
Proceedings of the 2nd Workshop on Simple and Efficient Natural Language Processing, pages 1–10
November 10, 2021. ©201 Association for Computational Linguistics

1

Low Resource Quadratic Forms for Knowledge Graph Embeddings

Zachary Zhou
University of Wisconsin – Madison
Industrial & Systems Engineering

1415 Engineering Drive
Madison, WI 53706

zzhou246@wisc.edu

Jeffery Kline
Devin Conathan

Glenn Fung
American Family Insurance

6000 American Parkway
Madison, WI 53783

{jklin1,dconatha,gfung}@amfam.com

Abstract

We address the problem of link prediction
between entities and relations of knowledge
graphs. State of the art techniques that address
this problem, while increasingly accurate, are
computationally intensive. In this paper we
cast link prediction as a sparse convex program
whose solution defines a quadratic form that is
used as a ranking function. The structure of
our convex program is such that standard sup-
port vector machine software packages, which
are numerically robust and efficient, can solve
it. We show that on benchmark data sets, our
model’s performance is competitive with state
of the art models, but training times can be
reduced by a factor of 40 using only CPU-
based (and not GPU-accelerated) computing
resources. This approach may be suitable for
applications where balancing the demands of
graph completion performance against compu-
tational efficiency is a desirable trade-off.

1 Introduction

Digital representations of knowledge are essential
to many machine learning domains including social
networks, citation networks, question-answering,
information retrieval, recommender systems, and
natural language processing (Zhang et al., 2016;
Xiong et al., 2017; Hao et al., 2017; Yang and
Mitchell, 2017). Multirelational data, when rep-
resented as a directed graph whose nodes (entities)
are connected to each other by one or more edges
(relations) are knowledge graphs.

Knowledge graphs are often both large and in-
complete. As a result, the task of link prediction is
a basic challenge. Much recent work on knowledge
graph representation has focused on constructing
embeddings of the relations and entities of a graph
to facilitate good performance on the link predic-
tion problem. But training modern models on large
graphs often consumes many hours of GPU time.

In this paper, we formulate the link prediction
problem as a sparse convex program that can be

efficiently solved by off-the-shelf support vector
machine (SVM) software packages. We demon-
strate performance that is competitive with state
of the art methods, but our programs are solved in
substantially shorter times and without requiring
specialized GPU hardware. Our approach takes
advantage of existing SVM technology: large-scale
convex problems are routinely solved using an ar-
senal of first and second order methods, as well
as decades of empirically-derived heuristics. Solu-
tions to convex problems are global, often unique,
and in some cases (e.g. linear programs), solutions
come with theoretical guarantees about program
complexity. While we do not pursue this idea in the
present work, it is possible to naturally incorporate
external knowledge about relationships into convex
programs (Fung et al., 2002). An unusual feature
of our program is that the solution is not used as a
binary classifier, but instead, the solution is used to
define a symmetric quadratic form that ranks facts
in the knowledge graph.

The main contributions of this work include 1)
a novel convex formulation of the link prediction
problem 2) a scalable approach to link prediction
that that can be efficiently solved using standard
SVM solvers and 3) a link prediction model that
exhibits competitive performance.

We now describe the remaining sections of this
paper. In the next section we present notation and
background information on SVMs and the TransE
model that we base our method on. In Section 3
we present details of our SVM formulation. In
Section 4 we comment on implementation. Ex-
periments are discussed in Section 5. Results are
presented in Section 6. Related work and conclu-
sions are in Section 7 and Section 8, respectively.

2 Background

Basic Concepts Each fact in a knowledge graph
is represented as a triple, the entries of which are
called a head, a relation and a tail. The head and

2

Keir Dullea Gary Lockwood

1968
2001: A Space Odyssey

Acted with

Created in

Acted in

Figure 1: Example of a knowledge graph.

tail belong to a set of entities. More formally,
given a set of relations R and entities E, the stan-
dard representation of a knowledge graph is a set
K ⊂ E × R × E, and each (h, r, t) ∈ K is a
fact. Figure 1 illustrates a simple knowledge graph
having four entities (Keir Dullea, Gary Lockwood,
2001: A Space Odyssey, and 1968) and three rela-
tions (Acted with, Acted in, and Created in).

Given a set of entities E and relations R, a
knowledge graph embedding (KGE) model embeds
the elements of E∪R as elements in Rk for a fixed
positive integer k. For brevity, we abuse notation
and will represent the elements and the embeddings
of the elements in E and R with the same symbol.
Thus, the expressions e+ r, αe for any α ∈ R, and
e′ are well-defined, and represent component-wise
addition, scalar multiplication, and transposition,
respectively. Additionally, ‖x‖p := (

∑
|xi|p)1/p.

Unless otherwise specified, we assume p = 2. For
each (h, r, t) ∈ K, we define a set of corrupted
triples as

K†(h,r,t) =
{
(h, r, t†) : t† ∈ E

}
∪{

(h†, r, t) : h† ∈ E
}
\K.

That is, K†(h,r,t) contains triples where either h or

t is replaced by h† ∈ E or t† ∈ E so that the new
triple is not in K. For ease of notation we will of-
ten write corrupted triples as (h†, r, t†) ∈ K†(h,r,t)
(where both h† and t† appear), but it is always the
case that precisely one of h or t is replaced, not
both.

A link prediction model’s score function is the
function that distinguishes positive triples from cor-
rupted triples. If f is a score function, then a well-
performing model satisfies f(h, r, t) ≤ f(h†, r, t†)
when (h, r, t) ∈ K and (h†, r, t†) ∈ K†(h,r,t).

TransE Our approach is inspired by the “transla-
tional model”, TransE, introduced in (Bordes et al.,
2013). Despite its age and simplicity, TransE ex-
hibits performance that is often competitive with
state-of-the-art techniques, and our SVM-based ap-
proach shares several key features with it. The goal
of TransE is to make ‖h+ r − t‖ small whenever
(h, r, t) ∈ K and large otherwise. To do this, one
minimizes the loss function

LTransE :=
∑

(h,r,t)∈K
(h†,r,t†)∈K†

(h,r,t)

τ(h, r, t, h†, t†),

where

τ(h, r, t,h†, t†) :=(
γ + ‖h+ r − t‖ −

∥∥∥h† + r − t†
∥∥∥)

+
,

γ ∈ R is a fixed margin, the norm is either 1-norm
or the 2-norm and (y)+ := max {y, 0}. The score
function for TransE appears directly in the function
LTransE, and is ‖h+ r − t‖. Note that LTransE is
not convex due to the term −

∥∥h† + r − t†
∥∥ in the

definition of τ .

Support Vector Machines A standard linear
SVM, trained on data xi ∈ Rk with labels yi = ±1
for i = 1, . . . , N , solves the linearly constrained
convex optimization problem,

min
w∈Rk

ζ∈RN

γ∈R

C ‖ζ‖2 + ‖w‖2

subject to yi
(
w′xi − γ

)
≥ 1− ζi, (1 ≤ i ≤ N)

ζ ≥ 0,

where C > 0 is a regularization parameter. This
constrained program may be rewritten as an equiv-
alent unconstrained problem,

min
w,γ

C
∥∥(1− Y (Xw − γ1))+

∥∥2 + ‖w‖2 ,
where Y is the diagonal matrix with Yii = yi and
row i of X is x′i and 1 = (1, 1, 1, . . . , 1).

Given an optimal solution w of this SVM,
the function φ : x 7→ w′x − γ defines a hy-
perplane that separates Rk into two half-spaces,
{x : w′x− γ > 0} and {x : w′x− γ < 0}. If
yi(w

′xi + γ) > 0, for all i = 1, . . . , N , then the
data used to train the SVM are linearly separable
The function φ is the decision function of the SVM.
Classification error is measured by ‖ζ‖2. The term

3

‖w‖2 maximizes the margin between the bounding
planes w′x = γ ± 1 (Mangasarian, 2006).

One attractive feature of casting a problem as an
SVM is the wide availability of high quality SVM
software packages. Such packages are numerically
robust, and are capable of rapidly solving problems
with massive scale.

3 Formulation

We now describe how to express the link prediction
problem as a convex variant of TransE, and then we
show how to write this convex problem as an SVM.
Recall that our goal is to identify a score function
f : E ×R× E → R such that

f(h+ r − t) ≤ f(h† + r − t†) (1)

for all (h, r, t) ∈ K and (h†, r, t†) ∈ K†(h,r,t). We
will assume that f has the form,

f(h+ r − t) = ‖M(h+ r − t)‖ , (2)

where M ∈ Rk×k is some unknown matrix. Find-
ing M is essentially the main goal of TransE. We
now show how, modulo technical artifacts, one may
define the matrix M (and hence f) as the optimal
solution to an SVM.

Substituting the right-hand side of (2) into (1),
our problem becomes finding a matrix M ∈ Rk×k
such that

‖M(h+ r − t)‖ ≤
∥∥∥M(h† + r − t†)

∥∥∥ (3)

whenever (h, r, t) ∈ K and (h†, r, t†) ∈ K†(h,r,t).
If we define B := M ′M , then our problem is

equivalent to seeking a positive semi-definite B ∈
Rk×k with

(h+ r − t)′B(h+ r − t) ≤
(h† + r − t†)′B(h† + r − t†)

(4)

It is possible to represent the positive semi-definite
condition on B as a convex constraint, but optimiz-
ing a loss function with this additional constraint is
incompatible with an SVM formulation. Since our
main goal is to create a score function, we omit the
positive definite constraint from our program.

The inequality expressed in (4) is quadratic in
the problem data, but linear in the unknown, B.
Indeed, each side of the inequality (4) expresses a
quadratic polynomial in the entries of h, r and t,

while both expressions are linear in the entries of
B.

To make this more explicit, we introduce nota-
tion. Let vec : Rn×n → Rn2

denote the invertible
linear map that “flattens” an n × n matrix into a
n2-dimensional vector. Then

x′Ay =
(
vecxy′

)′
vecA (5)

for any x, y ∈ Rn and A ∈ Rn×n. When A is
a symmetric matrix and x = y, then (5) can be
adapted to apply to the upper-triangular portions of
A and xx′.

Just as vec maps square matrices to vectors, one
may define symvec that maps symmetric matri-
ces in Rn×n to vectors in Rn(n+1)/2, and which
satisfies

x′Ax =
(
symvecxx′

)′
symvecA

For brevity, we define

S(h, r, t) := symvec (h+ r − t)(h+ r − t)′
(6)

With notation in hand, initialize the embeddings
of h,r and t to be one-hot encoded. Our task is to
find w ∈ Rk(k+1)/2 that satisfies

w′S(h, r, t) ≤ w′S(h†, r, t†),

for all (h, r, t) ∈ K and (h†, r, t†),∈ K†(h,r,t). To
guarantee that the feasible set of this program is
nonempty, we introduce non-negative slack vari-
ables ζi and minimize the residual.

This construction is similar in nature to the
well-known “pair-wise transform” (Herbrich et al.,
1999) where the ordinal ranking problem its trans-
formed into a two-class classification problem by
considering the difference of all comparable ele-
ments.

If we define x(h,r,t),(h†,r,t†) := S(h†, r, t†) −
S(h, r, t), then this allows us to concisely express
a convex program that is identical to the SVM for-
mulation described above, namely

min
w∈Rk(k+1)/2,ζ

C ‖ζ‖2 + ‖w‖2

subject to w′xη ≥ 1− ζη,(
η ∈ K(h,r,t) ×K

†
(h,r,t)

)
ζ ≥ 0.

4

In practice, the term in the objective

‖ζ‖2 =
∑
i

ζ2i

is replaced with the weighted sum,∑
i

ρiζ
2
i ,

where ρ ≥ 0 is chosen to normalize for prob-
lem parameters. Also, rather than include every
(h†, r, t†) for a given (h, r, t), a fixed integer N is
chosen to specify the number of negative triples
per positive triple. Our model has two parameters
that impact problem performance: integer N and
C > 0, which is the standard SVM regulariza-
tion parameter. Performance generally improves
as N increases, and selecting C = 1 is, we find
empirically, a reasonable default. The normaliza-
tion weighting we choose is uniform, so that each
entry of the weight ρ is 1/N . Finally, since the
SVM solver that we applied to this problem re-
quires both +1 and −1 labels be present in the
data, we define label yη as a randomly-selected
choice from {+1,−1}, and then we scale xη by yη.
This step has no impact on the optimal solution.

Our proposed model has several distinguishing
features:

• The program data is extremely sparse, with
perhaps 0.0001% or fewer nonzero entries in
the problem data.

• Our model aims to define a symmetric ma-
trix using the coefficients of a standard SVM.
We gain symmetry by virtue of how our prob-
lem is constructed. The matrix is usually left
implicitly defined, and we have no need to
reconstruct it explicitly.

• While SVMs are typically employed for the
purpose of binary classification, in our appli-
cation, we are interested in the score attributed
to triples, not the classification ability.

• Our problem has just two parameters: an in-
teger N that affects the program size, and a
regularization parameter, C > 0.

• The program, despite its unusually size and
structure, can be solved very quickly, often in
under a minute for quite large programs.

input (h, r, t) ∈ K, N ∈ N
init X = [], y = []
while len(X) < N do

Choose ε ∈ {±1} with probability 1/2
Choose h† ∈ E s.t. (h†, r, t) /∈ K
Append ε

(
S(h†, r, t)− S(h, r, t)

)
to X

Append ε to y
end while
return X , y

Algorithm 1: Building N samples for the
SVM by corrupting the head entity.

4 Implementation

We solve our programs using the LinearSVC class
from scikit-learn (Pedregosa et al., 2011), which
uses liblinear (Fan et al., 2008), NumPy (Harris
et al., 2020) and SciPy (Virtanen et al., 2020). In
particular we rely heavily on SciPy for its sparse
array structures. The primary bottleneck is a one-
time cost to build the set of negative triples which,
fortunately, is an embarrassingly parallel workload.
To reduce the cost in time to build the problem,
we leverage the multiprocessing capability of the
DataLoader class of PyTorch (Paszke et al., 2019).

One of the two main loops used to construct the
data fed into the SVM is presented in Algorithm 1.
The loop shown selects the negative triples where
the head of a given positive is replaced. A separate,
and nearly identical loop, builds the tail-corrupted
triples.

The returned values of Algorithm 1 are problem
data X with labels y. Since the labels are selected
with balanced probability, the expected bias of the
optimal solution is 0, and the SVM solver is in-
structed to set the intercept to 0.

A naive implementation of the program does not
scale due to large memory requirements. Several
tricks are employed when constructing the SVM
data and evaluating metrics.

Each relation and entity is 1-hot encoded as a
vector in k := |E|+ |R| dimensions, and we seek
a symmetric matrix that acts on k-dimensional em-
beddings; our problem dimension is k(k + 1)/2.
Even for modest values of k, the problems passed
to SVM solvers can be quite large (see Table 1).
Indeed, the included liblinear Python interface ex-
perienced integer overflow errors; however, using
liblinear via scikit-learn performed adequately on
a single-threaded standard CPU-based architecture
that we used to compute the metrics for this pa-

5

per.1 While the problems are quite large they are
extremely sparse. Indeed, independent of N , there
are at most 12 nonzero entries in each row of X,
and the memory requirements for the program are
O(N |K|).

Table 1: Problem size for N = 100. Problems are
embedded in very high dimension, but the memory re-
quirements are modest due to the extreme sparsity.

FB15K WN18 PRM45K

k 16296 40961 2884
ROWS OF X 106 MIL 29.3 MIL 7.26 MIL
COLUMNS OF X 132 MIL 8.39 BIL 4.16 MIL
COMPRESSED 1.4G 406M 84M
UNCOMPRESSED 7.5G 2.0G 332M

We now detail an indexing trick which leverages
this sparsity and can be used to improve evaluation
of metrics by several orders of magnitude over a
naive direct evaluation.

If B is a symmetric matrix, and w := vecB,
then the entry of w that corresponds to entry i ≤ j
of the matrix is

ij2idx(i, j) :=
k(k − 1)

2
− (k − i)(k − i− 1)

2
+ j

If x and y are one-hot encoded and supported on
indices ix and iy, then:

x′By = Bixiy = Biyix

where the second equality holds by the assumption
that B is symmetric. Then:

(h+ r − t)′B(h+ r − t) =
Bihih +Birir +Bitit + 2Bihir−2Bihit − 2Birit

(7)

This has an equivalent form using the function S,
which was defined in (6). In this form that uses S,
there is a space-savings gain of 1/2. Additionally,
one has the guarantee that the matrix B, when re-
constructed from the coefficients of the SVM, is
symmetric.

The feature x := h + r − t has at most three
nonzero entries and is itself sparse. In practice, it
is expensive to evaluate the outer product xx′ and
project onto the upper-triangular portion millions
of times. Instead we simply evaluate the quadratic
form directly using (7); at most 6 entries with fixed

1Despite the large size of the problem, we did not find
that floating point errors interfered with overall results. We
attribute this to the sparsity and modest parameter values.

values are required: three on-diagonal entries and
three off-diagonal entries.

With such large investment for performance
gains, one may ask whether it is possible to simply
take advantage of GPU hardware, and the well-
established gains that can be had beyond standard
CPU processors. Unfortunately, widely-available
GPUs do not effectively leverage sparse data struc-
tures for improved performance. Indeed, commer-
cial linear and quadratic solvers, which are com-
monly employed to solve sparse problems, do not
support GPU hardware (Glockner, 2020).

5 Experiments

We use three knowledge graph datasets to bench-
mark our implementation; two are the standard
link prediction benchmark datasets Freebase (Bol-
lacker et al., 2008) and WordNet (Miller, 1995),
and one is a new knowledge graph we introduce.
We report performance on all three. For Freebase
(FB15k) and WordNet (WN18) we use the versions
distributed in the software package released by the
authors of RotatE (Sun et al., 2019). We now briefly
describe the data sets.

WN18 WordNet is a knowledge graph that pro-
vides lexical relationships between words (Glorot
et al., 2013). It is designed to be machine readable,
while being a usable dictionary and thesaurus.

FB15k Freebase is a collaboratively-constructed
knowledge graph, containing general facts about
the world (Bollacker et al., 2008). The FB15k
dataset here is the same subset that was introduced
in (Bordes et al., 2013).

PRM45k We introduce the product reference
manual knowledge graph. It contains taxonomies,
articles, frequently-asked-questions and glossary
terms found in an insurance company operating
manual intended to be referenced by insurance
agents. The entities and relationships come from
different source systems, and there is some over-
lap/redundancy, making this a good candidate for
the link prediction task as there are many missing
relationships. We have included a release of this
dataset with our supplementary materials and plan
to make a version of the dataset publicly available
at http://anonymous.url. Summary statistics about
these data sets appear in Table 2.

Hyperparameters We recommend searching
over N = 10, 50, 100 and C = 0.5, 1, 2, 4, 8, 16,

6

Table 2: Benchmark data sets.

FB15K WN18 PRM45K

RELATIONS 1,345 18 6
ENTITIES 14,951 40,943 2878
TRIPLES 592,213 151,442 45,384

though we report on several other values of N .
We find that performance increases in N and that
performance is U-shaped in C, with a small neigh-
borhood of values where all reported metrics are
close to optimal. As a rule, fit time increases with
the regularization parameter C. Table 3 describes
performance and build time as a function of N .

Evaluation metrics The metrics we report here
are standard metrics and have been used to com-
pare link prediction model performance for nearly
a decade (Bordes et al., 2011). Given a positive
triple (h, r, t) ∈ K we evaluate the score func-
tion applied to this triple, and then we evaluate
the score function applied to all negative triples
(h†, r, t†) ∈ K†(h,r,t). The scores are sorted in de-
creasing order and the rank of (h, r, t) is recorded.
This process is repeated for all positive triples in
whatever data we are evaluating on (e.g. the hold-
out validation or test sets). The ranks of the positive
triples across the data set are aggregated into mean
rank (MR), mean reciprocal rank (MRR), and hits
at k (H@k).

We note that while SVMs also have an accuracy
score which measures the accuracy of the fitted
model as a binary classifier, in the context of our
knowledge graph link prediction problem this score
is not relevant, and we do not report it.

6 Results

Since the model we use is very similar to that of
TransE, we expect similar performance character-
istics. Table 3 shows that performance gains taper
off rather quickly as N grows.

Table 4 displays timing results for our SVM-
based method. It also includes self-reported results
of RotatE and estimates based on HolE.

Timings report build times using a 96 CPU core
processor on a machine running Ubuntu 18.04. As
problem build is highly parallelizable, times are
inversely-proportional to the number of available
cores. Since the SVM solver we use is single-
threaded, the additional cores are not necessary
for training; only sufficient memory is necessary.

Thus, it makes sense to build the program with
a compute-optimized configuration and solve the
problem with a memory-optimized configuration.
Multiple values of C may be fit simultaneously,
provided local memory is sufficient.

Table 5 compares metrics of various state-of-the-
art methods to ours. The TransE model is notewor-
thy for being both simple and easy to train (Nickel
et al., 2016). We were unable to find reported train-
ing times of TransE, so we report here results using
the TransE code that was released by RotatE au-
thors. We allowed the model to run for 50,000
epochs on a NVIDIA Tesla K80 GPU using same
parameters the authors reported. Note that 50,000
is significantly less than 150,000 used by RotatE
authors. The FB15k model was stopped early by
hand, and the WN18 model was still in the process
of converging when the maximum iterations were
reached, so the value of 2+ is a lower bound.

In the TransE framework, the choice of solver
and parameter settings (Minervini et al., 2015) has
a dramatic impact on solver performance. Hyper-
parameter complexity is in contrast to our use of
the default parameter settings of the SVM solver,
which we use without modification.

7 Related work

Support vector machines Support vector ma-
chines have been around for decades, and have
proved remarkably versatile. Our use is not stan-
dard, for we are not interested in the capability of
the SVM as a binary classifier. Traditionally, SVMs
are a supervised learning method useful for clas-
sification problems. However, an early and very
different approach where the distance to the margin
is used as a ranking function is (Joachims, 2002).
Our approach is the same in spirit: we are using
the coefficients of the SVM to yield an implicit
symmetric matrix which we use as a score function.
SVMs have been used for the problem of link pre-
diction in (Al Hasan et al., 2006). In that work, the
authors treat link prediction as a binary classifica-
tion problem, and SVMs are one of several binary
classifiers they evaluated.

The SVM solver that we use, which was dis-
tributed in (Pedregosa et al., 2011), is single-
threaded. This, in turn, calls the lower-level li-
brary (Chang and Lin, 2011), which is tailored to
large-scale and very sparse support vector prob-
lems. The developers of the Liblinear solver have
invested significant effort over many years to iden-

7

Table 3: Metrics for C = 1.0 for FB15k and PRM45k, and C = 16.0 for WN18. The metrics here are reported on
the same machine used for Table 5. Information from the rows N = 50 and N = 100 are duplicated in Table 4
and Table 5 for convenience.

FB15K WN18 PRM45K
N FIT BUILD MRR H@10 FIT BUILD MRR H@10 FIT BUILD MRR H@10

(SEC) (SEC) (SEC) (SEC) (SEC) (SEC)

1 21 21 0.320 0.493 12 6 0.179 0.262 <1 2 0.275 0.44
2 58 28 0.398 0.614 116 8 0.368 0.704 <1 3 0.333 0.516
5 82 53 0.484 0.695 214 15 0.491 0.922 2 7 0.500 0.719
10 115 93 0.530 0.738 273 27 0.500 0.934 1 4 0.437 0.647
50 328 467 0.617 0.799 465 125 0.526 0.942 8 33 0.552 0.758
100 497 902 0.632 0.806 607 250 0.540 0.946 15 58 0.555 0.770

Table 4: Timing. Parameters for SVM are N = 100 both data sets, C = 1.0 for FB15k and C = 16.0 for WN18.
The Liblinear software is single-threaded, so the primary constraint is memory. The estimate for HolE is based on
11s per epoch on WN18, and an estimated 200 to 500 epochs required for convergence.

MODEL
FB15K WN18 PRM45K

FIT BUILD FIT BUILD FIT BUILD

TRANSE 1 HR 2+ HRS 1 HR
ROTATE 9 HRS 4 HRS 1 HR
HOLE 1+ HRS (EST)

SVM(N=50) 6 MIN 8 MIN 8 MIN 2 MIN 8 SEC 33 SEC
SVM(N=100) 9 MIN 15 MIN 10 MIN 4 MIN 15 SEC 1 MIN

tify and then leverage heuristics that improve con-
vergence times. We note that during November
2020, a multi-core version of this lower-level li-
brary was released, and the authors claim substan-
tial reduction in fitting times may be possible.

The soft-margin support vector network that we
use was introduced in (Cortes and Vapnik, 1995).
The idea of representing data quadratically and
training an SVM to derive a symmetric matrix was
applied in (Rosales and Fung, 2006) to remove the
need to choose a distance function by hand and in-
stead define a distance function as the solution to a
convex program. In that work, the distance function
was the solution to a linear program, and extracting
a distance from the solution was made possible by
enforcing side condition that guaranteed the result-
ing set of coefficients satisfied diagonal dominance.
This allowed the reconstructed matrix to be posi-
tive semidefinite, and the optimal distance could
then be extracted using a matrix square root, found
through a Cholesky decomposition. In this work,
we are representing data quadratically, but we do
not have the side condition. A similar, but not quite
equivalent idea, is to fit an SVM using a quadratic
kernel.

Our SVM program is both sparse and convex.
We note that very recent work (Tsai and El Ghaoui,

2020) in the space of extractive text summarization
also leverages sparsity and convexity to efficiently
solve an optimization program. In our program,
when both terms in the objective are the 1-norm, the
SVM may be written as a linear program. This is
attractive, for linear programs have the theoretical
guarantee of a polynomial-time solution.

Knowledge graph link prediction Relational
learning and knowledge graph link prediction is
a large field of machine learning research. One
early model is RESCAL, which is a tensor decom-
position method (Nickel et al., 2011) for learning
relations in a knowledge graph. The idea of the
model is to factorize a tensor into a core tensor
multiplied by a matrix along each dimension. The
core idea adapts the earlier DEDICOM (Harsh-
man et al., 1982) tensor factorization scheme. This
method was notable for scalability and improved
training times.

Subsequent to TransE, which was a landmark
evolution in the performance of link prediction,
there has been much research and analysis into
the structure of links in knowledge graphs (Trouil-
lon et al., 2016; Toutanova and Chen, 2015; Guu
et al., 2015). Relation paths, which are a compound
structure, have also been used to extend the TransE
model (Lin et al., 2015). Since its introduction, and

8

Table 5: Results for TransE(1) are from (Bordes et al., 2013), TransE(2) and HolE are from (Nickel et al., 2016),
and RotatE are from (Sun et al., 2019). Parameters for SVM are C = 1.0 for FB15k and C = 16.0 for WN18. We
compute and report metrics for the filtered setting, as described in (Bordes et al., 2013).

MODEL
FB15K WN18 PRM45K

MRR H@10 H@3 H@1 MRR H@10 H@3 H@1 MRR H@10 H@3 H@1

TRANSE(1) 0.471 0.892
TRANSE(2) 0.463 0.749 0.578 0.297 0.495 0.943 0.888 0.113 0.518 0.680 0.569 0.428
HOLE 0.524 0.739 0.613 0.402 0.938 0.949 0.945 0.930
ROTATE 0.797 0.884 0.830 0.746 0.949 0.959 0.952 0.944 0.518 0.675 0.565 0.432

SVM(N=50) 0.617 0.799 0.676 0.520 0.526 0.942 0.757 0.271 0.553 0.758 0.632 0.431
SVM(N=100) 0.632 0.806 0.690 0.538 0.539 0.944 0.766 0.289 0.554 0.770 0.634 0.433

partally as a result of this work, limitations of the
TransE data model were identifed (Nickel et al.,
2016). We expect that the known limitations that
impact TransE also affect our approach. Despite
these limitations, TransE’s performance remains
competitive on many real-world and benchmark
data sets.

Recently, RotatE (Sun et al., 2019) sought to
address a variety of the limitations known about
TransE. RotatE embeds entities and relations in
complex space and treats relations as rotations in
the complex plane; the model achieves improved
raw performance on standard benchmarks. It is
believed that the additional freedom granted by
the complex geometry contributes to the success of
RotatE at learning graph structure. The authors also
introduce negative adversarial sampling for link
prediction. The idea of using negative sampling has
proven quite effective for both learning knowledge
graph embeddings (Trouillon et al., 2016) and word
embeddings (Mikolov et al., 2013).

Case-based reasoning for knowledge graph com-
pletion was introduced in (Das et al., 2020). The au-
thors show that a k-nearest neighbor (KNN) based
approach for can be both efficient and scalable for
this application.

8 Conclusion and future work

We demonstrate feasibility of using off-the-shelf
SVM libraries to address the knowledge graph link-
prediction problem. We present results on stan-
dard benchmarks that achieve parity with baseline
models, while total wall clock time is measured in
minutes rather than hours. The model structure we
introduce is closely related to a well-established
model with good performance characteristics, and
it is elementary. The model we introduce has very
few parameters to tune, and default solver settings
typically yield satisfactory performance.

With the increasing focus on the large time, cost

and energy consumption required to train leading
machine learning models, it seems reasonable to
ask whether casting nonconvex programs as convex
programs could provide a path towards more effi-
cient model training without significant sacrifice in
performance.

One benefit of our convex formulation is the
ability to add constraints to the program. Future
directions could introduce rules about the knowl-
edge graph using this method, as proposed in (Fung
et al., 2002). Simple “if P then Q” first order logic
propositions, where P and Q are linear predicates
(equal, larger that, smaller than) can be represented
by polyhedral sets of the form Ax ≤ b. In this
way, conditional information in the form of knowl-
edge sets can be considered during the training
process. One could also aim to adapt the model to
yield proper embeddings by adding additional con-
straints such as diagonal dominance to the matrix
B rather than just scores.

Another direction we would like to explore is
how we can introduce nonlinear data models so our
problem does not suffer from the same expressivity
limitations as TransE. It may be possible to adapt a
model derived from RotatE, for instance.

Finally, the model that we present scales quadrat-
ically in the number of entities and relations, and
the dimensionality of the representation is a func-
tion of the problem. It would be useful to find a
representation that has good performance without
the quadratic growth in dimension.

References
Mohammad Al Hasan, Vineet Chaoji, Saeed Salem,

and Mohammed Zaki. 2006. Link prediction using
supervised learning. In SDM06: workshop on link
analysis, counter-terrorism and security, volume 30,
pages 798–805.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: A collab-

https://doi.org/10.1145/1376616.1376746

9

oratively created graph database for structuring hu-
man knowledge. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management
of Data, SIGMOD ’08, page 1247–1250, New York,
NY, USA. Association for Computing Machinery.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in neural information
processing systems, pages 2787–2795.

Antoine Bordes, Jason Weston, Ronan Collobert, and
Yoshua Bengio. 2011. Learning structured embed-
dings of knowledge bases. In Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intelli-
gence, AAAI’11, page 301–306. AAAI Press.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIB-
SVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technol-
ogy, 2:27:1–27:27. Software available at http:
//www.csie.ntu.edu.tw/~cjlin/libsvm.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks. Machine learning, 20(3):273–297.

Rajarshi Das, Ameya Godbole, Nicholas Monath,
Manzil Zaheer, and Andrew McCallum. 2020. Prob-
abilistic case-based reasoning for open-world knowl-
edge graph completion. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2020,
pages 4752–4765, Online. Association for Compu-
tational Linguistics.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. Liblinear: A
library for large linear classification. J. Mach. Learn.
Res., 9:1871–1874.

G. Fung, O. Mangasarian, and J. Shavlik. 2002.
Knowledge-based support vector machine classi-
fiers. In NIPS.

Greg Glockner. 2020. Does gurobi support gpus?
https://support.gurobi.com/hc/en-
us/articles/360012237852-Does-
Gurobi-support-GPUs-.

Xavier Glorot, Antoine Bordes, J. Weston, and Yoshua
Bengio. 2013. A semantic matching energy func-
tion for learning with multi-relational data. Machine
Learning, 94:233–259.

Kelvin Guu, John Miller, and Percy Liang. 2015.
Traversing knowledge graphs in vector space. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
318–327.

Yanchao Hao, Yuanzhe Zhang, Kang Liu, Shizhu He,
Zhanyi Liu, Hua Wu, and Jun Zhao. 2017. An end-
to-end model for question answering over knowl-
edge base with cross-attention combining global
knowledge. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 221–231, Vancou-
ver, Canada. Association for Computational Linguis-
tics.

Charles R. Harris, K. Jarrod Millman, St’efan J.
van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebas-
tian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk,
Matthew Brett, Allan Haldane, Jaime Fern’andez del
R’ıo, Mark Wiebe, Pearu Peterson, Pierre G’erard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and
Travis E. Oliphant. 2020. Array programming with
NumPy. Nature, 585(7825):357–362.

Richard A Harshman, Paul E Green, Yoram Wind, and
Margaret E Lundy. 1982. A model for the analysis
of asymmetric data in marketing research. Market-
ing Science, 1(2):205–242.

R. Herbrich, T. Graepel, and K. Obermayer. 1999. Sup-
port vector learning for ordinal regression. In 1999
Ninth International Conference on Artificial Neural
Networks ICANN 99. (Conf. Publ. No. 470), vol-
ume 1, pages 97–102 vol.1.

Thorsten Joachims. 2002. Optimizing search engines
using clickthrough data. In Proceedings of the
Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’02,
page 133–142, New York, NY, USA. Association for
Computing Machinery.

Yankai Lin, Zhiyuan Liu, Huanbo Luan, Maosong Sun,
Siwei Rao, and Song Liu. 2015. Modeling relation
paths for representation learning of knowledge bases.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
705–714.

Olvi L. Mangasarian. 2006. Exact 1-norm sup-
port vector machines via unconstrained convex dif-
ferentiable minimization. J. Mach. Learn. Res.,
7:1517–1530.

G. Miller. 1995. Wordnet: a lexical database for en-
glish. Commun. ACM, 38:39–41.

Pasquale Minervini, Nicola Fanizzi, Claudia d’Amato,
and Floriana Esposito. 2015. Scalable learning
of entity and predicate embeddings for knowledge
graph completion. In 2015 IEEE 14th International
Conference on Machine Learning and Applications
(ICMLA), pages 162–167. IEEE.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso
Poggio. 2016. Holographic embeddings of knowl-
edge graphs. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, AAAI’16,
page 1955–1961. AAAI Press.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In Proceedings
of the 28th International Conference on Machine
Learning, ICML 2011, pages 809–816.

https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://doi.org/10.18653/v1/2020.findings-emnlp.427
https://doi.org/10.18653/v1/2020.findings-emnlp.427
https://doi.org/10.18653/v1/2020.findings-emnlp.427
https://support.gurobi.com/hc/en-us/articles/360012237852-Does-Gurobi-support-GPUs-
https://support.gurobi.com/hc/en-us/articles/360012237852-Does-Gurobi-support-GPUs-
https://support.gurobi.com/hc/en-us/articles/360012237852-Does-Gurobi-support-GPUs-
https://doi.org/10.18653/v1/P17-1021
https://doi.org/10.18653/v1/P17-1021
https://doi.org/10.18653/v1/P17-1021
https://doi.org/10.18653/v1/P17-1021
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1049/cp:19991091
https://doi.org/10.1049/cp:19991091
https://doi.org/10.1145/775047.775067
https://doi.org/10.1145/775047.775067

10

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. dÁlché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Rómer Rosales and Glenn Fung. 2006. Learning sparse
metrics via linear programming. In Proceedings of
the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’06,
page 367–373, New York, NY, USA. Association for
Computing Machinery.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embedding
by relational rotation in complex space. In Interna-
tional Conference on Learning Representations.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. In Proceedings of the 3rd Workshop on
Continuous Vector Space Models and their Compo-
sitionality, pages 57–66.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In Proceed-
ings of the 33rd International Conference on Inter-
national Conference on Machine Learning-Volume
48. International Conference on Machine Learning
(ICML).

Alicia Tsai and Laurent El Ghaoui. 2020. Sparse opti-
mization for unsupervised extractive summarization
of long documents with the frank-wolfe algorithm.
In Proceedings of SustaiNLP: Workshop on Simple
and Efficient Natural Language Processing, pages
54–62, Online. Association for Computational Lin-
guistics.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant,
Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren
Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman,
Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones,
Robert Kern, Eric Larson, C J Carey, İlhan Po-
lat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman,

Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pe-
dregosa, Paul van Mulbregt, and SciPy 1.0 Contribu-
tors. 2020. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods,
17:261–272.

Chenyan Xiong, Russell Power, and Jamie Callan.
2017. Explicit semantic ranking for academic
search via knowledge graph embedding. In Proceed-
ings of the 26th International Conference on World
Wide Web, WWW ’17, page 1271–1279, Republic
and Canton of Geneva, CHE. International World
Wide Web Conferences Steering Committee.

Bishan Yang and Tom Mitchell. 2017. Leveraging
knowledge bases in LSTMs for improving machine
reading. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1436–1446, Van-
couver, Canada. Association for Computational Lin-
guistics.

Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing
Xie, and Wei-Ying Ma. 2016. Collaborative knowl-
edge base embedding for recommender systems.
In Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and
Data Mining, KDD ’16, page 353–362, New York,
NY, USA. Association for Computing Machinery.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/1150402.1150444
https://doi.org/10.1145/1150402.1150444
https://openreview.net/forum?id=HkgEQnRqYQ
https://openreview.net/forum?id=HkgEQnRqYQ
https://doi.org/10.18653/v1/2020.sustainlp-1.8
https://doi.org/10.18653/v1/2020.sustainlp-1.8
https://doi.org/10.18653/v1/2020.sustainlp-1.8
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1145/3038912.3052558
https://doi.org/10.1145/3038912.3052558
https://doi.org/10.18653/v1/P17-1132
https://doi.org/10.18653/v1/P17-1132
https://doi.org/10.18653/v1/P17-1132
https://doi.org/10.1145/2939672.2939673
https://doi.org/10.1145/2939672.2939673

