Shrinking Bigfoot: Reducing wav2vec 2.0 footprint

Zilun Peng' Akshay Budhkar' Ilana Tuil® Jason Levy?
Parinaz Sobhani' Raphael Cohen? Jumana Nassour?
!Georgian.io 2Zoominfo

{zilun.peng, akshay,

{ilana.tuil,
{raphael.cohen,

Abstract

Wav2vec 2.0 is a state-of-the-art speech recog-
nition model which maps speech audio wave-
forms into latent representations. The largest
version of wav2vec 2.0 contains 317 million
parameters. Hence, the inference latency of
wav2vec 2.0 will be a bottleneck in produc-
tion, leading to high costs and a significant en-
vironmental footprint. To improve wav2vec’s
applicability to a production setting, we ex-
plore multiple model compression methods
borrowed from the domain of large language
models. Using a teacher-student approach,
we distilled the knowledge from the origi-
nal wav2vec 2.0 model into a student model,
which is 2 times faster, 4.8 times smaller than
the original model. More importantly, the stu-
dent model is 2 times more energy efficient
than the original model in terms of CO3 emis-
sion. This increase in performance is accom-
plished with only a 7% degradation in word
error rate (WER). Our quantized model is 3.6
times smaller than the original model, with
only a 0.1% degradation in WER. To the best
of our knowledge, this is the first work that
compresses wav2vec 2.0.

1 Introduction

Speech recognition technologies enhance people’s
lives through a wide range of applications such
as virtual assistants, home automation, and real-
time transcription and captioning. Neural network-
based speech recognition models achieve superior
performances, but successfully training them re-
quires a lot of labeled data (Amodei et al., 2016).
Wav2vec 2.0 (Baevski et al., 2020) is a frame-
work that combines self-supervised masking pre-
training with a tuning step that achieves impressive
results with little labeled data. With only 10 min-
utes of labeled data, wav2vec 2.0 achieves word er-
ror rates (WER) of 4.8% and 8.2 % on LibriSpeech
(Panayotov et al., 2015) dev-clean and dev-other
datasets, respectively. Moreover, Wav2vec 2.0

parinaz}@georgian.io

jason.levyl@zoominfo.com
jumana.nassour}@zoominfo.com

achieves state-of-the-art performances on the Lib-
riSpeech benchmark while using a minimal amount
of labeled data. Self-supervised learning enables
wav2vec 2.0 to learn speech representations effi-
ciently without much labeled data. This allows eas-
ily training an end-to-end automatic speech recog-
nition (ASR) system for a low resource language'
or for a specific domain. The largest version of
wav2vec 2.0 has 317 million parameters, which
makes real-time inference inefficient in production.

Language modeling is a central research ques-
tion in natural language processing (NLP). In re-
cent years massive LM architectures, based on
novel pre-training approaches, revolutionized NLP
(Devlin et al., 2019; Howard and Ruder, 2018).
The BERT (Devlin et al., 2019) architecture of
masked pre-training and transformers is similar to
wav2vec2.0. To improve wav2vec’s applicability
to a production setting, we explore multiple model
compression methods borrowed from the domain
of massive LMs.

A significant drawback of massive LM models
is high resource consumption. The negative im-
pact of such models, beyond the costs for organiza-
tions using this technology in production, is cause
for concern (Strubell et al., 2019; Bender et al.,
2021). Various compression methods have been
developed to overcome the problem, such as (Sanh
et al., 2020). To compress wav2vec 2.0, we explore
quantization and knowledge distillation methods.
Our quantized model is 3.6 times smaller than the
original model, with a 0.1% loss in WER, making
it easy to deploy in a production environment. Our
student model is at least 2 times faster on both CPU
and GPU and 4.8 times smaller than the original
model, with a 7% loss in WER through knowledge
distillation.

Since the knowledge distilled model is smaller

"For example, an Arabic ASR model https://hugg
ingface.co/elgeish/wav2vec2-large-xlsr-5
3-arabic

134

Proceedings of the 2nd Workshop on Simple and Efficient Natural Language Processing, pages 134-141
November 10, 2021. ©201 Association for Computational Linguistics

https://huggingface.co/elgeish/wav2vec2-large-xlsr-53-arabic
https://huggingface.co/elgeish/wav2vec2-large-xlsr-53-arabic
https://huggingface.co/elgeish/wav2vec2-large-xlsr-53-arabic

than the original model, it is more energy efficient.
In Section 7, we estimated that the distilled model
could potentially save 21 tons of CO2 equivalents
(comparing to the original model) if running infer-
ences on 54 millions of hours of speech data.

Our work makes two key contributions: 1. This
research is the first work that compresses the state-
of-the-art wav2vec 2.0 speech recognition model
to the best of our knowledge. 2. Our distilled stu-
dent model has a faster inference speed and makes
wav2vec 2.0 more cost-efficient and environmental
friendly.

2 Related work

In this section, we relate research works done on
model compression in ASR systems. Then we de-
scribe compression methods applied in language
modeling, which we wish to explore for compress-
ing wav2vec.

2.1 Model compression in ASR systems

Several works have been done on compressing end-
to-end ASR systems to make them more applicable
to production settings. The compression method
varies depending on the ASR architecture used.
Some of the methods result in approximately 2-
3% reduction in accuracy (Mehrotra et al., 2020; Li
etal., 2019; Mori et al., 2018), while others result in
an improved accuracy (Winata et al., 2020; Kurata
and Audhkhasi, 2018). Mehrotra et al. (Mehrotra
et al., 2020) use reinforcement learning and low
rank factorization to compress a system composed
of an encoder-attention-decoder with unidirectional
LSTMs, while Kurata et al. (Kurata and Audhkhasi,
2018) and Takashima et al. (Takashima et al., 2018)
employ knowledge distillation to train a UniLSTM
model from a BILSTM one. Winata ef al. (Winata
et al., 2019) applied low rank factorization to com-
press LSTMs. Mori et al. (Mori et al., 2018) start
with “Deep Speech 2” architecture, which consists
of both convolution layers and bidirectional gated
recurrent unit layers (GRU), reduce the number of
parameters using Tensor-Train decomposition on
the weight matrix of the GRUs (TT-GRU).

Some attempts have been made to compress
transformer-based ASR systems, like the work
done to share parameters across different layers
by incorporating additional features related to the
topic and the speaker (Li et al., 2019), leading to
less than a two-point decrease in accuracy. An-
other work proposed using a low-rank transformer

(LRT) to reduce the number of parameters and
boost the speed of training and inference (Winata
et al., 2020). The proposed LRT model improved
accuracy without using a language model or acous-
tic data in addition to the improvement in size and
speed.

2.2 Classic compression methods in language
modeling

Knowledge distillation, quantization, and pruning
are few techniques employed in research for com-
pressing language models.

Knowledge distillation involves the use of a
teacher model (or models) to improve the perfor-
mance of another model (student model). When
used for compression, the student model’s size is
significantly smaller than that of the teacher model.

Knowledge distillation in ASR is used both to
improve accuracy (Futami et al., 2020; Gao et al.,
2020; Mori et al., 2018), and to make the model
more applicable to production by reducing its size
(Kurata and Audhkhasi, 2018; Takashima et al.,
2018), see subsection 2.1. Futami ef al. (Futami
et al., 2020) use knowledge distillation to generate
more syntactically or semantically likely results
by providing a left context seq2seq ASR system
(student model) with soft labels of context to the
right. The authors produce soft labels by using a
pre-trained BERT model (teacher model). Gao et
al. (Gao et al., 2020) use multiple teacher models
to train a student ASR model to improve ASR ac-
curacy jointly. Moriya ef al. (Moriya et al., 2020)
improve the accuracy by adding another term to the
loss function called self-distillation (SD), which
comes from incorporating the teacher model.

BERT (Devlin et al., 2019) is one of the most
prominent language models in NLP. Like wav2vec,
it is based on the transformer model, but it uses
only encoders without decoders. DistilBERT (Sanh
et al., 2020) is a distilled version of BERT, with
a 40% decrease in model size, a 60% increase in
speed, and a 97% preservation of language under-
standing capabilities. Hence, it would be inter-
esting to apply a similar distillation technique to
wav2vec. TinyBERT (Jiao et al., 2019) and Mobile-
BERT (Sun et al., 2020) also applied knowledge
distillation to compress BERT.

Quantization involves reducing the number of
bits used to represent weights. Normally, networks
use 32-bit floating-point weights. Because neural
networks have millions of such weights, quantiz-

135

ing these weights can make neural networks more
energy efficient (Dally, 2015). Several works have
been published on quantization, reducing weights
to 8-bit (Vanhoucke et al., 2011), 4-bit (Choi et al.,
2018), 2-bit (Hwang and Sung, 2014), and 1-bit
(Courbariaux et al., 2015) integers. Weights are
static and can be quantized through scaling and
shifting, but this is not true for activations. Activa-
tions vary depending on input samples and can be
quantized through static or dynamic quantization.
Static quantization learns scaling and shifting of
activations through a batch of samples, while dy-
namic quantization scales and shifts activations in
each forward pass. There are two popular software
packages for quantization: Distiller (Zmora et al.,
2019), and PyTorch (Paszke et al., 2019). Distiller
simulates quantization; hence, weights are still rep-
resented using 32-bit floating-point numbers but
are restricted to integer values. Since we are in-
terested in studying the efficiency of quantizing
wav2vec 2.0, we decided not to explore Distiller
for quantization. In section 5, we discuss the pros
and cons of using PyTorch for quantizing wav2vec
2.0.

Pruning is executed by removing small weights
that are likely redundant and can be removed with-
out much loss in accuracy (Han et al., 2015). Han
et al. (Han et al., 2016) proposed deep compres-
sion, an efficient compression pipeline, which first
prunes the neural network model and then quan-
tizes the remaining effective weights. We con-
ducted a preliminary study on pruning using the
Distiller (Zmora et al., 2019) sensitivity pruner.
We set the sensitivity for each convolution layer
to 0.1. We set the sensitivity in layers 3 to 16 of
the transformer to 0.3 and layers 17 to 23 to 0.4.
We pruned weights smaller than the product of the
sensitivity and standard deviation of weights on
that layer. The pruned model has a 23% sparsity
while maintaining the same WER as the original
model. We, however, didn’t observe any significant
improvement in the inference speed.

3 Wav2vec

Wav2vec 2.0 (Baevski et al., 2020) achieved a
breakthrough in ASR by adopting the masked pre-
training method employed in the massive language
model BERT. BERT masks a few words in each
training sentence, and the model learns by attempt-
ing to fill the gaps. Instead of masking words,
wav2vec 2.0 masks parts of the audio representa-

tion and lets the transformer network fill in the
gaps. This self-supervised setup makes it possible
to learn mainly from unlabeled data while only fine-
tuning on a small labeled dataset. The wav2vec 2.0
model comprises two significant components that
we consider for compression: the CNN layers and
the transformer layers.

In the following sections, we explore how com-
pressing a fine-tuned version of wav2vec 2.0 using
knowledge distillation and quantization affects the
size of the model and its inference speed.

4 Knowledge distillation for wav2vec 2.0

We based our distillation on the knowledge dis-
tillation used by Sanh ef al. to compress BERT
(Devlin et al., 2019) to DistilBERT (Sanh et al.,
2020). They initialized their student models by
taking alternating layers from a well-performing
larger model and scheduled the learning rate by
first increasing, then gradually decreasing it.

Since it is possible to reduce either the CNN
layer or the transformer layers of wav2vec 2.0,
we decided to reduce the transformer ones since
wav2vec 2.0 has only 7 CNN layers, which does
not constitute a substantial computational bottle-
neck compared to transformer layers, see Table
3.

4.1 Knowledge distillation loss

The classic knowledge distillation approach (Hin-
ton et al., 2015) focuses on transferring knowledge
between classification neural networks, where both
the teacher and the student models output proba-
bility distributions over M labels. In our case, the
output is latent representations of the input speech
audio waveform. We project these representations
into probability distributions over M tokens, where
a token could map to a character or word bound-
ary. Let T and S be the output probability dis-
tributions of the teacher and the student model,
respectively. Inspired by (Hinton et al., 2015), we
define the knowledge distillation loss to be the Kull-
back—Leibler (KL) divergence between 7" and S

Ldzstzll T S

VXX mes(5)

O<z<N 0<j<M
(D

“We used wav2vec_big_960h as our base/original model.
(https://dl.fbaipublicfiles.com/fairseq/w
av2vec/wav2vec_big_960h.pt)

136

https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_big_960h.pt
https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_big_960h.pt

The dimension of T and S is N x M, where
N is the length of the representation and M is the
number of tokens. The KL divergence signals how
far off is the student model’s prediction is from
its teacher, and the student model learns from the
teacher by optimizing this loss.

4.2 The architecture of the student model

The only difference between our student model and
the original wav2vec 2.0 model is the number of
transformer layers. The largest version of wav2vec
2.0 has seven convolution layers and 24 transformer
layers, while our student models have a reduced
number of transformer layers. Our smallest student
model has four transformer layers. We have also
trained student models with 6, 8, 10, 12 transformer
layers. See section 7 for a discussion on the trade-
off between the number of transformer layers and
the performance of the different student models.

4.3 Objective function

Our objective function for knowledge distillation
training consists of the knowledge distillation loss
and feature penalty (Baevski et al., 2020), Lg;si1 +
L teature- Laistin> the knowledge distillation loss,
is defined in equation 1, and L fcqtyre 18 the L2
norm of the final output of convolution layers and
serves as a regularization term for convolution lay-
ers. The original wav2vec 2.0 uses L fcqtyre during
training.

We have tried to use the cosine embedding loss
(Sanh et al., 2020) in our objective function, but it
didn’t help with the student model’s performances.

4.4 Training techniques

After trying different optimizers, step size schedul-
ing, objective functions, and other techniques to
help the student model learn faster, the two ap-
proaches that significantly improved the student
model’s performance were using DistilBERT’s ini-
tialization strategy and training on more data.

5 Quantization for wav2vec 2.0

In this section, we discuss how the two quantization
techniques available in Pytorch apply to our task
of quantizing wav2vec 2.0.

5.1 Static quantization

Static quantization quantizes weights and requires
calibration before inference to determine scaling
and shifting for quantizing activations. PyTorch

does not support quantization for gelu activation
(Hendrycks and Gimpel, 2020) (as of March 2021),
one of the activations used in the wav2vec 2.0
model. A closed pull request > shows they were
trying to add the support but suspended it temporar-
ily due to some test case failures. One possible
workaround is to dequantize before gelu and re-
quantize afterward, but this causes some perfor-
mance degradation.

5.2 Dynamic quantization

Dynamic quantization only quantizes weights and
dynamically quantizes activations in each forward
pass. As of March 2021, there are no supports for
dynamically quantizing the multi-head attention
(MHA) mechanism, which is an essential part of a
transformer layer. Related issues remain open in
PyTorch % and fairseq >. As a result, tensors enter-
ing MHA must not be quantized. We observed that
dynamic quantization wraps weights and biases
of MHA with some methods, requiring a costly
linear_unpack operation to access them during in-
ference. We save weights and biases before infer-
ence so that linear_unpack is not performed for
every sample during inference, hence increasing
inference efficiency.

6 Experiments

The wav2vec 2.0 model we are trying to compress
was trained with 960 hours of unlabeled data from
the LibriSpeech dataset (Panayotov et al., 2015),
and then fine-tuned with the labeled version of the
same 960 hours. We did not attempt to compress
the model before it was fine-tuned. We used a
Viterbi decoder to convert the output of the student
wav2vec 2.0 model into text. We conducted train-
ing on 4 Nvidia V100 GPUs and set the batch size
to 1 per GPU. We trained with 16-bit floating-point
arithmetic and fixed the seed at 42 in all our runs
to make the results reproducible.

For knowledge distillation, we used the Adam
optimizer with weight decay. We set eps = 1076,
betas = (0.9,0.98), and the weight decay coeffi-
cient to 0.01. We scheduled the learning rate by the
number of epochs. The learning rate starts from
2.5 x 107° and linearly increases for the first two
epochs. After two epochs, we linearly decrease the
learning rate in every epoch. Also, we assessed the

3https://github.com/pytorch/pytorch/pull/34396
*https://github.com/pytorch/pytorch/issues/32764
Shttps://github.com/pytorch/fairseq/issues/1901

137

effect of using a different number of transformer
layers on the target metrics, see Table 2.

For quantization, we used PyTorch’s dynamic
quantization to quantize linear layers of wav2vec
2.0. Table 1 contains the results of evaluating the
different compression methods on LibriSpeech dev-
clean.

Our implementation is available at https: //
git.io/JmpJM.

7 Results and discussion

Table 1 shows the performance of the largest ver-
sion of wav2vec 2.0 compared to the compressed
models. The distilled model has a 7% loss in terms
of word error rate (WER) compared with the orig-
inal model. However, the distilled model is at
least two times faster than the original model on
both CPU and GPU, in addition to being 4.8 times
smaller than the original wav2vec 2.0 model. We
trained the distilled model for 32 epochs.

Table 1 shows that our distilled model is at least
2 times more efficient than the original model in
terms of CO3 emissions and energy consumption.
The distilled model is expected to consume less
energy since it is smaller than the original model.
Our test set contains 5.4 hours of speech data, and
the distilled model emits 0.0019 kg of CO4 equiv-
alents less than the original model. We roughly
estimate the potential saving on a larger dataset: if
we have 54 millions of hours of speech data, and
inference using the distilled model, then it’s pos-
sible to save ~21 tons of CO2 equivalents. This
shows the energy efficiency of the distilled model,
especially when applying it to a large dataset. We
used CodeCarbon (Schmidt et al., 2021) to estimate
CO- emissions and energy consumption. While
CodeCarbon should be able to track CPU energy
consumption, for our quantized model (which can
only be used on a CPU), our machines were not
supported by CodeCarbon (as seen in this pull
request®), and hence we were not able to report
CO, emissions for our quantized model. Other
tools like carbontracker (Anthony et al., 2020) and
experiment-impact-tracker (Henderson et al., 2020)
can be used in the future to track both CPU and
GPU energy consumption.

Considering the quantized model, we notice that
even though the model is 3.6 times smaller than the
original model, it is not significantly faster. This
discrepancy can be attributed to the need for de-

Shttps://github.com/mlco2/codecarbon/issues/156

quantize tensors entering multi-head attention; see
section 5.2 for more details. PyTorch does not sup-
port GPU quantization; therefore, we report only
CPU inference time for the quantized model. Its
significant reduction in size, together with its abil-
ity to maintain the original WER, albeit with a
slight loss, make the quantized model easily de-
ployable in a production environment.

7.1 Knowledge distillation using different
settings

There is a wide range of settings that can be
tweaked when distilling a model. We explore some
of them to understand their effect on the resulting
model and the target metrics.

We conducted some experiments to evaluate the
trade-off between the size of a model and its per-
formance when performing knowledge distillation
by varying the number of kept transformer layers
in the student model. LibriSpeech train-clean-100
was used to train the student models. We trained
each student model for ten epochs. We performed
inferences on a single GPU. Table 2 reports the
results of these experiments. The performance of
the original wav2vec 2.0 is shown in the first row.
We observe that as the number of transformer lay-
ers decreases, the inference time decreases, but
WER increases. Thus, as expected, as the model
becomes smaller, its inference time improves, but
its accuracy degrades.

In section 4.2, we introduced the student
wav2vec 2.0 model’s architecture, where we men-
tioned that reducing the number of convolution
layers will probably not have much effect on the
inference time of the distilled model. We tested
this claim by reducing the convolution layers to 4.
Table 3 shows the result of this experiment com-
pared to the original setting. GPU inference time
is only 0.7 seconds faster in the four convolution
layer model, whereas CPU inference time is slower.
This behavior is because we replaced convolution
layers with max-pooling, and PyTorch has a slower
max-pooling operation on the CPU.

DistilBERT initializes layers in the student
model by taking alternating layers from a larger
model. It’s possible to initialize layers in the stu-
dent model by taking the last few layers from a
larger model. Figure 1 shows the effectiveness
of DistilBERT’s initialization strategy, as the stu-
dent wav2vec 2.0 model initialized using Distil-
BERT’s approach significantly outperforms the

138

https://git.io/JmpJM
https://git.io/JmpJM

Model #Parameters | Model Size | CPU GPU WER | Emissions | Energy
Inference | Inference as COs-| Con-
Time Time equivalents| sumed
Original 317 M 1262 MB 4433 s 123 s 2.63% | 0.0032 kg | 0.0087
kWh
Distilled | 65M 262 MB 1560 s 51s 9.51% | 0.0013 kg | 0.0036
kWh
Quantized | 317 M 354 MB 4079 s N/A 2.75% | N/A N/A

Table 1: Performances of the original wav2vec 2.0 model, a student model trained using knowledge distillation,
and a quantized wav2vec 2.0 model.

Layers | Parameters | Model Size | Inference Time | WER
24 317 M 1262 MB 123 s 2.63%
12 166 M 665 MB 81s 6.6%
10 141 M 564 MB 75s 7.59%
8 115M 464 MB 69 s 10.42%
6 91 M 363 MB 60 s 16.54%

Table 2: Performance of a student wav2vec 2.0 model with different number of transformer layers on GPU.

Layers | GPU Inference | CPU Inference
Time Time

7 297 s 161s

4 2.26s 387 s

Table 3: Inference time of wav2vec 2.0 model with dif-
ferent number of convolution layers. Original wav2vec
2.0 model has 7 convolution layers.

Performances of the Student Model Under

WER Different Initialization Strategies

~— Initialize by taking alternating layers

0.8 —— Initialize by using last few layers

0.6

0.2

o 2 4 6 8 Epoch
Figure 1: A student wav2vec 2.0 model initialized us-
ing different strategies, then trained with knowledge
distillation.

WER Performances of the Student Model Trained with

Different Amount of Data
0.25

= Trained using 100 hours of data
= Trained using 360 hours of data

0.2

0.1 e .

0 5 10 15 Epoch

Figure 2: A student wav2vec 2.0 model trained with
knowledge distillation using different amount of data.

other method from the beginning of training. We
split the dev-clean dataset into two parts for this
experiment, one for training and the other for vali-
dation, which we used for reporting WER.

We observed that a student model trained with
more data tends to obtain a better WER. As figure
2 shows, the student model trained using 360 hours
of data (train-clean-360) achieves better WER than
the student model trained with less data (train-
clean-100).

8 Conclusion

Jointly training teacher and student model has be-
come a popular technique for compressing ASR
systems (Swaminathan et al., 2021; Yu et al., 2020).
In contrast, we employed a traditional knowledge
distillation approach and it will be an interesting
future work direction to investigate why such ap-

139

proach did not achieve great performances for the
student model. Despite performance limitations,
we found that knowledge distillation is the most
effective compression method for wav2vec 2.0 for
saving energy by lowering CPU or GPU inference
time. Using knowledge distillation, we trained a
student wav2vec 2.0 model, which is at least two
times faster than the original model on both CPU
and GPU. Moreover, the trained student model is
also two times more energy efficient than the origi-
nal model.

Wav2vec models present a valuable technol-
ogy for democratizing ASR. We explored multiple
methods for reducing memory usage and speeding
up such models for deployment. More remarkably,
our compressed model is environmental friendly
during inference. Maintaining low carbon footprint
and improving model’s performance will be our
future research direction.

References

Dario Amodei, Sundaram Ananthanarayanan, Rishita
Anubhai, Jingliang Bai, Eric Battenberg, Carl Case,
Jared Casper, Bryan Catanzaro, Jingdong Chen,
Mike Chrzanowski, Adam Coates, Greg Diamos,
Erich Elsen, Jesse H. Engel, Linxi Fan, Christopher
Fougner, Awni Y. Hannun, Billy Jun, Tony Han,
Patrick LeGresley, Xiangang Li, Libby Lin, Sharan
Narang, Andrew Y. Ng, Sherjil Ozair, Ryan Prenger,
Sheng Qian, Jonathan Raiman, Sanjeev Satheesh,
David Seetapun, Shubho Sengupta, Chong Wang,
Yi Wang, Zhigian Wang, Bo Xiao, Yan Xie, Dani
Yogatama, Jun Zhan, and Zhenyao Zhu. 2016. Deep
speech 2 : End-to-end speech recognition in english
and mandarin. In Proceedings of the 33nd Inter-
national Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016,
volume 48 of JMLR Workshop and Conference Pro-
ceedings, pages 173—182. JMLR.org.

Lasse F. Wolff Anthony, Benjamin Kanding, and
Raghavendra Selvan. 2020. Carbontracker: Track-
ing and predicting the carbon footprint of training
deep learning models. ICML Workshop on Chal-
lenges in Deploying and monitoring Machine Learn-
ing Systems. ArXiv:2007.03051.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A frame-
work for self-supervised learning of speech represen-
tations. In Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural In-
formation Processing Systems 2020, NeurlPS 2020,
December 6-12, 2020, virtual.

Emily M Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models

be too big? In Proceedings of the 2021 ACM Confer-
ence on Fairness, Accountability, and Transparency,
pages 610-623.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani,
Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and
Kailash Gopalakrishnan. 2018. Pact: Parameterized
clipping activation for quantized neural networks.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. 2015. Binaryconnect: Training deep neural
networks with binary weights during propagations.
In Advances in Neural Information Processing Sys-
tems 28: Annual Conference on Neural Informa-
tion Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, pages 3123-3131.

William Dally. 2015. High-performance hardware for
machine learning. NIPS Tutorial, 2.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Hayato Futami, Hirofumi Inaguma, Sei Ueno, Masato
Mimura, Shinsuke Sakai, and Tatsuya Kawahara.
2020. Distilling the knowledge of bert for sequence-
to-sequence asr.

Yan Gao, Titouan Parcollet, and Nicholas Lane. 2020.
Distilling knowledge from ensembles of acoustic
models for joint ctc-attention end-to-end speech
recognition.

Song Han, Huizi Mao, and William J Dally. 2016.
Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huff-
man coding. International Conference on Learning
Representations (ICLR).

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. In Advances in Neural In-
formation Processing Systems, volume 28. Curran
Associates, Inc.

Peter Henderson, Jieru Hu, Joshua Romoff, Emma
Brunskill, Dan Jurafsky, and Joelle Pineau. 2020.
Towards the systematic reporting of the energy and
carbon footprints of machine learning.

Dan Hendrycks and Kevin Gimpel. 2020. Gaussian er-
ror linear units (gelus).

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In

140

http://proceedings.mlr.press/v48/amodei16.html
http://proceedings.mlr.press/v48/amodei16.html
http://proceedings.mlr.press/v48/amodei16.html
https://proceedings.neurips.cc/paper/2020/hash/92d1e1eb1cd6f9fba3227870bb6d7f07-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/92d1e1eb1cd6f9fba3227870bb6d7f07-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/92d1e1eb1cd6f9fba3227870bb6d7f07-Abstract.html
http://arxiv.org/abs/1805.06085
http://arxiv.org/abs/1805.06085
https://proceedings.neurips.cc/paper/2015/hash/3e15cc11f979ed25912dff5b0669f2cd-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/3e15cc11f979ed25912dff5b0669f2cd-Abstract.html
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2008.03822
http://arxiv.org/abs/2008.03822
http://arxiv.org/abs/2005.09310
http://arxiv.org/abs/2005.09310
http://arxiv.org/abs/2005.09310
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
http://arxiv.org/abs/2002.05651
http://arxiv.org/abs/2002.05651
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1503.02531
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031

Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328-339, Melbourne, Australia.
Association for Computational Linguistics.

Kyuyeon Hwang and Wonyong Sung. 2014. Fixed-
point feedforward deep neural network design using
weights+ 1, 0, and- 1. In 2014 IEEE Workshop on
Signal Processing Systems (SiPS), pages 1-6. IEEE.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2019. Tinybert: Distilling BERT for natural lan-
guage understanding. CoRR, abs/1909.10351.

Gakuto Kurata and Kartik Audhkhasi. 2018. Improved
knowledge distillation from bi-directional to uni-
directional Istm ctc for end-to-end speech recogni-
tion. In 2018 IEEE Spoken Language Technology
Workshop (SLT), pages 411-417. IEEE.

Sheng Li, Dabre Raj, Xugang Lu, Peng Shen, Tatsuya
Kawahara, and Hisashi Kawai. 2019. Improving
transformer-based speech recognition systems with
compressed structure and speech attributes augmen-
tation. In INTERSPEECH, pages 4400—4404.

Abhinav Mehrotra, Lukasz Dudziak, Jinsu Yeo, Young-
yoon Lee, Ravichander Vipperla, Mohamed S Ab-
delfattah, Sourav Bhattacharya, Samin Ishtiaq, Al-
berto Gil CP Ramos, SangJeong Lee, et al. 2020. It-
erative compression of end-to-end asr model using
automl. Proc. Interspeech 2020, pages 3361-3365.

Takuma Mori, Andros Tjandra, Sakriani Sakti, and
Satoshi Nakamura. 2018. Compressing end-to-end
asr networks by tensor-train decomposition. In In-
terspeech, pages 806—810.

T. Moriya, H. Sato, T. Tanaka, T. Ashihara, R. Ma-
sumura, and Y. Shinohara. 2020. Distilling attention
weights for ctc-based asr systems. In ICASSP 2020
- 2020 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
6894-6898.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and
Sanjeev Khudanpur. 2015. Librispeech: An ASR
corpus based on public domain audio books. In
2015 IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP 2015, South
Brisbane, Queensland, Australia, April 19-24, 2015,
pages 5206-5210. IEEE.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learn-
ing library. In Advances in Neural Information Pro-
cessing Systems 32: Annual Conference on Neu-
ral Information Processing Systems 2019, NeurlPS
2019, pages 8024-8035.

141

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2020. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter.

Victor Schmidt, Kamal Goyal, Aditya Joshi, Boris
Feld, Liam Conell, Nikolas Laskaris, Doug Blank,
Jonathan Wilson, Sorelle Friedler, and Sasha Luc-
cioni. 2021. CodeCarbon: Estimate and Track Car-
bon Emissions from Machine Learning Computing.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 3645-3650, Florence, Italy.
Association for Computational Linguistics.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. Mobilebert:
a compact task-agnostic BERT for resource-limited
devices. CoRR, abs/2004.02984.

Rupak Vignesh Swaminathan, Brian King, Grant P.
Strimel, Jasha Droppo, and Athanasios Mouchtaris.
2021. Codert: Distilling encoder representations
with co-learning for transducer-based speech recog-
nition. CoRR, abs/2106.07734.

Ryoichi Takashima, Sheng Li, and Hisashi Kawai.
2018. An investigation of a knowledge distil-
lation method for CTC acoustic models. In
2018 IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP 2018, Cal-
gary, AB, Canada, April 15-20, 2018, pages 5809—
5813. IEEE.

Vincent Vanhoucke, Andrew Senior, and Mark Z. Mao.
2011. Improving the speed of neural networks on
cpus. In Deep Learning and Unsupervised Feature
Learning Workshop, NIPS 2011.

Genta Indra Winata, Samuel Cahyawijaya, Zhao-
jiang Lin, Zihan Liu, and Pascale Fung. 2020.
Lightweight and efficient end-to-end speech recog-
nition using low-rank transformer. In 2020 IEEE
International Conference on Acoustics, Speech and
Signal Processing, ICASSP 2020, Barcelona, Spain,
May 4-8, 2020, pages 6144-6148. IEEE.

Genta Indra Winata, Andrea Madotto, Jamin Shin, El-
ham J. Barezi, and Pascale Fung. 2019. On the effec-
tiveness of low-rank matrix factorization for LSTM
model compression. CoRR, abs/1908.09982.

Jiahui Yu, Wei Han, Anmol Gulati, Chung-Cheng Chiu,
Bo Li, Tara N. Sainath, Yonghui Wu, and Ruom-
ing Pang. 2020. Universal ASR: unify and improve
streaming ASR with full-context modeling. CoRR,
abs/2010.06030.

Neta Zmora, Guy Jacob, Lev Zlotnik, Bar Elharar,
and Gal Novik. 2019. Neural network distiller: A
python package for dnn compression research.

http://arxiv.org/abs/1909.10351
http://arxiv.org/abs/1909.10351
https://doi.org/10.1109/ICASSP40776.2020.9053578
https://doi.org/10.1109/ICASSP40776.2020.9053578
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.1109/ICASSP.2015.7178964
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.5281/zenodo.4658424
https://doi.org/10.5281/zenodo.4658424
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
http://arxiv.org/abs/2004.02984
http://arxiv.org/abs/2004.02984
http://arxiv.org/abs/2004.02984
http://arxiv.org/abs/2106.07734
http://arxiv.org/abs/2106.07734
http://arxiv.org/abs/2106.07734
https://doi.org/10.1109/ICASSP.2018.8461995
https://doi.org/10.1109/ICASSP.2018.8461995
https://doi.org/10.1109/ICASSP40776.2020.9053878
https://doi.org/10.1109/ICASSP40776.2020.9053878
http://arxiv.org/abs/1908.09982
http://arxiv.org/abs/1908.09982
http://arxiv.org/abs/1908.09982
http://arxiv.org/abs/2010.06030
http://arxiv.org/abs/2010.06030
https://arxiv.org/abs/1910.12232
https://arxiv.org/abs/1910.12232

