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Abstract

Copy mechanisms explicitly obtain unchanged
tokens from the source (input) sequence to gen-
erate the target (output) sequence under the
neural seq2seq framework. However, most
of the existing copy mechanisms only con-
sider single word copying from the source sen-
tences, which results in losing essential tokens
while copying long spans. In this work, we
propose a plug-and-play architecture, namely
BioCopy, to alleviate the problem aforemen-
tioned. Specifically, in the training stage, we
construct a BIO tag for each token and train the
original model with BIO tags jointly. In the in-
ference stage, the model will firstly predict the
BIO tag at each time step, then conduct dif-
ferent mask strategies based on the predicted
BIO label to diminish the scope of the proba-
bility distributions over the vocabulary list. Ex-
perimental results on two separate generative
tasks show that they all outperform the base-
line models by adding our BioCopy to the orig-
inal model structure.

1 Introduction

Recent neural seq2seq systems have been success-
ful in various NLP tasks which utilize an encoder
to convert a source sentence into a fixed vector,
and a decoder to generate a target sentence by us-
ing the semantic information amongst the fixed
vectors. However, seq2seq suffers from the out-
of-vocabulary and rare word problem(Luong et al.,
2015; Gulcehre et al., 2016) that words in source
sentence are not able to be obtained to generate
the target sentence. Due to this problem, (He et al.,
2016; Srivastava et al., 2015), propose the so-called
‘copy mechanism’ where it locates certain words
in the input sentence and put these words into the
target sequence. In their work, every output word
can be generated either by predicting from the vo-
cabulary or copying from the source sequence. Un-
fortunately, most of them copy the words from the
source sentence to the target sentence in a word-by-

word manner. However, in many cases, the copied
words are generated consecutively from a span in
the source sequence.

In this paper, we propose a novel and portable
copy mechanism to solve the problem of low accu-
racy when copying spans in the seq2seq framework.
To implement this new copy mechanism, we pro-
pose a BIO-tagged strategy that annotates the target
sequences with BIO tags by matching the longest
common subsequence (LCS) with the source se-
quence. Therefore, the BIO tags are able to exactly
locate the start and end position of every single
span in target sequences. In the inference stage, we
design a span extractor to determine copying spans
from the source sequence. Specifically, the BIO tag
is firstly predicted at each time step to indicate the
position of the copied span, then we decide a copy
algorithm to guide the span extractor by generating
the eligible n-gram set.

Since our method does not change the structure
of the model itself, this BioCopy can be seen as
a plug-and-play component, which is simple and
effective enough to transfer and apply to any gener-
ative seq2seq framework. The experimental results
in generative relation extraction and abstractive
summarization tasks indicate the effectiveness of
our proposed copy mechanism.

2 Approach

The conventional seq2seq framework generates one
token at each time step. Therefore, given the pre-
dicted token sequence, the mode decoder predicts
the current token by computing the probability dis-
tribution over the entire vocabulary list:

yt = p(yt|y<t, x) (1)

In our case, we add an extra sequence prediction
task to the model decoder. Specifically, the former
decoder just models the distribution on each token,
but the current decoder predicts an additional label
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distribution:

yt, zt = p(yt, zt|y<t, x) = p(yt|y<t, x)p(zt|y<t, x)
(2)

where z ∈ {B, I,O}. The meaning is as follows:

• B indicates the current token is copied from
the source sentence.

• I indicates the current token is copied and
forms a continuous fragment with the previous
token from source sentence.

• O indicates the current token is not copied,
but generated from the vocabulary list.

BIO-tag Building As we mentioned above, we
utilize the supervised method to train the BIO tag
z. In order to acquire the labels, we compute
the longest common subsequence (Paterson and
Dancík, 1994) between the source sentence and
target sentence. The token will be considered as
copied from source sentence as long as it appears
in the longest common subsequence, and different
tags are assigned according to the specific meaning
of BIO. In summary, in the training phase, besides
the original token sequence prediction task, we also
introduce one more sequence prediction task, of
which the tags are all given. It is easy to implement
and does not add any extra computational cost. The
loss function L is defined as the following:

L =
1

NT

N∑ T∑
i

y
′
i log yi + z

′
i log zi (3)

where y
′

and z
′

denotes gold label of token se-
quence and BIO-tag sequence, T is the sequence
length and N is the batch size. y and z denotes
predicted label.

Inference In the inference stage, at each time
step, we first predict the BIO-tag zt, the result will
be one of three circumstances: if zt = O, we do
not need to change anything. If zt = B, we mask
all the token probability distributions of which they
are not in the source sentence. If zt = I , it indi-
cates the token sequence from current token to its
nearest token with zt = B constitutes a consecu-
tive n-gram from source sentence. Therefore, we
mask all the tokens in the token probability dis-
tribution that cannot constitute the corresponding
n-gram in the source sentence. In this way, the
model decoder still generates tokens in a step-by-
step manner, rather than generating a segment at

one time step. According to utilise the mask opera-
tion, the tokens where their zt = B or zt = O are
selected from a segment in the input sentence. A
detailed example has been shown in Figure 1 for
illustration.

It should be pointed out that the proposed copy
mechanism can not only improve the model perfor-
mance in terms of long-span extraction, but also
ensures the consistency between the generated text
and the original text, thereby avoiding professional
errors, which is quite necessary for practical use.

3 Experiment

3.1 Generative Relation Extraction
Generative relation extraction tackles the conven-
tional relation extraction problem by utilizing the
seq2seq framework. At each time step, the model
decoder either predicts the relation or copy a token
from the input sentence. We focus on the task of ex-
tracting multiple tuples from sentences. We choose
the New York Times (NYT) corpus(Zeng et al.,
2018) for our experiments. The detailed statistics
are listed in Table 1. Intuitively, the model capabil-
ity of extracting long-span entities can be boosted
by adding the proposed BioCopy.

Train Test
examples 56,000 5,000
triplets 88,366 8,120
2 token 37,352 3,335
3 token 6,362 566
3+ tokens 1,259 112

Table 1: Statistics of train/test split of the NYT. n-token
denotes the number of examples that contain n-token
entities.

Baselines We compare our model performance
with the following state-of-the-art relation extrac-
tion models. Tagging(Zheng et al., 2017) is a
neural sequence labeling model which jointly ex-
tracts the entities and relations using an LSTM en-
coder and an LSTM decoder. CopyR(Zeng et al.,
2018) uses an encoder-decoder framework to ex-
tract entities and relations jointly. GraphR(Fu
et al., 2019) models each token in a sentence as
a node, and edges connecting the nodes as rela-
tions between them, they adopt the graph neural
network to predict the relation triplets. Ngram-
att uses an encoder-decoder framework with a n-
gram attention layer. The encoder takes source se-
quence as input and decoder produces entity and re-
lation IDs from Wikidata(Vrandečić and Krötzsch,
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The most advance rocket in
the world is Falcon rocket,
SpaceX launches Falcon
rockect with over 100
statellites in April 5th.
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Figure 1: The workflow of model decoder in the inference stage: in order to predict the current token ‘Falcon’, the
model firstly predicts its BIO = I, which indicates the current token constitutes a 3-gram with the predicted tokens
‘SpaceX’, ‘launches’. Then, we search the potential 3-grams from the source sentence, and the ‘Falcon’ is the only
valid candidate. Finally, the token probability distributions except ‘Falcon’ are all masked as zero.

2014). WordDec and PointerDec are both orig-
inated from (Nayak and Ng, 2020), where they
use both word decoder and pointerNet as model
decoder.

Model Details Since WordDec (Nayak and Ng,
2020) is the state-of-the-art model on the NYT
dataset, thus we select WordDec as our backbone
model and all the model details are aligned with the
original settings. Concretely, we initialize the word
vectors by using Word2Vec(Mikolov et al., 2013).
We set the word embedding dimension dw = 300
and relation embedding dimension dr = 300, the
hidden dimension dh of the LSTM cell is set at 300.
The model is trained with the mini-batch size of
32 and the network parameters are optimized using
Adam(Kingma and Ba, 2015). Dropout layers with
a dropout rate fixed at 0.3 are used in our network
to avoid overfitting.

Models Precision Recall F1 score
Tagging 62.4% 31.7% 42.0%
CopyR 61.0% 56.6% 58.7%
GraphR 63.9% 60.0% 61.9%
Ngram-att 78.3% 69.8% 73.8%
PointerDec 80.6% 77.3% 78.9%
WordDec 88.1% 76.1% 81.7%
Our model 87.7% 77.7% 82.4%

Table 2: Performance comparison on NYT24 dataset

Result We run the model with the above experi-
mental settings, and we get the result as shown in
Table 2. Our model outperforms the state-of-the-
art methods 0.4% by recall and 0.7% by F1 score
respectively.

To further verify the effectiveness of the pro-
posed BioCopy, We conduct the ablation experi-

ment, and the results are presented in Table 3. To be
more specific, we firstly use a raw seq2seq model
without any involvement of copy mechanism. Then,
we add the Attention Copy that has been conducted
by WordDec (Nayak and Ng, 2020), i.e., if the pre-
dicted token is unknown, we will select the token
with the highest attention score from the input sen-
tence . As we can see from Table 3, raw seq2seq
unsurprisingly turns out to be the lowest perfor-
mance due to the massive prediction of unknown.
Adding Attention Copy can alleviate the unknown
problem, but it is still a lack of capability of extract-
ing long-span entities. By adding our BioCopy, the
model performance exceeds the other two since our
model is able to not only deal with the unknown
problem, but extracting the long-span entities prop-
erly.

Precision Recall F1 score
Raw Seq2seq 71.4% 59.6% 65.0%
+ Attention Copy 88.1% 76.1% 81.7%
+ BioCopy 87.7% 77.7% 82.4%

Table 3: Model performance with different settings

Table 3 suggests our approach boosts the model
performance to some extent. However, it is still
not clear how effectively could our method act
on multi-token entity extraction. Since the multi-
token entities can be regarded as a long span, we
speculate that our method can improve the model
capability in terms of tackling the multi-token enti-
ties, We conduct an auxiliary experiment to verify
this. As shown in Table 4, we can notice that the
percentage of error cases, which are caused by in-
correctly extracting long-span entities, drop from
49.1% to 18.6% by adding our BioCopy where it
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strongly verifies that the improvement of the model
performance in this task is due to the reduction of
long-span copy errors.

Error Percentage
Raw Seq2seq 49.1%
+ Attention Copy 23.7%
+ BioCopy 18.6%

Table 4: Percentage of error cases of extracting long-
span entities.

3.2 Auxiliary Experiment
To verify the robustness of our proposed method,
we also conduct an auxiliary experiment on abstrac-
tive summarization task. Abstractive summariza-
tion task aims to generate a new shorter text that
conveys the most critical information from the orig-
inal long text, where it usually requires to generate
much longer text spans from the source sentenc,
which can be leveraged to further evaluate our Bio-
Copy.

We conducted our experiment on a Chinese le-
gal summarization dataset (CAIL2020) 1, which
contains a large number of legal terms. CAIL2020
dataset has 9,484 sample pairs. Each source text
contains an average of 2569 words and each sum-
mary text contains 283 words.

Baseline and Metrics Recently, pre-training
models have achieved promising results when fine-
tuned on several text summarization tasks (Dong
et al., 2019a; Lewis et al., 2020). We choose
NEZHA (Dong et al., 2019a) as our backbone
model, which is a large-scale Chinese pre-trained
model and is able to encode the input text with any
length. For a fair comparison, we convert the origi-
nal encoder mask of NEZHA to the seq2seq mask
as same as the BERT-UniLM (Dong et al., 2019b)
used in Table 5. We use ROUGE scores for eval-
uation, in which Total is calculated as a weighted
average of the above scores.

Result In Table 5, we first compare the model
performance with BERT-based models. We can
notice that BERT model can achieve a better result
by utilizing our BioCopy than by just simply using
UniLM (Dong et al., 2019b). Since the dataset is in
Chinese, we select NEZHA (Dong et al., 2019a) as
our backbone model as it is pre-trained on massive
Chinese corpus. The results in Table 5 show that

1https://github.com/china-ai-law-
challenge/CAIL2020/tree/master/sfzy

Models Rouge-1 Rouge-2 Rouge-L Total
LSTM-Seq2seq 46.48 30.48 41.80 38.21
BERT-UniLM 63.83 51.29 59.76 57.19
BERT-BioCopy 64.98 53.92 66.54 61.18
NEZHA 70.93 54.38 69.89 63.89
NEZHA-BioCopy 71.31 54.72 70.29 64.29

Table 5: Performance comparison on CAIL2020
dataset

the model can gain 71.31 Rouge-1, 54.72 Rouge-2,
70.29 Rouge-L and 64.29 Total, respectively, where
it surpasses all the baseline models.

4 Related Work

Generative relation extraction. (Zeng et al.,
2018) proposed CopyRE, a joint model based on
a copy mechanism, which transforms the joint ex-
traction task into a generation task.(Nayak and Ng,
2020) propose two different encoders. The word
decoder generates multiple triplets in a token-by-
token manner, and each triplets is distinguished by
the special token, while the pointer decoder simply
utilizes pointerNet (Vinyals et al., 2015) to gen-
erate start and end indexes for each entity. Copy-
MTL (Zeng et al., 2019) introduced a multi-task
framework with a sequence labeling layer in the
encoder, to alleviate the problem that CopyRE can
only extract the last token in a multi-token entity.

Abstractive summarization. The previous
work mainly leverage an encoder-decoder
framework by choosing different model struc-
tures. (Zhong et al., 2019) utilize Transformers
or graph neural network (Wang et al., 2020) for
model encoder. Despite most of the previous work
conducting the seq2seq model, some works (Wang
et al., 2019) deploy a non-autoregressive model
decoder to tackle this task, which also shows great
effectiveness.

5 Conclusion

In this paper, we propose BioCopy, a plug-and-play
copy mechanism to alleviate the long-span copying
problem in generative tasks. By adding an extra
sequence prediction layer in the training stage, our
proposed approach is able to diminish the scope of
probability distribution on each token. Experiments
in generative relation extraction and abstractive
summarization verifies the model’s effectiveness.
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