We report the following metrics:
LM accuracy: Word prediction accuracy.
Kullback-Leibler Divergence (DKL): We calcu-
late the DKL between the distribution of the
model over tokens, before and after the amnesic
intervention. This measure focuses on the entire
distribution, rather than the correct token only.
Larger values implies a more significant change.

4 To Probe or Not to Probe?

By using the probing technique, different linguis-
tic phenomenon such as POS, dependency infor-
mation, and NER (Tenney et al., 2019a; Liu et al.,
2019a; Alt et al., 2020) have been found to
be ‘‘easily extractable’’ (typically using linear
probes). A naive interpretation of these results may
conclude that because information can be easily
extracted by the probing model, this information
is being used for the predictions. We show that
this is not the case. Some properties such as
syntactic structure and POS are very informative
and are being used in practice to predict words.
However, we also find some properties, such as
phrase markers, which the model does not make
use of when predicting tokens, in contrast to what
one can naively deduce from probing results. This
finding is in line with a recent work that observed
the same behavior (Ravichander et al., 2020).

For each linguistic property, we report the prob-
ing accuracy using a linear model, as well as the

7Based on the Penn Treebank syntactic definitions.
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dep f-pos c-pos ner phrase start phrase end

Properties
N. dir 738 585 264 133 36 22
N. classes 41 45 12 19 2 2
Majority 11.44 13.22 31.76 86.09 59.25 58.51

Probing Vanilla 76.00 89.50 92.34 93.53 85.12 83.09

LM-Acc

Vanilla 94.12 94.12 94.12 94.00 94.00 94.00
Rand 12.31 56.47 89.65 92.56 93.75 93.86
Selectivity 73.78 92.68 97.26 96.06 96.96 96.93
Amnesic 7.05 12.31 61.92 83.14 94.21 94.32

LM-DKL
Rand 8.11 4.61 0.36 0.08 0.01 0.01
Amnesic 8.53 7.63 3.21 1.24 0.01 0.01

Table 1: Property statistics, probing accuracies, and the influence of the amnesic intervention
on the model’s distribution over words. dep: dependency edge identity; f-pos and c-pos:
fine-grained and coarse POS tags; phrase start and phrase end: beginning and end of
phrases. Rand refers to replacing our INLP-based projection with removal of an equal
number of random directions from the representation. The number of iterations per task can
be inferred from: N.dir/N.classes.

word prediction accuracy after removing informa-
tion about that property. The results are summa-
rized in Table 1.8 Probing achieves substantially
higher performance over majority across all tasks.
Moreover, after neutralizing the studied prop-
erty from the representation, the performance on
that task drops to majority (not presented in the
table for brevity). Next, we compare the LM
performance before and after the projection and
observe a major drop for dep and f-pos information
(decrease of 87.0 and 81.8 accuracy points,
respectively), and a moderate drop for c-pos
and ner information (decrease of 32.2 and 10.8
accuracy points, respectively). For these tasks,
Rand performance on LM-Acc is lower than the
original scores, but substantially higher than the
Amnesic scores. Recall that the Rand experiment
is done with respect to the amnesic probing, thus
the number of removed dimension is the same, but
each task may differ in the amount of dimensions
removed. Furthermore, the DKL metric shows
the same trend (but in reverse, as a lower value
indicates on a smaller change). We also report the
selectivity results, where in most experiments the
LM performance is restored, indicating amnesic
probing works as expected. Note that the dep
performance is not fully restored, thus some
non-related features must have been coupled
and removed with the dependency features. We

8Note that because we use two different datasets, the
UD Treebank for dep, f-pos, c-pos, and OntoNotes for
ner, phrase-start, and phrase-end, the Vanilla LM-Acc
performance differ between these setups.

believe that this happens in part due to the large
number of removed directions.9 These results
suggests that to a large degree, the damage to
LM performance is to be attributed to the specific
information we remove, and not to rank-reduction
alone. We conclude that dependency information,
POS and NER are important for word prediction.

Interestingly, for phrase start and phrase end
we observe a small improvement in accuracy
of 0.21 and 0.32 points, respectively. The per-
formance for the control on these properties is
lower, therefore not only are these properties not
important for the LM prediction at this part of the
model, they slightly harm it. The last observation
is rather surprising as phrase boundaries are cou-
pled to the structure of sentences, and the words
that form them. A potential explanation for this
phenomenon is that this information is simply
not being used at this part of the model, and is
rather being processed in an earlier stage. We fur-
ther inspect this hypothesis in Section 7. Finally,
the probe accuracy does not correlate with task
importance as measured by our method (Spearman
correlation of 8.5, with a p-value of 0.871).

These results strengthen recent works that
question the usefulness of probing as an analysis
tool (Hewitt and Liang, 2019; Ravichander et al.,

9Since this experiment involves additional fine-tuning
and is not entirely comparable to the vanilla setup (also due
to the additional explicit information), we also experiment
with concatenating the inspected features and finetuning. This
results in an improvement of 3-4 points, above the vanilla
experiment.
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dep f-pos c-pos ner phrase start phrase end

Properties
N. dir 820 675 240 95 35 52
N. classes 41 45 12 19 2 2
Majority 11.44 13.22 31.76 86.09 59.25 58.51

Probing Vanilla 71.19 78.32 84.40 90.68 85.53 83.21

LM-Acc

Vanilla 56.98 56.98 56.98 57.71 57.71 57.71
Rand 4.67 24.69 54.55 56.88 57.46 57.27
Selectivity 20.46 59.51 66.49 60.35 60.97 60.80
Amnesic 4.67 6.01 33.28 48.39 56.89 56.19

LM-DKL
Rand 7.77 6.10 0.45 0.10 0.02 0.04
Amnesic 7.77 7.26 3.36 1.39 0.06 0.13

Table 2: Amnesic probing results for the masked representations. Properties statistics,
word-prediction accuracy and DKL results for the different properties inspected in this
work. We report the vanilla word prediction accuracy and the Amnesic scores, as well as
the Rand and 1-Hot controls which shows minimal information loss and high selectivity
(except for the dep property which all information was removed). The DKL is also reported
for all properties in the last rows which show similar trends as the accuracy performance.

2020), but measure it from the usefulness of
properties on the main task. We conclude that
high probing performance does not entail this
information is being used at a later part of the
network.

5 What Properties are Important for the
Pre-Training Objective?

Probing studies tend to focus on representations
that are used for an end-task (usually the last
hidden layer before the classification layer). In the
case of MLM models, the words are not masked
when encoding them for downstream tasks.

However, these representations are different
from those used during the pre-training LM phase
(of interest to us), where the input words are
masked. It is therefore unclear if the conclusions
drawn from conventional probing also apply to
the way that the pre-trained model operates.

From this section on, unless mentioned other-
wise, we report our experiments on the masked
words. That is, given a sequence of tokens
x1, . . . , xi, . . . , xn we encode the representa-
tion of each token xi using its context, as
follows: x1, . . . , xi−1, [MASK], xi+1, . . . , xn.
The rest of the tokens remain intact. We feed
these input tokens to BERT, and only use the
masked representation of each word in its context
h(x1, . . . , xi−1, [MASK], xi+1, . . . , xn)i.

Figure 2: LM accuracy over INLP predictions, for
the masked tokens version. We present both the vanilla
word-prediction score (straight, blue line), as well as the
control (orange, large circles) and INLP (green, small
circles). Note that the number of removed dimensions
per iteration differs, based on the number of classes of
that property.

We repeat the experiments from Section 4 and
report the results in Table 2. As expected, the
LM accuracy drops significantly, as the model
does not have access to the original word, and it
has to infer it only based on context. Overall, the
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c-pos Vanilla Rand Amnesic Δ

verb 46.72 44.85 34.99 11.73
noun 42.91 38.94 34.26 8.65
adposition 73.80 72.21 37.86 35.93
determiner 82.29 83.53 16.64 65.66
numeral 40.32 40.19 33.41 6.91
punctuation 80.71 81.02 47.03 33.68
particle 96.40 95.71 18.74 77.66
conjunction 78.01 72.94 4.28 73.73
adverb 39.84 34.11 23.71 16.14
pronoun 70.29 61.93 33.23 37.06
adjective 46.41 42.63 34.56 11.85
other 70.59 76.47 52.94 17.65

Table 3: Masked, c-pos removal, fine-grained
LM analysis. Removing c-pos information and
testing the accuracy performance of words,
accumulating by their label. Δ is the difference
in performance between the vanilla and Amnesic
scores.

trends in the masked setting are similar to the non-
masked setting. However, this is not always the
case, as we show in Section 7. We also report the
selectivity control. Notice that the performance
for this experiment was improved across all tasks.
In the case of dep and f-pos, where we had to
neutralize most of the dimensions the performance
does not fully recover. Note that the number of
classes in those experiments might be a factor
in the large performance gaps (expressed by the
number of removed dimensions, N. dir, in the
table). While not part of this study, it would be
interesting to control for this factor in future work.
However for the rest of the properties (c-pos, ner,
and the phrase-markers) the performance is fully
recovered, showing our methods’ selectivity.

To further study the effect of INLP and inspect
how the different dimensions removal affect per-
formance, we display in Figure 2 the LM perfor-
mance after each iteration, both with the amnesic
probing and the control, and observe a consistent
gap between them. Moreover, we highlight the
difference in the slope for our method and the
random direction removal. The amnesic probing
exemplifies a much steeper slope than the random
direction, indicating that the studied properties are
indeed correlated with words prediction. We also
provide the main task performance after each iter-
ation in Figure 5 in the Appendix, which steadily
decreases with each iteration.

c-pos Vanilla Amnesic Δ

verb 56.98 55.60 1.38
noun 56.98 55.79 1.19
adposition 56.98 53.40 3.58
determiner 56.98 51.04 5.94
numeral 56.98 55.88 1.10
punctuation 56.98 53.12 3.86
particle 56.98 55.26 1.72
conjunction 56.98 54.29 2.69
adverb 56.98 55.64 1.34
pronoun 56.98 54.97 2.02
adjective 56.98 55.95 1.03

Table 4: Word prediction accuracy after fine-
grained tag distinction removal, masked version.
Rand control performance are all between 56.05
and 56.49 accuracy (with a maximum difference
from vanilla of 0.92 points).

6 Specific Labels and Word Prediction

In the previous sections we observed the impact
(or lack thereof) of different properties on word
prediction. But when a property affects words
prediction, are all words affected similarly? In
this section, we inspect a more fine-grained ver-
sion of the properties of interest, and study the
impact of those on word predictions.

Fine-Grained Analysis When we remove the
POS information from the representation, are
nouns affected to the same degree as conjunctions?
We repeat the masked experimental setting from
Section 5, but this time we inspect the word
prediction performance for the different labels.
We report the results for the c-pos tagging in
Table 3. We observe large differences in the
word prediction performance before and after the
POS removal between the labels. Nouns, numbers,
and verbs show a relatively small impact in per-
formance (8.64, 6.91, and 11.73 respectively),
while conjunctions, particles and determiners de-
monstrate large performance drops (73.73, 77.66,
and 65.65, respectively). We see that the infor-
mation about POS labels at the word-level pre-
diction is much more important in closed-set
vocabularies (such as conjunctions and determin-
ers) than with open vocabularies (such as nouns
and verbs).
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A manual inspection of predicted words after
removing the POS information reveals that many
of the changes are due to the transformation of
function words to content words. For example,
the words ‘and’, ‘of’, and ‘a’ become ‘rotate’,
‘say’, and ‘final’, respectively, in the inspected
sentences. For a more quantitative analysis, we
use a POS tagger in order to measure the POS
label confusion before and after the intervention.
Out of the 12,700 determiners conjuncions and
punctuations, 200 of the predicted words by
BERT were tagged as nouns and verbs before
the intervention, compared to 3,982 after.

Removal of Specific Labels Following the
observation that classes are affected differently
when predicting words, we further investigate the
differences of specific label removal. To this end,
we repeat the amnesic probing experiments, but
instead of removing the fine-grained information
of a linguistic property, we make a cruder re-
moval: The distinction between a specific label
and the rest. For example, with POS as the
general property, we now investigate whether the
information of noun vs. the rest is important for
predicting a word. We perform this experiment
for all of the pos-c labels, and report the results in
Table 4.10

We observe big performance gaps when re-
moving different labels. For example, removing
the distinctions between nouns and the rest, or
verbs and the rest has minimal impact on per-
formance. On the other hand, determiners and
punctuations are highly affected. This is consis-
tent with the previous observation on removing
specific information. These results call for more
detailed observations and experiments when
studying a phenomenon as the fine-grained prop-
erty distinction does not behave the same across
labels.11

7 Behavior Across Layers

The results up to this section treat all of BERT’s
‘Transformer blocks’ (Vaswani et al., 2017) as
the encoding function and the embedding matrix

10In order to properly compare the different properties, we
run INLP for solely 60 iterations, for each property. Since the
‘other’ tag is not common, we omit it from this experiment.

11We repeat these experiments with the other studied
properties and observe similar trends.

as the model. But what happens when we remove
the information of some linguistic property from
earlier layers?

By using INLP to remove a property from
an intermediate layer, we prevent the subsequent
layer from using linearly present information ori-
ginally stored in that layer. Though this operation
does not erase all the information correlative
with the studied property (as INLP only removes
linearly present information), it makes it harder
for the model to use this information. Concretely,
we begin by extracting the representation of some
text from the first k layers of BERT and then
run INLP on these representations to remove the
property of interest. Given that we wish to study
the effect of a property on layer i, we project the
representation using the corresponding projection
matrixPi that was learned on those representation,
and then continue the encoding of the following
layers.12

7.1 Property Recovery After an Amnesic
Operation

Is the property we linearly remove from a given
layer recoverable by subsequent layers? We re-
move the information about some linguistic pro-
perty from layer i, and learn a probe classifier
on all subsequent layers i + 1, . . . , n. This tests
how much information about this property the
following layers have recovered. We experiment
with the properties that could be removed
without reducing too many dimensions: pos-c,
ner, phrase start, and phrase end. These results are
summarized in Figure 3, both for the non-masked
version (upper row) and the masked version (lower
row).

Notably, for the pos-c, non-masked version, the
information is highly recoverable in subsequent
layers when applying the amnesic operation on
the first seven layers: the performance drops from
the regular probing of that layer between 5.72 and
12.69 accuracy points. However, in the second
part of the network, the drop is substantially larger:
between 16.57 and 46.39 accuracy points. For the
masked version, we witness an opposite trend: The
pos-c information is much less recoverable in the
lower parts of the network than the upper parts. In
particular, the removal of pos-c from the second

12As the representations used to train INLP do not include
BERTs’ special tokens (e.g., ‘CLS’, ‘SEP’), we also don’t
use the projection matrix on those tokens.
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Figure 3: Layer-wise removal. Removing from layer i (the rows) and testing probing performance on layer j (the
columns). Top row (3a) is non-masked version, bottom row (3b) is masked.

layer appears to affect the rest of the layers, which
do not manage to recover a high score on this task,
ranging from 32.7 to 42.1 accuracy.

For all of the non-masked experiments the upper
layers seem to make it harder for the subsequent
layers to extract the property. In the masked
version however, there is no consistent trend.
It is harder to extract properties after the lower
parts for pos-c and ner. For phrase start the upper
part makes it harder for further extraction and
for phrase end both the lower and upper parts
make it harder, as opposed to the middle layers.
Further research is needed in order to understand
the significance of those findings, and whether or
not they are related to information usage across
layers.

This lead us to the final experiment where we
test for the main task performance after an amnesic
operation at the intermediate layers.

7.2 Re-rediscovering the NLP Pipeline

In the previous set of experiments, we measured
how much of the signal removed in layer i is
recovered in subsequent layers. We now study
how the removal of information in layer i affects
the word prediction accuracy at the final layer,
in order to get a complementary measure for
layer importance with respect to a property. The
results for the different properties are presented
in Figure 4, where we plot the difference in word
prediction performance between the control and

the amnesic probing when removing a linguistic
property from a certain layer.

These results provide a clear interpretation
on the internal function of BERT’s layers. For
the masked version (Figure 4), we observe that
the pos-c properties are mostly important in
layer 3 and its surrounding layers, as well as
layer 12. However, this information is accurately
extractable only towards the last layers. For ner,
we observe that the main performance loss occurs
at layer 4. For phrase-markers the middle layers
are important: layers 5 and 7 for phrase start
(although the absolute performance loss is not
big) and layer 6 for phrase end contributes the
most for the word prediction performance.

The story with the non-masked version is quite
different (Figure 4). First, notice that the amnesic
operation improves the LM performance for all
properties, in some layers.13 Second, the drop in
performance peak across all properties is different
than the masked version experiments. Particularly,
it seems that for pos-c, when the words are non-
masked in the input, the most important layer
for pos-c is 11 (and not layer 3, as in the
masked version), while this information is easily
extractable (by standard probing) across all layers
(above 80% accuracy).

Interestingly, the conclusions we draw on layer-
importance from amnesic probing partly differ

13Giulianelli et al. (2018) observed a similar behavior by
performing an intervention on LSTM activations.
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Figure 4: The influence of the different properties, from each layer on LM predictions. Top figure (4a) shows the
results on the regular, non-masked version, bottom figure (4b) for the masked version. Colors allow ease of layer
comparison across graphs.

from the ones in the ‘‘Pipeline processing’’ hy-
pothesis (Tenney et al., 2019a), which aims to
localize and attribute information processing of
linguistic properties to parts of BERT (for the
non-masked version).14 On one hand the ner
experiment trends are similar: the last layers
are much more important than earlier ones (in
particular, layer 11 is the most affected in our
case, with a decrease of 31.09 accuracy points.
On the other hand, in contrast to their hypotheses,
we find that POS information, pos-c (which was
considered to be more important in the earlier
layers) affects the word prediction performance
much more in the upper layers (40.99 accuracy
loss in the 11th layer). Finally, we note that our
approach performs an ablation of these properties
in the representation space, which reveals which
layers are actually responsible for processing
properties, as opposed to Tenney et al. (2019a),
who focused on where this information is easily
extractable.

We note the big differences in behavior when
analyzing the masked vs. the non-masked version
of BERT, and call for future work to make a

14We note that this work analyzes BERT-base, in contrast
to Tenney et al. (2019a) who analyzed BERT-Large.

clearer distinctions between the two. Finally, we
stress that the different experiments should not be
compared between one setting to the other, and
thus the different y-scales in the figures. This is
due to confounding variables (e.g., the number
of removed dimensions from the representations),
which we do not control for in this work.

8 Related Work

With the established impressive performance of
large pre-trained language models (Devlin et al.,
2019; Liu et al., 2019b), based on the Transformer
architecture (Vaswani et al., 2017), a large body of
work started studying and gaining insight into how
these models work and what do they encode.15 For
a thorough summary of these advancements we
refer the reader to a recent primer on the subject
(Rogers et al., 2020).

15These works cover a wide variety of topics, including
grammatical generalization (Goldberg, 2019; Warstadt et al.,
2019), syntax (Tenney et al., 2019b; Lin et al., 2019; Reif
et al., 2019; Hewitt and Manning, 2019; Liu et al., 2019a),
world knowledge (Petroni et al., 2019; Jiang et al., 2020),
reasoning (Talmor et al., 2019), and common sense (Forbes
et al., 2019; Zhou et al., 2019; Weir et al., 2020).
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A particularly popular and easy-to-use inter-
pretation method is probing (Conneau et al.,
2018). Despite its popularity, recent works have
questioned the use of probing as an interpretation
tool. Hewitt and Liang (2019) have emphasized
the need to distinguish between decoding and
learning the probing tasks. They introduced con-
trol tasks, a consistent but linguistically mea-
ningless attribution of labels to tokens, and have
shown that probes trained on the control tasks
often perform well, due to the strong lexical infor-
mation held in the representations and learned by
the probe. This leads them to propose a selectivity
measure that aims to choose probes which achieve
high accuracy only on linguistically-meaningful
tasks. Tamkin et al. (2020) claim that probing
cannot serve as an explanation of downstream
task success. They observe that the probing scores
do not correlate with the transfer scores achieved
by fine-tuning.

Finally, Ravichander et al. (2020) show that
probing can achieve non-trivial results for linguis-
tic properties that were not needed for the task the
model was trained on. In this work, we observe a
similar phenomenon, but from a different angle.
We actively remove some property of interest
from the queried representation, and measure
the impact of the amnesic representation of the
property on the main task.

Two recent works study the probing paradigm
from an information-theory perspective. Pimentel
et al. (2020) emphasize that under a mutual-
information maximization objective, ‘‘better’’ probes
are increasingly more accurate, regardless of
complexity. They use the data-processing in-
equality to question the rationale behind methods
that focus on encoding, and propose ease of ex-
tractability as an alternative criterion. Voita and
Titov (2020) follow this direction, using the
concept of minimum description length (MDL,
Rissanen, 1978) to quantify the total information
needed to transmit both the probing model and
the labels it predicts. Our discussion here is
somewhat orthogonal to those on the meaning
of encoding and probe complexity, as we focus on
the information influence on the model’s behavior,
rather than on the ability to extract it from the
representation.

Finally and concurrent to this work, Feder et al.
(2020) have studied a similar question of a causal
attribution of concepts to representations, using
adversarial training guided by causal graphs.

9 Discussion

Intuitively, we would like to completely neutralize
the abstract property we are interested in—e.g.,
POS information (completeness), as represented
by the model—while keeping the rest of the
representation intact (selectivity). This is a
nontrivial goal, as it is not clear whether neural
models actually have abstract and disentangled
representations of properties such as POS, which
are independent of other properties of the text.
It may be the case that the representation of
many properties is intertwined. Indeed, there is
an ongoing debate on the assertion that certain
information is ‘‘encoded’’ in the representation
(Voita and Titov, 2020; Pimentel et al., 2020).
However, even if a disentangled representation of
the information we focus on exists, it is not clear
how to detect it.

We implement the information removal oper-
ation with INLP, which gives a first order approx-
imation using linear classifiers; we note, however,
that one can in principle use other approaches to
achieve the same goal. While we show that we do
remove the linear ability to predict the properties
and provide some evidence to the selectivity of
this method (§2), one has to bear in mind that we
remove only linearly-present information, and that
the classifiers can rely on arbitrary features that
happen to correlate with the gold label, be it a result
of spurious correlations or inherent encoding of the
direct property. Indeed, we observe this behavior
in Section 7.1 (Figure 3), where we neutralize the
information from certain layers, but occasionally
observe higher probing accuracy in following
layers. We thus stress that the information we
remove in practice should be seen only as an
approximation for the abstract information we are
interested in, and that one has to be cautious of
causal interpretations of the results. Although in
this paper we use the INLP algorithm in order to
remove linear information, amnesic probing is not
restricted to removing linear information. When
non-linear removal methods become available,
they can be swapped instead of INLP. This
stresses the importance of creating algorithms for
non-linear information removal.

Another unanswered question is how to quan-
tify the relative importance of different prop-
erties encoded in the representation for the word
prediction task. The different erasure portion
for different properties makes it hard to draw
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conclusions on which property is more important
for the task of interest. Although we do not
make claims such as ‘‘dependency information is
more important than POS’’, these are interesting
questions that should be further discussed and
researched.

10 Conclusions

In this work, we propose a new method, Amnesic
Probing, which aims to quantify the influence of
specific properties on a model that is trained on a
task of interest. We demonstrate that conventional
probing falls short in answering such behavioral
questions, and perform a series of experiments
on different linguistic phenomenon, quantifying
their influence on the masked language modeling
task. Furthermore, we inspect both unmasked
and masked BERT’s representation and detail
the differences between them, which we find to
be substantial. We also highlight the different
influence of specific fine-grained properties (e.g.,
nouns and determiners) on the final task. Finally,
we use our proposed method on the different
layers of BERT, and study which parts of the
model make use of the different properties.
Taken together, we argue that compared with
probing, counterfactual intervention—such as the
one we present here—can provide a richer and
more refined view of the way symbolic linguistic
information is encoded and used by neural models
with distributed representations.16
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Appendix A

We provide additional experiments that depict
the performance of the main task (e.g., POS)
performance during the INLP iterations in
Figure 5.

Figure 5: LM accuracy over INLP predictions, for the
masked tokens version. We present both the Vanilla
word-prediction score (straight, blue line), as well as
Amnesic Probing (orange, small circles), and the main
task performance (red, large circles). For reference we
also provide the vanilla probing performance of each
task (green, cross marks). Note that the number of
removed dimensions per iteration differs, based on the
number of classes of that property.

Appendix B Hewitt and Liang’s
Control Task

Control Task (Hewitt and Liang, 2019) has been
suggested as a way to attribute the performance
of the probe to extraction of encoded information,
as opposed to lexical memorization. Our goal in
this work, however, is not to extract information
from the representation (as is done in conventional
probing) but to measure a behavioural outcome.
Since the control task is solved by lexical
memorization, applying INLP on control task’s
classifiers erases lexical information (i.e., erases
the ability to distinguish between arbitrary words),
which is at the core of the LM objective and
which is highly correlated with many of the other
linguistic properties, such as POS. We argue that
even if we do see a significant drop in performance
with the control task, this says little on the
validity of the results of removal of the linguistic
property (e.g., POS). However, for completeness,
we provide the results in Figure 6. As can be seen
from this figure, this control’s slope is smaller than
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the one of the amnesic probing, suggesting that
those directions have less behavioral influence.
However, the slopes are steeper than the ‘Rand’
experiment. This is due to the identity removal
of groups of words, due to the label shuffle, as
suggested in their setup. This is the reason we
believe this test is not adequate in our case, and
why we provide other tests to control for our
method: Rand and Selectivity (§2.3).

Figure 6: LM accuracy over INLP predictions, for the
masked tokens version. We present both the Vanilla
word-prediction score (straight, blue line), as well
as Amnesic Probing (orange, small circles), and the
control performance (orange, large circles). We also
provide the Control results for selectivity test, proposed
by Hewitt and Liang (2019) (red, crosses). Note that
the number of removed dimensions per iteration differs,
based on the number of classes of that property.
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