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Abstract

Training large language models can consume

a large amount of energy. We hypothesize that

the language model’s configuration impacts its

energy consumption, and that there is room for

power consumption optimisation in modern

large language models. To investigate these

claims, we introduce a power consumption fac-

tor to the objective function, and explore the

range of models and hyperparameter configu-

rations that affect power. We identify multi-

ple configuration factors that can reduce power

consumption during language model training

while retaining model quality.

1 Introduction

Large language models have pushed the boundaries

of accuracy and performance in various NLP tasks,

at the cost of energy efficiency. This is due to the in-

creasing amount of compute time and power needed

to train these models (Amodei, 2018), thus increas-

ing the amount of energy the computers training

the models need to consume.

The Robustly Optimized BERT approach

(RoBERTa) (Liu et al., 2019) achieved this by im-

proving the Bidirectional Encoder Representations

from Transformers (BERT) (Devlin et al., 2019) in

multiple ways, such as increasing the training time

through more epochs and a larger amount of data,

with BERT already requiring 1507 kWh of electric-

ity and emitting 652 kg of CO2. Other strategies,

such as NAS, an English to German machine trans-

lation model, consumed 656,347 kWh of electricity,

corresponding to 248,019 kg ofCO2 (Strubell et al.,

2019). While these models show great potential, it

comes at the cost of high CO2 emissions. The core

issue is that the electricity consumed is not guar-

anteed to be environmentally friendly, and often

comes from sources such as coal or gas. According

: These authors contributed to the paper equally.

to Strubell et al. (2019), we must cut CO2 emis-

sions by half to slow natural disasters. However,

much research in the field ignores the perspective

of energy efficiency. When looking at papers from

three top AI conferences, namely ACL, NeurIPS,

and CVPR, work tends to focus on accuracy rather

than efficiency, or a mixture (Schwartz et al., 2019).

An added benefit to developing more energy-

efficient models is a reduced barrier of entry to NLP

research. Researchers with good ideas may not be

able to execute those ideas, given that state-of-the-

art results are locked behind large-scale compute

(Strubell et al., 2019; Bender et al., 2021).

This study investigates how to reduce power con-

sumption in training transformer language models.

We seek to address the issue of high-power models

by analysing the resultingmodels’ hyperparameters,

energy consumption, and perplexity and providing

initial parameter guidelines for low-power, high-

performance transformers, and an opening into the

research of low-power transformers.

Our research question is: How can we reduce the

energy consumption of models to both lower the

barrier of entry and reduce CO2 emissions, while

still keeping an effective model?

Following Strubell et al. (2019), a possible ap-

proach to this problem could be the use of Bayesian

hyperparameter search. Throughout our work, we

managed to identify hyperparameter configurations

that provide strong entries for both perplexity and

energy consumption. These configurations were

found through our methodology utilising Bayesian

optimisation, by combining the libraries Hyperopt

and PyTorch. The optimal configurations collec-

tively spanned the identified Pareto frontier.

2 Related Work

There is a body of work onmaking languagemodels

and transformers efficient, for varying definitions

of efficiency, but we’re not aware of any that algo-
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rithmically integrate power consumption into the

loss function or architecture search.

The closest related work is that on task-specific

network reduction and on low-power language

processing. The former can be achieved through

distillation, pruning, quantisation, or all of the

above. For example, Wasserblat et al. (2020) re-

duce trained BERT models in size by orders of

magnitude while retaining task performance. Sim-

ilarly, Kim et al. (2019) present highly efficient

networks that as a result can process translations

very quickly. However, all these techniques require

the training of a large network first, thus only offer-

ing power savings at inference time. Furthermore,

Kaplan et al. (2020) presents scaling laws for neural

language models, which can assist in more efficient

training when applied.

3 Method

Our general approach is as follows. We specify a

dataset, task, objective function, and hyperparame-

ter space. We then explore hyperparameter space,

repeatedly training models over the same data and

evaluating them in terms of task performance and

power consumption. This exploration optimises for

good task performance and low power consumption,

but is limited to a certain volume of model config-

urations. Once complete, we analyse these model

configurations further, investigating per-epoch per-

formance, and common factors in high and low

power consumption and task performance.

3.1 Data

The dataset chosen is the CC-News dataset (Macken-

zie et al., 2020). This is a subset of the English-

language portion of the entire CC-News dataset.

This specific set of data was chosen due to it be-

ing partially what RoBERTa was trained on, and

having the longer document length typical to the

news genre. Only the first 100 000 examples are

used as train, primarily chosen in an attempt to keep

the energy consumption of the trained models to

a minimum. Each document comes with multiple

data fields, with only the text field being used for

training. The reduced amount of data introduces

an assumption that these results will scale, which

we address later in the paper when investigating

common factors in efficient and inefficient models.

3.2 Task: Language modelling

The task used for this paper is Masked Language

Modelling, also referred to as Masked LM or MLM.

The procedure is very simple: mask some words in

the input sentences with the token ([MASK]), and
then attempt to predict what these words are. An

example of such a sentence is “The borders of Paris

are [MASK]”, where [MASK] is the word to be

predicted. Perplexity is a widely used metric for

the evaluation of language models. Low perplexity

means better performance, which makes it a useful

metric to evaluate language models in general. We

use perplexity as defined by huggingface, as the

exponentiated average negative log-likelihood of a

sequence (HuggingFace, 2021).

3.3 Perplexity-Energy Product

We used a simple multiplication of the total

perplexity and energy consumption of a model,

mperplexity,menergy to act as the return value,

Perplexity-Energy Product (PEP), to be reduced:

PEP = mperplexity ·menergy (1)

Wheremperplexity is the perplexity of the trained

LM, and menergy is the energy consumption for

training the LM measured by Carbontracker (An-

thony et al., 2020). We chose to call this return

value, PEP, as shown in the equation . The reason

for using a composite expression of both perplexity

and energy is to make the optimization focus on

parameters that affect both of these. We chose to

multiply the two values as we hypothesised it would

punish high values a lot more since multiplication

is a lot more violent than addition. An issue with

this is that as soon as either value is below 1, the

loss is simply a linearly scaled-down expression

of the other number. A worst-case scenario would

be that Hyperopt would prioritise optimising one

value and neglect the other, but the resulting loss

would still be acceptable for the optimiser. A lower

PEP value is better, since the aim is to minimize

the energy cost and the perplexity.

There are underlying issues with assessing both

the quality and efficiency of models in a single

metric. One of the issues is that when efficiency is

below one kilowatt-hour, the resulting PEP value

will essentially be a scaled-down perplexity. So

potentially, a model with a good balance between

efficiency and quality would have a higher PEP

value than a model that is very efficient, but lacking

in quality. Additionally, using a single metric of the

eq:energyLoss
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Parameter Interval

vocab_size [1,30522]
hidden_size_multiplier [1,100]
num_hidden_layers [1,12]
num_attention_heads [1,18]
intermediate_size [1,3072]
hidden_act (relu, silu, gelu, gelu_new)
hidden_dropout_prob [0.1,1]
attention_probs_dropout_prog [0.1,1]
max_position_embeddings [512,512]
type_vocab_size [1,1]
initializer_range [0.02,0.02]
layer_norm_eps [1.00E-12,1.00E-12]
position_embedding_type (absolute, relative_key,

relative_key_query)

Table 1: Hyperopt parameter search space

product of cost and quality makes an assumption

- that changes in either component have a linear

impact. This could be regulated by adding a weight

to both themetrics in order to regulate the difference

of change within the respective metric.

3.4 Hardware

The experiment platform was V100 GPUs on i7

CPUs running over a SLURM service. As stated

by (Lasse, 2021), Carbontracker also works slurm,

onlymeasuring GPU devices available for the given

job, so the reported consumption figures are con-

sistent but could be slight underestimates.

3.5 Hyperparameters

To investigate hyperparameter impact on Trans-

former model power use, we chose to specifically

look at the parameters related to its size, such as the

number of its hidden layers or number of attention

heads, alongside a few key parameters such as the

type of positional encoding, activation functions

and dropout probabilities. The parameters picked

were chosen on the assumption that they were the

ones most likely to affect both model perplexity,

and model energy consumption during training.

Table 1 shows our final search space and parame-

ter value intervals. Please note that the hidden_size

of the model is given as:

hsize = hsize_mult · #Aheads (2)

Where hsize is hidden size, hsize_mult is hidden

size multiplier and #Aheads is number of attention

heads. This is due to the constraint that the hidden

size of the model has to be a multiple of the number

attention heads in the model (Vaswani et al., 2017).

This leaves a parameter space of size 1026 between

[1, 1800], most of which are centred around the

lower end of the interval.

3.6 Search algorithm

We use Bayesian optimisation to traverse hyperpa-

rameter space in search of low-power transformer

training configurations. Bayesian optimisation is

suited to cases where one wishes to find optimal

parameter configurations, for some definition of op-

timal, but individual trials can be expensive. This

makes it a good match for transformer hyperparam-

eter tuning. Search is executed in parallel over mul-

tiple GPUs and GPU hosts. As noted in (Bergstra

et al., 2011), “The consequence of parallelization

is that each proposal x∗ is based on less feedback.
This makes search less efficient, though faster in

terms of wall time”. Research indicates Bayesian

hyperparameter search techniques are more effi-

cient than brute force techniques (Strubell et al.,

2019), such as grid search; this family is often the

least efficient in terms of time-to-viable-solutions.

Further, our general focus on energy efficiency mo-

tivates choosing efficient search algorithms.

Samples follow a uniform distribution. This was

a deliberate choice, as we have no knowledge over

which parameters would perform best. We hypoth-

esised giving a uniform distribution for all param-

eters would yield the best results. The specific

algorithm used to minimise the loss is the Tree of

Parzen Estimators (TPE) (Bergstra et al., 2013).

3.7 Model Selection and Per-epoch

Measurements

Hyperopt was left to run over the data and hyper-

parameters for a fixed number of days. Models

were trained with a batch size of 2, over 3 epochs.

The batch size was chosen due to stability, as the

relatively low number of epochs could make the

results unstable. According to Masters and Luschi

(2018), the most stable and best generalization re-

sults have been obtained with a batch size of 32 or

smaller, but the best results were with batch sizes

as low as 2. We also logged all of the parameter

configurations alongside the energy consumption

and perplexity of each model. The result was 154

different hyperparameter configurations.

We then retrained the 154 hyperparameter con-

figurations we found over 10 epochs to see a further

evaluation of how each model would evolve per

epoch in terms of power consumption and perfor-

mance. For each model, a callback implementing

Carbontracker was used to gather data about the
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energy consumption after each epoch, and the same

callback was used to log the perplexity of each

model. Another callback was created to save a

model for each epoch, resulting in 1540 different

models being saved. Each model was trained on a

single Tesla V100 32GB graphics card.

4 Results

4.1 Correlation Matrices

The majority of the result section is going to utilise

correlation matrices to analyse the data. We have

two categorical data entries, namely the activation

function and the position embedding type. For this,

we use categorical correlation to showcase both

the activation function and the position embedding

type alongside the rest of the data. The primary

reason for using correlation matrices is its ability

to quickly visualise and pinpoint patterns in the

data. We have three different ways of evaluating

the different hyperparameters, namely with (i) en-

ergy consumption, (ii) perplexity, and (iii) PEP

value, and therefore correlation matrices make it

easy to visualise the hyperparameters. In general,

the primary concern is to see correlations between

the evaluation methods and hyperparameters.

4.2 PEP

Table 2 contain overviews of the best 15% of mod-

els andworst 15% ofmodels, for PEP value, with re-

gard to average parameter size. A count of what po-

sition embedding type and activation function was

used can be found in table 3 Themodels were sorted

by lowest PEP value, and the best 15% and worst

15% were chosen. Table 2 presents an overview

of average energy consumption and perplexity of

the best 15% of models, to compare with the worst

15% of models in terms of PEP value.

The data of the best 15% of models is introduced

to analyse tendencies that provide the PEP values.

The data of the worst 15% of models is introduced

to analyse what not to do when choosing parame-

ters for a new model. Three different correlation

matrices, for all models, for the best and worst 15%

of models are given in Appendix A.

5 Energy

The data here is presented in the same format as

the previous section. The table 4 show findings of

the best 15% models in terms of low energy con-

sumption, and the worst 15%, alongside several

correlation matrices in appendix B. Furthermore,

Figure 1: The Pareto curve for epoch 10. An animated

visualisation of all 10 epochs can be found at this link.

As these results are extracted frommodels that have

been trained through hyperopt with a specific loss

function, the resulting parameters are not chosen

to achieve the lowest energy consumption possi-

ble, but rather the lowest PEP-value. These results

can then possibly indicate which parameters can be

tweaked to reduce energy consumption specifically,

while retaining some performance.

5.1 Identifying optimal models

While PEP is a suitable metric, we also want to be

able to identify models which can’t be optimised

further with respect to perplexity or energy con-

sumption without a penalty in the other. Therefore

we identified the Pareto-optimal models.

The next graphs, Figure 1 showcases energy con-

sumption related to perplexity for eachmodel evolv-

ing over the 10 epochs. The colour of each dot

represents a specific model throughout all the mod-

els, hence it is possible to see how each model

progresses throughout the graphs. Besides a visual-

isation of how each model evolves, the graph also

highlights the Pareto curve for each epoch, which is

an indicator of the best-performing models for each

epoch. While some of these best models might not

have a particularly good PEP value, they are still

a part of the Pareto curve, and thus can’t improve

either perplexity or energy consumption without a

decrease in the other.

Furthermore, as can be seen in figure 1, there

are a few models which permanently reside at 2000

perplexity. These are all models which have low

vocab size, high dropout probabilities, low hidden

size, or a combination of the three. This, combined

with a relatively high number of hidden layers and

https://imgur.com/a/M90OnPx
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Best 15% Mean Best 15% Std. Dev Worst 15% Mean Worst 15% Std. Dev

vocab_size 19458.52 5741.79 16072.78 9451.63

actual_hidden_size 273.17 101.14 670.52 468.80

num_hidden_layers 1.91 0.92 6.52 3.24

num_attention_heads 8.17 4.13 10.47 4.70

intermediate_size 716.17 531.30 1237.08 581.32

hidden_dropout_prob 0.18 0.06 0.52 0.24

attention_probs_dropout_prog 0.25 0.10 0.46 0.26

energy comsumption 1.70 0.51 5.70 3.11

perplexity 27.23 7.80 1809.32 501.77

Table 2: Mean and standard deviation of hyperparameters for the best 15% and worst 15% of models wrt: PEP

value.

Best 15% Count Worst 15% Count

relative_key_query 20 7
relative_key 0 8
absolute 3 8
GELU 14 8
GELU_new 2 7
ReLU 1 5
SiLU 6 3

Table 3: Count of activation functions and position em-

bedding types wrt: PEP value.

attention heads result in models which have a hard

time learning.

6 Analysis

For the analysis, we start with the most trivial op-

timisation steps and progress towards less trivial

ones.

6.1 Parameter correlations

When looking at the best 15% models in terms of

low PEP value, analysing the resulting correlation

matrix given in Figure 3 in appendix A can give

us insight into whether our approach has resulted

in a good balance between energy consumption

and perplexity. It can also give clues as to what

parameter values can be chosen to reduce a mod-

els energy consumption without affecting perplex-

ity. Additionally, we define a good balance for a

hyperparameter between energy consumption and

perplexity as the absolute value of the correlation

one parameter to perplexity roughly equalling the

absolute value of the correlation between the same

parameter and energy consumption. Specifically:

|corrparamn,PPL| ≈ |corrparamn,energy|

The correlation between perplexity and energy

consumption is at -0.88, which indicates that the

use of hyperopt and our PEP loss function has given

a good balance between the quality and energy use

during optimisation. The three key parameters ap-

pear to be the number of hidden layers, the hid-

den activation function and the position embedding

type. Hidden layer count has a correlation of 0.71

and -0.64 between energy consumption and per-

plexity respectively, this being the hyperparameter

with the greatest impact on both of these values.

Activation function also has a high impact, again

with -0.63 and 0.68 with energy consumption and

perplexity respectively (Derczynski, 2020). Lastly,

the positional embedding is at 0.49 and -0.65 re-

spectively. As in Table 2 and 3, the optimal number

of hidden layers averaged out at 1.91. The most

used activation functions and positional encodings

are GELU and relative_key_query and 14 and 20

appearances. It is important to note that as the

positional encoding defines the way attention is cal-

culated, there may be an underlying link between

the number of attention heads and encoding choice.

It is important to note that correlation is a useful

tool to find linear tendencies. While a correlation

close to negative and positive indicates a correlation

between the two values, a value of zero doesn’t

guarantee a lack of correlation since there could

still exist a non-linear correlation.

6.2 What predicts a good or bad model?

Looking at Table 2, the overall tendency is that

the models, on average, are much smaller than the

config of RoBERTaBASE (Liu et al., 2019). The

number of hidden layers in our best models in terms

of PEP value is on average 2, down from 12. With

hidden layers having a correlation of 0.71 with en-

ergy consumption and -0.64 with perplexity, as

seen in Figure 3, it is by far one of the most volatile

parameters to adjust. Increasing the number of hid-
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Best 15% Mean Best 15% Std. Dev Worst 15% Mean Worst 15% Std. Dev

vocab_size 21187.73 6426.71 18545.04 9141.88

actual_hidden_size 116.43 84.20 727.78 27.33

num_hidden_layers 1.52 0.77 7.82 3.26

num_attention_heads 8.08 5.27 12.78 4.48

intermediate_size 890.47 554.19 1149.65 739.19

hidden_dropout_prob 0.37 0.23 0.40 0.15

attention_probs_dropout_prog 0.28 0.14 0.47 0.28

energy comsumption 0.99 0.17 6.18 1.93

perplexity 338.51 576.74 1236.04 962.74

Table 4: Mean and standard deviation of hyperparameters for the best 15% and worst 15% of models wrt: energy

consumption.

Best 15% Count Worst 15% Count

relative_key_query 15 14
relative_key 4 6
absolute 4 3
GELU 3 11
GELU_new 3 5
ReLU 6 3
SiLU 11 4

Table 5: Count of activation functions and position em-

bedding types wrt: energy consumption.

den layers will increase energy consumption, but

decrease perplexity. Interestingly, with it having a

correlation of 0.056 to PEP value, it could suggest

that hyperopt has found a good compromise in the

number of hidden layers that gives a good balance

between low energy consumption and perplexity.

The number of attention heads is at 8, which is

higher than what our initial assumption was, but

with a deviation of 4.13, it varies a lot from model

to model. It is important to note that this parameter

is dependent on the type of positional embedding

used, as the way attention is calculated is heavily

dependent on it.

While thesemodels have good performance, with

the energy consumption averaging at 1.70 and per-

plexity at 27.23, it is important to note that these two

metrics have a negative correlation with each other

of -0.88. If one is reduced, the other one increases.

This could suggest that we have hit a point where

we can no longer make our models smaller without

severely affecting our end performance. RoBERTa

reported perplexities between 3.68 and 3.99 in ta-

ble 3 in (Liu et al., 2019). While our perplexities

on average are roughly 7.4 times higher, both our

amount of training data and model size are vastly

smaller by a factor of 10, thus probably leading to

a shorter downstream task fine-tuning time, and as

a result, lower energy consumption.

On the opposite end of the spectrum are the worst

15% of the models in terms of PEP value. We

assume that these models would be bigger, both

in terms of hidden layers, their hidden size, and

intermediate size, as these would most likely result

in longer training times than smaller ones, thus

consuming more energy. Comparing Table 2 to

the best 15% supports this analysis. The number

of hidden layers has increased from an average

of 1.91 to 6.52, hidden size from 273 to 670, and

intermediate size from 716 to 1237. The energy

consumption is indeed also higher, as it has gone

from 1.7 kWh to 5.7 kWh. The perplexity is also

very bad, being at an average of 1809.

6.3 Reducing LLM training power

consumption without reducing quality

There is also a slight correlation between hidden

dropout probability and perplexity, but there is al-

most no correlation between that probability and

energy consumption. These correlations suggest

that a low hidden dropout probability results in a

lower perplexity, without impacting the energy con-

sumption of the models.

The top 15% of models at η = 10 (Figure 3) indi-
cate interesting correlations. This matrix suggests

a stronger negative correlation between energy con-

sumption and perplexity. These results indicate

that it is hard to reduce both perplexity and en-

ergy consumption at the same time, since lowering

one tends to increase the other - a trade-off. This

could be because the models are already perform-

ing decently well and have reached the point where

subsequent iterations bring diminishing returns in

perplexity, while still incurring a linear increase in

energy consumption. Looking at the models, 10 of

the 23 models in the best 15% appear on the Pareto-
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optimal curve as seen in Figure 1. This suggests

that the remaining 13 models are very close to be-

ing optimal, whereas the 10 models which appear

on the Pareto curve already are. The same trend

happens in the number of hidden layers, where the

correlations indicate that increasing the number of

hidden layers will also increase energy consump-

tion, but will decrease perplexity. Interestingly, the

correlation previously seen with the hidden dropout

probability has disappeared. This indicates that the

best-performing models already have a low enough

hidden dropout probability for this correlation to no

longer be the case. When looking at the data, the

entire dataset features an average hidden dropout

probability of 0.385, where the best 15% of mod-

els have an average of 0.189, which supports the

previous indication.

6.4 Different parameters have different

effects in different realms

Most of our well-performing models – no matter

if looking only at energy, perplexity, or PEP value

– use the relative key query positional embedding.

While this is a slightly more complex calculation

for self-attention, this suggests that it doesn’t have

a huge impact on energy consumption, while it has

a noticeable impact on perplexity. Relative key

query introduces another 143K parameters but is

relatively insignificant when compared to the 103M

BERT already has (Huang et al., 2020). While

our dataset contains 107 models with “relative key

query” as the positional embedding type, when

looking at the worst-performing models, the dis-

tribution looks close to uniform, at least when look-

ing at perplexity and PEP. Furthermore, Table 13

shows the distribution in the first cluster, which

features 94 out of the 107 models with relative key

query, further strengthening the claim.

A similar trend appears for the choice of ac-

tivation functions, with GELU being the best-

performing activation function for our best mod-

els in terms of perplexity and energy loss. If one

wants an activation function purely for energy effi-

ciency, SiLU is the most prevalent activation func-

tion among the models with the lowest power con-

sumption. When looking at Table 13, it’s seen

that GELU and SiLU appear the most frequent, but

ReLU is still close behind, in line with previous

results (Derczynski, 2020).

Our findings were focused on hyperparameter

optimization, and no compression of the LMs at all.

Jacobsen et al. (2021) provide methods for measur-

Energy Consumption

Hyperopt (1 Epoch) 50.53 kWh
Hyperopt (3 Epochs) 187.57 kWh
10 Epochs 393.56 kWh
Ad-hoc tests 62.42 kWh

Total 694.10 kWh

Table 6: Energy consumption for this work

ing model size. Li et al. (2020) show that training

larger models for longer times and then compress-

ing them leads to more efficient training. Though

the previous analysis on layers and attention heads

is less relevant for this approach, our findings re-

garding loss functions and embedding types should

hold if choosing to train a larger model and then

compress.

6.5 Our energy consumption

This paper investigates alternatives to high-

performance, high-energy consumption top-of-the-

line models by showing that other approaches can

provide acceptable performance while cutting the

size and training time. As this topic is relevant due

to the environmental impact it can have, such as

accelerating rising sea levels (Veng and Andersen,

2020), and as training NLPmodels has an actual im-

pact on the environment due to high energy usage,

reducing their consumption is, as a topic, both im-

portant and very unexplored. This also means that

we, as the authors, have to stress the importance

of noting that this is not a complete guide on how

to create low-power, low-perplexity transformer

models. As an example, reducing the number of

hidden layers might have a positive effect in certain

models, but not necessarily in others - one has to

look at all the model parameters together.

Table 6 shows the total amount of energy we’ve

spent training our various models. As the price

of 1 kWh in Denmark is roughly €0.28 (Eurostat,

2021), the total amount of money we spent training

all of our models totals roughly €195 in electric-

ity. While not a lot in comparison to the models

presented in table 3 in Strubell et al. (2019), our

models are also trained on a smaller dataset, and

some of them have a configuration that slims down

their size. In terms of watt-hour usage, the number

of models we trained consumed half the amount of

energy that the BERT base did. As a comparison,

700 kWh can power a Tesla Model 3 for a whole

4337 kilometres (standard range of 16kWh per 100

kilometres (Wikipedia, 2021)), which is roughly
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from Copenhagen to Barcelona and back.

6.6 Limitations

In this subsection, we discuss possible limitations

of our study and indicate where future work could

explore further.

Given the fact that this work was done on a small

subset of the CC-News dataset, the best performing

models may be smaller models where the small

amount of data is not a downside. If the size of

the corpus is increased, it would give space for

the larger models to learn more, and maybe per-

form better than the smaller models deemed as the

most efficient. Even though other efficient mod-

els might be uncovered, this will not change the

correlation between the number of hidden layers

and efficiency. There is also a small possibility

that perplexity scores are inflated, as CC-News was

used to pre-train RoBERTa (Liu et al., 2019), and

this could occur non-linearly across hyperparam-

eter configurations – but we expect the relations

between network architecture components, power

consumption, and performance to hold relative to

each other overall.

We also note that this work was monolingual and

focused on English, to the exclusion of other lan-

guages (Bender, 2019). While transformer-based

LLMs seem to exhibit some properties in com-

mon across natural languages, there are also many

language-specific considerations (e.g. for Finnish,

Virtanen et al. (2019)). Our results cannot be guar-

anteed to generalise across other natural languages.

Given the fact that a heterogeneous cluster was

utilized for training all of the models, there is no

guarantee that the precise hardware configuration

was used to train all 154models. All compute nodes

have the same type of graphics card but contain dif-

ferent server-grade CPUs. Since CPU and DRAM

contribute to power consumption (Anthony et al.,

2020), the variations in clock speed and core count

could potentially have a small effect on the final

energy consumption.

We used a relatively low epoch count for the

search of hyperparameter space. This might not

reflect high-epoch hyperparameter optima, and so

the relations between perplexity scores are at best

advisory. However, power consumption tends to

be stable per epoch, and so this component of the

function performs well.

We evaluate using perplexity, which has its own

issues and is unlikely to approximate many NLU

metrics. However, it does lend itself well to our

exploratory compound loss function, retains agnos-

ticity regarding the many possible NLU tasks (such

as those in SuperGLUE). The correlations between

evaluated language model performance and their

final performance are not of maximum certainty;

however, these results can guide hyperparameter

search/tuning in terms of good balances, and we

hope to see much more research in this area of trans-

former efficiency and quality/energy use trade-off.

We fixed the epoch count for studies. An alter-

native would be to fix the FLOPS available. Gor-

don et al. (2018) present a regulariser that opti-

mises FLOPS usage. Because perplexity tends to

be asymptotic with zero for useful models, making

absolute differences between model scores tend to

be smaller as time goes on. This makes the metric

a little noisy and differences hard to note. Fixed

FLOPS allowances will lead to high epoch counts

for smaller models, increasing the risk of model per-

formances being hard to tease apart. Thus, fixing

epochs instead of FLOPS during exploration gives

finer granularity for very small, or very efficient

models, though FLOPS is a closer approximation

to power consumption.

As NVIDIA (2021) highlights, some size multi-

pliers are more efficient when it comes to matrix-

matrix multiplication. Allowing the search space

as denoted on table 1 to take non-efficient values

can affect reproducibility because of hardware id-

iosyncrasies. While general trends can be extracted,

precise figures might not generalise well beyond

the test setup.

7 Conclusion

We investigated how hyperparameters affected

the power consumption and model quality of

transformer-based languagemodels. This paper has

presented a method for low-power investigation of

hyperparameter tuning, integrating power consump-

tion measurement. We identified factors that in-

crease power without giving quality and identified

factors that increase quality without taking power.

There are many possible extensions to this work

and it is our hope that power consumption measure-

ment will be improved and will be integrated with

more architecture searches during model training.
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A PEP

Figure 2, 3, and 4 showcase the correlation matrices

of the 154 trained models, the best 15% of mod-

els with regard to PEP value, and the worst 15%

of models with regard to PEP value respectively.

These correlation matrices are used to find relation-

ships between different hyperparamters and PEP,

in order to figure out which hyperparameters have

a huge effect on PEP, and which do not have an

effect.

B Energy

Figure 5, and 6 showcase the correlation matrices

for the best 15% of models with regard to energy

consumption, and the worst 15% of models with

regard to energy consumption respectively. Hav-

ing a correlation matrix over all 154 models would

produce an identical result to Figure 2, so that’s not

included here. These correlation matrices are pri-

marily used to find hyperparamters which greatly

affect energy consumption, or which hyperparam-

eters barely affect energy consumption. Both of

these can be used to find hyperparamters which

need to be tuned, and to find hyperparamters which

can be tuned with regard to perplexity, given they

do not affect energy consumption.

C Early optimisation results

In this section, we will present the preliminary re-

sult after the hyperparameter tuning done with hy-

peropt. This includes some of the first observable

tendencies and was used to start the analytical pro-

cess.

The loss saved from each model produced by

hyperopt is the average overall three epoch, instead

of the actual loss at the end of the third epoch. This

results in difficulty calculating perplexity, as the

loss is now skewed heavily towards the mean, and

in return also results in energy loss not being com-

parable to other parts of the project. Energy con-

sumption has been logged after the end of the third

epoch, and can therefore still be compared to the

rest of the project. Furthermore, it’s not possible

to try and calculate what the actual perplexity is,

given that there is no real relation between perplex-

ity and the number of epochs. The data will still be

presented, but given the fact that the data collection

has been different from the rest of the project, it

will mostly not be compared or analysed further.

After hyperopt training all 154 models on 3

epochs was done, an analysis of the different model

configurations was performed in order to spot early

trends in the data. A correlation matrix was con-

structed for all variable parameters, and compared

to energy consumption, perplexity, and energy loss,

as can be seen in Figure 7. When speaking about

energy consumption, hyperparameters such as the

number of hidden layers and the size of said hidden

layers plays a big role. As either the number of

hidden layers or their size increases, so does the

energy consumption needed to train the model. Fur-

thermore, when looking at perplexity, there are no

correlations that are as strong as there were for en-

ergy consumption. The biggest thing to note here is

that there is a positive correlation between hidden

layer dropout probability and perplexity. The same

goes for hidden layers and hidden size, although

this correlation is not as strong as with energy con-

sumption.

The last interesting thing to note here is that there

is a positive correlation between energy consump-

tion and perplexity. If one looks at the correlation

between energy consumption and energy loss, or

perplexity and energy loss, you see a closer correla-

tion between those two parameters, which indicates

that the ratio between energy consumption and per-

plexity, albeit a positive one, is a weaker correlation

than the others. There are multiple explanations

for this. It could be that this correlation shows that

models can be improved in either department with-

out sacrificing the other metric when looking at all

models as a whole. It could also be that the afore-

mentioned outliers are having an effect on the data.

Following this, the correlation matrix for the best

15% of our models was constructed, as can be seen

in Figure 8. When filtering for the best performing

models, the strongest correlation is between energy

consumption and perplexity, with a correlation of

−0.86. This indicates that as energy consumption

goes higher perplexity will go lower, and the other

way around.

D Perplexity

Aswith the previous sectionwhere wewent through

the models sorted by the best and worst 15% in

terms of energy consumption, this section will do

the same but in terms of perplexity instead. By

analysing the parameters, we might be able to find

a relation between certain of these that can cause

both low energy consumption and perplexity, thus

reducing the model size without affecting perfor-

mance.
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Figure 2: Correlation matrix over hyperparameters for 10 epochs.

Figure 3: Correlation matrix over hyperparameters for the best 15% of models for 10 epochs.
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Figure 4: Correlation matrix over hyperparameters for the worst 15% of models for 10 epochs.

Figure 5: Correlation matrix of the best 15% of models wrt. power consumption.
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Figure 6: Correlation matrix of the most power-hungry 15% of models.

Figure 7: Correlation matrix over hyperparameters for 3 epochs of training.
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Figure 8: Correlation matrix over hyperparameters for the best 15% of models for 3 epochs of training.

Figure 9: A correlation matrix of the best 15% of models with regard to perplexity.
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Average Std. Deviation

vocab_size 18002.17 7986.21
actual_hidden_size 404.91 231.93
num_hidden_layers 3.69 2.09
num_attention_heads 10.34 4.62
intermediate_size 851.47 531.30
hidden_dropout_prob 0.21 0.08
attention_dropout_prob 0.37 0.24
energy consumption 3.40 1.58
perplexity 18.79 3.82

Table 7: Table with average hyperparameters of the

best 15% of models wrt: perplexity.

The general point with the best-performing mod-

els in terms of perplexity is that they are slightly

larger than both the best performing energy loss,

and energy only models, as can be seen on Table 7.

More hidden layers, more attention heads, bigger

feed forward neural networks. A lot of these param-

eters do have a high standard deviation compared

to their averages, such as the intermediate size and

the number of hidden layers, meaning that there is

room for reduction to reduce energy consumption

through lower training times. What is interesting

to point out is that while the models are slightly

bigger, both their average perplexity and energy

consumption are vastly better than the worst mod-

els in regard to energy consumption. It is possible

that our best-performing perplexity models can, due

to a slimmer size, reach good performance more

easily than compared with the bigger models of

the worst energy consumption. This energy con-

sumption is still on average 2.4 kWh higher than

our best performing models in terms of energy con-

sumption, being at 1 kWh, but with a vastly better

perplexity. It could suggest that energy loss, as a

value to minimise for hyperopt, has been effective

in finding compromises between performance and

energy consumption. As can be seen on the corre-

sponding correlation matrix for the best perplexity

models, Figure 9, there is a negative correlation

between energy consumption and perplexity of -

0.42. This means that reducing one increases the

other, which also suggests that hyperopt has found

a compromise between the two. This matrix also

shows a very high correlation between both energy

consumption, perplexity, and the number of hidden

layers. For energy consumption, it is 0.76, and for

perplexity, it is -0.49. Increasing the hidden layers

will drastically increase energy consumption, but it

will also lower perplexity a lot. As mentioned ear-

lier, since this adds extra training time to the model,

it will automatically increase energy consumption.

This could possibly suggest that the number of hid-

den layers has a direct effect on how well a model

performs.

Appearances

relative_key_query 21

relative_key 2

absolute 0

GELU 11

GELU_new 5

ReLU 3

SiLU 4

Table 8: Count of activation functions and position em-

bedding types in the best 15% of models with regard to

perplexity.

Interestingly, as can be observed in Table 8, the

distribution over positional embedding and activa-

tion function resembles the distribution of the ones

sorted by energy loss a lot more than the ones sorted

by energy consumption only, with some slight vari-

ations. They almost exclusively use relative key

query positional embedding and rely more on a

GELU activation function.

Average Std. Deviation

vocab_size 17920.60 8478.86
actual_hidden_size 569.26 441.47
num_hidden_layers 6.21 3.32
num_attention_heads 10 4.45
intermediate_size 1190.04 587.58
hidden_dropout_prob 0.54 0.26
attention_dropout_prob 0.43 0.26
energy consumption 5.20 3.40
perplexity 1891.61 364.25

Table 9: Table with average hyperparameters of the

worst 15% of models wrt: perplexity.

The primary assumption with the models that

perform terribly in terms of perplexity is that they

are big, and thus have not had enough training time

to fully develop. When comparing Figure 1 to Ta-

ble 9, there are a couple of models that follow this

trend, with one taking a significant leap down in

perplexity between epoch 8 to 9. As that model

follows the trend of badly performing models that

are right on top of each other in terms of perplexity,

it could be assumed that more epochs are what is

needed for perplexity to drop. When looking at the

general trend of the parameters, both the hidden

size, number of hidden layers, attention heads and

intermediate size are higher compared to the mod-



112

Figure 10: A correlation matrix of the worst 15% of models with regard to perplexity.

els that perform well in terms of perplexity. When

looking at Table 9, the parameters for the models in

the top 15% worst percentage are definitely larger

than those in the top 15% best percentage for per-

plexity in most aspects. Hidden size and layers

are much increased, the same with the intermedi-

ate size. All dropout probabilities are also higher,

which could be a reason as to why some of these

models keep performing terribly - whatever they

learn, they end up forgetting, thus making it harder

to train a bigger model.

Appearances

relative_key_query 8

relative_key 7

absolute 8

GELU 7

GELU_new 7

ReLU 5

SiLU 4

Table 10: Count of activation functions and position

embedding types in the worst 15% of models wrt: per-

plexity.

When looking at Figure 10, the activation func-

tion has a negligible effect on both perplexity and

power consumption in terms of its correlation, but

the positional embedding type has a significant

impact on perplexity, with a correlation of -0.43.

Looking at the difference between the choice of

these between the best and worst models in terms

of perplexity from Table 10 and Table 8, the better

models all tend to use relative key query, whereas

the distribution for the worse performing models

is more uniform over the three choices. As most

of the best models in terms of energy consumption

and energy loss primarily use relative key query,

the results suggest that there is little to no reason to

use another type.

E Clustering

In this section, the data will be clustered in order

to find commonalities among the different models,

and group them into the three found clusters. Those

clusters will then be described in detail, pointing

out interesting characteristics in each one.

The data were clustered using DBSCAN algo-

rithm, which is a density-based clustering algo-

rithm designed to do spatial clustering with han-

dling of noise (M. Ester and Xu, 1996). The

density-based clustering method that is DBSCAN



113

does not handle varying axis ranges well, and

given that energy consumption ranges from

[0.529478; 12.986432] and perplexity ranges from
[15.14847702; 2021.91427], normalization has to

be done. The intent for this normalization is to have

both axes have a mean of 0 and a standard deviation

of 1. One of the consequences of doing this is that

the distance used to specify clusters loses some of

its intuitive understanding of what distance is now

that both axes have been normalised. While this

is true, the distance can now be used to properly

be used to identify clusters for both metrics, rather

than constraining the perplexity to the range of en-

ergy consumption. This enables us to find more

than just vertical clusters.

For the actual clustering, a distance of 0.4 was

chosen with the requirement of needing 5 sam-

ples to form a cluster. The clustering showcases

the aforementioned outliers which ended at around

2000 perplexity but also finds another cluster close

to our primary cluster, as well as 20 different out-

liers who were unable to be clustered, marked as

black dots on Figure 11.

The exact distribution of the clusters can be seen

here on Table 11. It’s interesting to note that had

the minimum samples been a little higher, cluster 3

would not have existed.

Number of Models

Cluster 1 118

Cluster 2 10

Cluster 3 6

Outliers 20

Table 11: Table showcasing the three cluster distribu-

tions and outliers for the DBSCAN clustering

Given that these three clusters were found by

our algorithm, it’s only right to analyse those clus-

ters further by constructing correlation matrices for

each cluster. The first cluster, which can be seen in

Figure 12, is the cluster featuring all the best per-

forming models, and also subsequently the biggest

cluster out of the three. The trends for this cluster

are similar to what has been previously seen - the

correlation matrix indicates that the number of hid-

den layers and energy consumption have a strong

correlation, and the same goes for hidden size to a

much lesser degree. Furthermore, the hidden size

has a negative correlation with perplexity, and the

hidden dropout probability has a correlation with

perplexity. This indicates the higher the hidden

size, the lower the perplexity, and the lower the hid-

den dropout probability, the lower the perplexity.

Interestingly, energy consumption and perplexity

has a negative correlation, but it is incredibly weak,

and therefore not indicative of anything. Most of

our Pareto entries are in this cluster, which con-

tributes to the negative correlation, but given that

there are 118 entries here, as seen on Table 11, it

indicates that a predominant amount of the models

can still be optimised on both parameters.

When looking at the average parameters for the

first cluster, it’s decently similar to that of the best

15% of models, as seen in Table 2 in section 4.2.

Mostly all parameters follow an increasing trend

compared to the other table, except for the actual

hidden size, which remains slightly lower than

when looking at the best 15% of models. As can vi-

sually be seen in Figure 11, this cluster features pre-

dominantly low perplexity, at an average of 56.28,
whereas the energy consumption is slightly higher,

sitting at an average of 2.34.

Average Std. Deviation

vocab_size 20491.32 7580.56
actual_hidden_size 263.55 208.74
num_hidden_layers 3.34 2.68
num_attention_heads 9.16 4.87
intermediate_size 891.15 730.67
hidden_dropout_prob 0.33 0.16
attention_dropout_prob 0.36 0.20

Table 12: Table with average hyperparameters of the

top 15% of models in cluster 1.

Furthermore, it’s also seen that there is a heavy

bias towards the position embedding type rela-

tive_key_query, which was also the case among

our best 15% of models. The activation function

remains slightly more spread out, with GELU and

SiLU being the predominant activation functions,

followed closely by ReLU. Among the best 15% of

models, GELU was the predominant function, with

SiLU at half of the occurrences, as can be seen on

Table 2
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Figure 11: The data clustered using DBSCAN with axes scaled and translated for a mean of 0 and a standard

deviation of 1.
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Figure 12: The correlation matrix for the first cluster

Appearances

relative_key_query 94

relative_key 12

absolute 12

GELU 37

GELU_new 15

ReLU 29

SiLU 37

Table 13: Count of activation functions and position

embedding types for the first cluster.

When looking at the second cluster on Figure 11,

it can already be seen from this figure that there

might be some linear tendencies in the models from

this cluster. And as can be seen in Figure 13, energy

consumption, perplexity, and energy loss all have

a correlation close to 1, which indicates this to be

the case. The correlation matrix also indicates lin-

earity in the parameters, given that all parameters

have very close correlation ratios between energy

consumption, perplexity, and energy loss.

Because of the previously explained linear ten-

dency, a linear regression was done on the models

in cluster 2 as can be seen in Figure 14. If one

extends beyond the scope of the cluster, it’s pos-

sible that optimal models which decrease in both

energy consumption and perplexity, which also lay

on this line. Given that our hyperopt optimization

was done on a limited scope, it’s not possible to see

if this is the case, although this linear regression

strongly indicates that there are more models along

this line that have not been explored.

The third cluster, being the cluster with all of

the detected high perplexity models, can be seen

in Figure 15. It features two strong correlations

between the number of attention heads and energy

consumption, as well as the hidden layer size and

energy consumption. This indicates that the high

amount of attention heads and hidden layer size

have a strong influence on the increase of energy

consumption. If one looks at the specific models

of this cluster, it can be seen that they on average

have 9.5 attention heads and a hidden size of 620.5.
If one compares it to the results seen in Table 2, the

average number of attention heads increases by ap-

proximately 1.5 and the average hidden size by 350.
There is also a strong correlation between position

embedding type and perplexity with 0.98, which
strongly indicates that the position embedding type

is tied to an increase in perplexity. Looking at the

models in the cluster, it’s seen that there’s a uniform
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Figure 13: The correlation matrix for the second cluster

Figure 14: Regression done on the models of cluster 2
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distribution between the three-position embedding

types in the 6 models in the cluster. When referring

back to Figure 10 it is seen that when looking at the

15% worst models with regard to perplexity, the

correlation is still there, but not nearly as strong.

Furthermore, the same uniform distribution of po-

sition embedding types can be seen on Table 10,

which indicates that there are too few models to say

anything about this correlation.

In Table 14 the 19 models situated on the Pareto

curves through all 10 epochs are summarised along

with the frequencies of occurrences, and for which

epochs they occurred on the Pareto curve. Further-

more, the results with regard to energy consumption

and perplexity are also showcased for the models af-

ter the 10th epoch, regardless of whether the model

was a part of the Pareto curve at this point. Contin-

uing on this point it is also important to note that

towards the end of the Pareto curve, that the mod-

els most likely won’t be the most effective models.

This is for example the case with model number

103, which is a part of the Pareto curve for the 10th

epoch, but with a perplexity of 1274.87. Model

number 103will probably not be amodel youwould

want to focus on(especially since it was trained over

10 epochs) but can be used as a boundary to attempt

to narrow down the search space, and thus still pro-

vide valuable information. Similarly, a model such

as number 25, has a really strong score with regard

to perplexity, but there is a number of models with

similar perplexity scores while still having a much

lower energy consumption. An important note here

is to mention the possibility of training some of the

low-cost models for even more epochs, to fairly

compare their energy consumption vs perplexity

with those of similar models. The reasoning here

is if a low-cost model, such as model 103, would

be comparable in perplexity to some of the other

models after say 20 or 30 epochs, its energy con-

sumption might still be in a relatively comfortable

spot compared to another model with an energy con-

sumption similar to that of model 25. The reasoning

behind this argument comes from the linear cost

of energy consumption for each epoch, such that

even after 30 epochs of training, assuming a con-

tinuously linear tendency for the following epochs,

model number 103 would have an approximate en-

ergy consumption of 0.58(the energy consumption

for model 103 after 10 epochs) times 3 (to go from

10 to 30 epochs) would be 0.58 · 3 ≈ 1.76.



118

Figure 15: The correlation matrix for the third cluster

id energy_epoch_10 PPL_epoch_10 occurrence Epoch Occurrence

10 1.73 kWh 23.66 10 1,2,3,4,5,6,7,8,9,10

25 3.63 kWh 14.31 10 1,2,3,4,5,6,7,8,9,10

29 1.86 kWh 17.61 10 1,2,3,4,5,6,7,8,9,10

81 0.72 kWh 151.56 10 1,2,3,4,5,6,7,8,9,10

97 1.15 kWh 31.77 10 1,2,3,4,5,6,7,8,9,10

103 0.58 kWh 1274.87 10 1,2,3,4,5,6,7,8,9,10

48 0.90 kWh 46.47 9 2,3,4,5,6,7,8,9,10

62 2.52 kWh 15.71 9 2,3,4,5,6,7,8,9,10

88 1 kWh 37.25 9 2,3,4,5,6,7,8,9,10

106 1.26 kWh 29 7 4,5,6,7,8,9,10

111 1.59 kWh 29.27 7 1,2,3,4,5,6,7

58 1.63 kWh 27.19 6 4,6,7,8,9,10

136 1.78 kWh 19.38 6 1,2,3,6,9,10

87 3.66 kWh 13.65 5 6,7,8,9,10

133 4.52 kWh 13.12 5 6,7,8,9,10

147 1.28 kWh 30.43 4 1,2,3,4

114 3.42 kWh 15.51 3 8,9,10

24 1.80 kWh 23.48 2 9,10

99 0.94 kWh 54.87 2 1,2

Table 14: Table over pareto entries, featuring energy consumption and perplexity at 10 epochs, the number of

occurrences in the pareto curves of each epoch, and the specific epochs at which it occurs on the pareto curve.


