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Abstract

Abductive reasoning starts from some observa-
tions and aims at finding the most plausible ex-
planation for these observations. To perform
abduction, humans often make use of temporal
and causal inferences, and knowledge about
how some hypothetical situation can result in
different outcomes. This work offers the first
study of how such knowledge impacts the Ab-
ductive αNLI task – which consists in choos-
ing the more likely explanation for given ob-
servations. We train a specialized language
model LMI that is tasked to generate what
could happen next from a hypothetical sce-
nario that evolves from a given event. We then
propose a multi-task model MT L to solve
the αNLI task, which predicts a plausible ex-
planation by a) considering different possible
events emerging from candidate hypotheses –
events generated by LMI – and b) selecting
the one that is most similar to the observed
outcome. We show that ourMT L model im-
proves over prior vanilla pre-trained LMs fine-
tuned on αNLI. Our manual evaluation and
analysis suggest that learning about possible
next events from different hypothetical scenar-
ios supports abductive inference.

1 Introduction

Abductive reasoning (AR) is inference to the best
explanation. It typically starts from an incomplete
set of observations about everyday situations and
comes up with what can be considered the most
likely possible explanation given these observa-
tions (Pople, 1973; Douven, 2017). One of the key
characteristics that make abductive reasoning more
challenging and distinct from other types of reason-
ing is its non-monotonic character (Strasser and An-
tonelli, 2019) i.e., even the most likely explanations
are not necessarily correct. For example, in Figure
1, the most likely explanation for Observation 1:

“wet grass outside my house” is that “it has been

The grass outside my house is wet 

The sprinkler outside was switched on

Observation 2

It rained last night 

Sprinkler made 
the grass wet

Plausible ExplanationObservation 1 

:  

:  

Figure 1: Motivational example illustrating Abductive
Reasoning and its non-monotonic character.

raining”. However, when a new piece of informa-
tion (observation or evidence) becomes available,
the explanation must possibly be retracted, show-
ing the defeasible character of abduction. With the
new observation (“the sprinkler was switched on”)
the most plausible explanation changes to “Sprin-
kler caused the grass to be wet”. Humans, in such
situations, could induce or validate such abductive
inferences by performing hypothetical reasoning
(such as “What would happen if the sprinkler was
switched on?”) to arrive at a plausible explanation
for “wet grass outside my house”.

In this work, we focus on the αNLI task (Bhaga-
vatula et al., 2020), where given two observations
(O1 at time t1, O2 at time t2, with t1 < t2) as an
incomplete context, the task is to predict which of
two given hypothesized events (H1 or H2) is more
plausible to have happened between O1 and O2.
Figure 2 illustrates this with an example: given ob-
servations O1:“Priya decided to try a new restau-
rant.” and O2: “Priya thought her food was deli-
cious.”, the task is to predict whether H1 or H2 is
the more plausible explanation given observations
O1 and O2. Both H1 and H2 are different plausi-
ble hypothetical situations that can evolve from the
same observation (premise) O1.

In this paper, we hypothesize that learning how
different hypothetical scenarios (H1 and H2) can
result in different outcomes (e.g., OHj2 , Fig. 2) can
help in performing abductive inference. In order to
decide which Hi, is more plausible given observa-
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O1 : Priya decided to try a new restaurant.
O2 : Priya thought her food was delicious.

!"#$: Priya was disappointed in the quality of the food.

Hypothesis

!"#&: She was excited to try them out.

LM

Observations

LM

'" : The food that Priya
ordered was 

microwaved and 
precooked.

'( : She ordered two 
shrimp dishes What if

'( '"

Figure 2: Motivational example for αNLI : The top box
(red) shows the observations and two callout clouds
(green) contain the hypotheses. The implications (OHi

i )
– generated by the LM conditioned on each hypothesis
and the observations – are given in pink colored boxes.

tions, we assume each Hi to be true and generate a
possible next event OHi2 for each of them indepen-
dently (e.g.: What will happen if Priya’s ordered
food was microwaved and precooked?). We then
compare the generated sentences (OH1

2 ,OH2
2 in Fig.

2) to what has been observed (O2) and choose as
most plausible hypothesis the one whose implica-
tion is closest to observation O2.

We design a language model (LMI ) which,
given observations and a hypothesis, generates
a possible event that could happen next, given
one hypothesis. In order to train this language
model, we use the TIMETRAVEL (TT) corpus
(Qin et al., 2019) (a subpart of the ROCStories
corpus1). We utilize the LMI model to generate
a possible next event for each hypothesis, given
the observations. We then propose a multi-task
learning model MT L that jointly chooses from
the generated possible next events (OH1

2 or OH2
2 )

the one most similar to the observation O2 and
predicts the most plausible hypothesis (H1 or H2).

Our contributions are: i) To our best knowledge,
we are the first to demonstrate that a model that
learns to perform hypothetical reasoning can sup-
port and improve abductive tasks such as αNLI.
We show that ii) for αNLI our multi-task model
outperforms a strong BERT baseline (Bhagavatula
et al., 2020).

Our code is made publicly available.2

2 Learning about Counterfactual
Scenarios

The main idea is to learn to generate assumptions,
in a given situation, about “What could have hap-

1We ensure that αNLI testing instances are held out.
2https://github.com/Heidelberg-NLP/

HYPEVENTS
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(c) Learning to generate possible future event for each hypothesis  
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(b) Counterfactual Reasoning from TimeTravel

Figure 3: Different reasoning schemes and settings for
our task and approach. The arrows denote the direc-
tion (temporal flow) of the reasoning chain. The dotted
arrow in (b) denotes the derivation of a counterfactual
situation s′2 from a factual s2. In (c), the dotted arrows
denote the learned inference; the dotted lines indicate
the similarity between O2 and OHi

2 .

pened (next) if we had done X?” or “What could
happen (next) if we do X?” (Bhatt and Flanagan,
2010). Figure 3(a) depicts the αNLI task frame-
work. We hypothesize that getting to know what
will happen (next) if any of two hypotheses occurs,
will help us verifying which of them is more plau-
sible (see Fig. 3(c)). Therefore, we encourage the
model to learn how different hypothetical events
(including counterfactual events) evolving from the
same premise (s1) can lead to different or similar
outcomes (see Fig. 3(b)).

Accordingly, we teach a pre-trained GPT-2 (Rad-
ford et al., 2019) language model how to generate
a sequence of possible subsequent events given dif-
ferent hypothetical situations in a narrative setting.
Training such a model on narrative texts encourages
it to learn causal and temporal relations between
events. We train a conditional language model,
LMI , which generates a possible event that could
happen next, given some counterfactual scenarios
for a given story.

We train this model on the TIMETRAVEL (TT)
dataset (Qin et al., 2019), by fine-tuning GPT-2 to
learn about possible next events emerging from a
situation in a story, given some alternative, coun-
terfactual event. The TT dataset consists of five-
sentence instances S=(s1,s2,..,s5)3 from the ROC-
Stories corpus1 plus additional crowd-sourced sen-

3s1 = premise, s2 = initial context, s3:5 = original ending

https://github.com/Heidelberg-NLP/HYPEVENTS
https://github.com/Heidelberg-NLP/HYPEVENTS
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O1: Dotty was being very grumpy.
O2: She felt much better afterwards.
H1: Dotty ate something bad.
H2: Dotty call some close friends to chat.
OH1

2 : She started to feel sick.
OH2

2 : They all tried to make her happy.

Table 1: Example of generated possible next events
O

Hj

2 using the LMI model. Bold hypothesis (H2) is
more plausible.

tences s
′
2:5, where s

′
2 is counterfactual4 to s2 from

the original story5. There are two reasons for using
the TT dataset for our purposes: a) the domains on
which GPT-2 was pretrained are broad6 and differ-
ent from the domain of ROCStories, b) the model
can see how alternative situations can occur start-
ing from the same premise s1, resulting in similar
or different outcomes. Note that, although inter-
mediate situations may be counterfactual to each
other, the future outcome can still be similar to the
original ending due to causal invariance 7.

Concretely, the language model LMI reads the
premise (s1) and the alternative event(s) (s2 or s

′
2),

the masked token (serving as a placeholder for the
missing possible next event(s) (s3:i or s

′
3:i), then

the rest of the story (si+1:5 or s
′
i+1:5) and again

the premise (s1). We train the model to maximize
the log-likelihood of the missing ground-truth sen-
tence(s) (s3:i).

LLMI (β) =
logpβ (s3:i|[S]s1, [M ], si+1:5, [E], [S], s1, s2)

+logpβ (s
′
3:i|[S]s1, [M ], s

′
i+1:5, [E], [S], s1, s

′
2)

(1)

where i ∈ [3, 4], si={wsi1 , .., wsin } a sequence of
tokens, [S]=start-of-sentence token, [E]=end-of-
sentence token, [M ]=mask token.

3 Generating Hypothetical Events to
support the αNLI task

In this paper, we aim to investigate whether models
perform better on the αNLI task when explicitly
learning about events that could follow other events
in a hypothetical scenario. We do so by introduc-
ing two methods LMI + BERTScore and LMI +

4a counterfactual s
′

states something that is contrary to s
5During our experiments we treat them as two separate

instances: S1=(s1:5) and S2 = (s1,s
′
2:5).

6GPT-2 was trained on the WebText Corpus.
7the future events that are invariant under the counterfac-

tual conditions (Qin et al., 2019)

MT L for unsupervised and supervised settings,
respectively.

We first apply the trained model LMI on the
αNLI task, where the given observations O1 and
O2, and alternative hypothesesHj are fed as shown
in (2) below.8

O
Hj
2 = β([S], O1, [M ], O2, [E], [S], O1, Hj) (2)

We generate a possible next event for each hy-
pothetical event Hj , i.e., OH1

2 and OH2
2 (or: what

will happen if some hypothesisHj occurs given the
observations), where j ∈ [1, 2]. Table 1 illustrates
an example where different OHj2 are generated us-
ing LMI . One of the challenges when generating
subsequent events given a hypothetical situation
is that there can be infinite numbers of possible
next events. Therefore, to constrain this range, we
chose to give future events (O2) as input, such that
the model can generate subsequent events in a con-
strained context.

3.1 Unsupervised Setting

In this setting, we do not train any supervised
model to explicitly predict which hypothesis is
more plausible given the observations. Instead,
we apply the fine-tuned LMI model to the αNLI
data, generate possible next events OHj2 given O1

and Hj , as described above, and measure the simi-
larity between such possible next events (OHj2 ) and
the observation (O2) in an unsupervised way, using
BERTScore (BS) (Zhang et al., 2020) 9. We evalu-
ate our hypothesis that the generated possible next
event OHj2 given the more plausible hypothesis Hj

should be more similar to observation O2. Table 1
illustrates an example where H2 is the more plau-
sible hypothesis. We impose the constraint that
for a correctly predicted instance BS(O2

H+
, O2)

> BS(O2
H− , O2) should hold, where H+, H−

are the more plausible vs. implausible hypothesis,
respectively.

3.2 Supervised Setting

In this setting, displayed in Figure 4, we explore
the benefits of training a multi-taskMT L model
that predicts i) the most plausible hypothesis and
ii) which possible next event (OHj2 ) is more similar

8For definition of placeholders see (1).
9BERTScore is an automatic evaluation metric for text gen-

eration that leverages the pre-trained contextual embeddings
from BERT and matches words in candidate and reference
sentences by cosine similarity.
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Figure 4: Overview of our LMI + MT L model for
αNLI: (a) language modelLMI takes the input in a par-
ticular format to generate different possible next events,
(b) theMT L model learns to predict the best explana-
tion (Hj) and possible next events (OHj

2 ) at the same
time to perform the αNLI task.

to the observation (O2). Multi-task learning aims
to improve the performance of a model for a task
by utilizing the knowledge acquired by learning
related tasks (Ruder, 2019). We hypothesize that a)
the possible next event OHj2 of the more plausible
hypothesis Hj should be most similar to observa-
tion O2, and that b) learning which possible next
event is more similar supports the model in the
αNLI task (inductive transfer).

The architecture of LMI + MT L model is
shown in Figure 4. The model marked (a) in Fig-
ure 4 depicts the LMI model as described in §3.
The outputs of the LMI model, which we get from
Eq. (2) for both hypotheses are incorporated as an
input to theMT L model. Concretely, we feed the
MT L classifier a sequence of tokens as stated in
part (b) of Figure 4, and aim to compute their con-
textualized representations using pre-trained BERT.
The input format is described in Table 3. Similar
to (Devlin et al., 2019), two additional tokens are
added [CLS] at the start of each sequence input and
[SEP] at the end of each sentence. In the shared
layers (see Fig 4(b)), the model first transform the
input sequence to a sequence of embedding vectors.
Then it applies an attention mechanism that learns
contextual relations between words (or sub-words)
in the input sequence.

For each instance we get four [CLS] embed-
dings (CLSHj , CLSOHj2

; j ∈ [1, 2]) which are

then passed through two linear layers, one for the
αNLI (main task) and another for predicting the

Task Train Dev Test

αNLI 169654 1532 3059
TimeTravel (NLG) 53806 2998 –

Table 2: Dataset Statistics: nb. of instances

Input Format Output
[CLS] O1 [SEP] Hi [SEP] O2 [SEP] H1 or H2

[CLS] Hi [SEP] OHi2 [SEP] O2[SEP] OH1
2 or OH2

2

Table 3: Input and output format for the αNLI task:
[CLS] is a special token used for classification, [SEP]
a delimiter.

similarity (auxiliary task) between OHj2 and O2.
We compute the joint loss function L = LαNLI +
w ∗ Lsimilarity; where w is a trainable parameter,
LαNLI and Lsimilarity are the loss function for the
αNLI task and auxiliary task, respectively.

4 Experimental Setup

Data. We conduct experiments on the ART (Bha-
gavatula et al., 2020) dataset. Data statistics are
given in Table 2. For evaluation, we measure accu-
racy for αNLI.

Hyperparameters. To train the LMI model we
use learning rate of 5e − 05. We decay the learn-
ing rate linearly until the end of training; batch
size: 12. In the supervised setting for the αNLI
task, we use the following set of hyperparameters
for ourMT L model with integrated LMI model
(LMI + MT L): batch size: {8, 16}; epochs:
{3, 5}; learning rate: {2e-5, 5e-6}. For evaluation,
we measure accuracy. We use Adam Optimizer,
and dropout rate = 0.1. We experimented on GPU
size of 11GB and 24GB. Training is performed us-
ing cross-entropy loss. The loss function is LαNLI
+ w ∗ Lsimilarity, where w is a trainable parame-
ter. During our experiment we initialize w = 1.
The input format is depicted in Table 3. We report
performance by averaging results along with the
variance obtained for 5 different seeds.

Baselines. We compare to the following baseline
models that we apply to the αNLI task, training
them on the training portion of the ART dataset
(cf. Table 2).

• ESIM + ELMo is based on the ESIM model
previously used for NLI (Chen et al., 2017).
We use (a) ELMo to encode the observations
and hypothesis, followed by (b) an attention
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Model Dev Acc.(%) Test Acc.(%)

Majority (from dev set)� – 50.8
LMI + BERTScore 62.27 60.08
Infersent � 50.9 50.8
ESIM + ELMo � 58.2 58.8
BERTLarge � 69.1 68.9±0.5
GPT-2 +MT L 68.9±0.3 68.8±0.3
COMET +MT L 69.4±0.4 69.1±0.5
LMI +MT L 72.9±0.5 72.2±0.6
Human Performance - 91.4

Table 4: Results on αNLI task, � : as in Bhagavatula
et al. (2020) (no unpublished leaderboard results). For each
row, the best results are in bold, and performance of our
models are in blue.

layer, (c) a local inference layer, and (d) an-
other bi-directional LSTM inference composi-
tion layer, and (e) a pooling operation,

• Infersent (Conneau et al., 2017) uses sentence
encoding based on a bi-directional LSTM ar-
chitecture with max pooling.

• BERT (Devlin et al., 2019) is a LM trained
with a masked-language modeling (MLM)
and next sentence prediction objective.

As baselines for using the MT L model, we
replace LMI with alternative generative LMs:

• GPT-2 + MT L. In this setup, we directly
use the pretrained GPT-2 model and task it
to generate a next sentence conditioned on
each hypothesis (OHi2 ) without finetuning it
on the TIMETRAVEL data. We then use the
supervisedMT L model to predict the most
plausible hypothesis and which of the gener-
ated observations is more similar to O2.

• COMET +MT L. In this setting, we make
use of inferential if-then knowledge from
ATOMIC (Sap et al., 2019a) as background
knowledge. Specifically, we use COMET to
generate objects with Effect10 relations for
each hypothesis as a textual phrase.

5 Results

In Table 4, we compare our models LMI +
BERTScore and LMI +MT L against the mod-
els proposed in Bhagavatula et al. (2020): a ma-
jority baseline, supervised models (Infersent and

10as a result PersonX feels; as a result PersonX wants;
PersonX then

ESIM+ELMo), as well as BERTLarge. Bhagavat-
ula et al. (2020) re-train the ESIM+ELMo and In-
fersent models on the ART dataset and fine-tuned
the BERT model on the αNLI task and report the
results.

We find that our unsupervised model with
BERTScore (LMI + BERTScore) outperforms (by
+9.28 pp. and +1.28 pp.) strong ESIM+ELMo and
Infersent baseline models. Table 5 shows some ex-
amples of our generation model LMI along with
the obtained BERTScores.

Unlike the unsupervised LMI + BERTScore,
our supervised LMI + MT L model also im-
proves over the BERTLarge baseline, by +3.3 pp.
We can attribute the improvement to the model
having been jointly trained to assess the similarity
and dissimilarity of possible next events OHj2 and
observations (O2) along with the αNLI task. One
of the advantages of training our proposed multi-
task learning (MT L) model, instead of directly
feeding the possible next events OHj2 as knowledge
inputs is that it adds an explainable component to
the model. One can view the generated next events
O
Hj
2 as natural language rationales and our multi-

task model explicitly chooses one of them. Hence,
the multi-task framework makes the model more
expressive. Finally, we compare, for the MT L
model, our embedded generation model LMI to
pre-trained GPT-2 and COMET. Table 4 shows that
LMI +MT L yields better performance compared
to both COMET +MT L (+3.1 pp.) and GPT-2 +
MT L (+3.4 pp.) – the intuitive reason being that
the next events generated by LMI are more helpful
than events generated using pretrained GPT-2 and
objects generated by COMET.

Table 5 illustrates some examples where our
MT L model not only chooses the correct hypoth-
esis, but also a likely possible next event that is
similar to the observation O2. Interestingly, dur-
ing training ofMT L we initialize w = 1, and af-
ter training the model we found the w value had
been adjusted to a range between 0.85 and 0.75,
which intuitively shows both the effectiveness of
our LMI -generated possible next events, and their
similarity to the given observations O2.

5.1 Case Study

Table 5 displays possible next events, generated by
our LMI model – along with the BERTscore mea-
sured between the possible next events OHj2 and
observation O2. We see two different scenarios:
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Observation (O) Given Hypotheses (Hj) What if Hj happens?
Generated possible next
events OHj2

MTL Reasoning
Type

BERT
Score

Human
Evalua-
tion

a. O1: Jim got ready for his
first date.

H1: Jim’s date wasn’t at-
tracted to him.

OH2
1 : He tried to get her num-

ber. She never responded to
him.

H1, OH1
2 Reaction 47.34 Non-

Contradiction

O2: Since then, she has ig-
nored all of Jim’s text mes-
sages.

H2: Jim went on the date and
said he didn’t like the girl.

OH2
2 : He told her that he

didn’t want to date her.
44.19 Contradiction

b. O1: Nate had the summer
off before college.

H1: Nate spent the summer
traveling and partying.

OH1
2 : Nate had a lot of fun. H1, OH1

2 Motivation 49.02 Non-
Contradiction

O2: Nate’s last summer
before college was a total
blast!

H2:Nate decided to spend the
entire summer working in the
Mines.

OH2
2 : Nate spent the summer

working in the mines.
44.34 Redundancy

c. O1: Dotty was being very
grumpy.

H1: Dotty ate something bad. OH1
2 : She started to feel sick. H2, OH2

2 Emotional
Effect

0.604 Contradiction

O2: She felt much better
afterwards

H2: Dotty call some close
friends to chat.

OH2
2 : They all tried to make

her happy.
0.405 Non-

Contradiction
d. O1: Cay had a crush on a

boy in her class.
H1: Cay sent a love note to
the boy.

OH1
2 : The boy responded and

said he liked Cay.
H1, OH1

2 Emotional
Effect

0.509 Non-
Contradiction

O2: He smiled at her after
and said he liked her too!

H2: She told him she did not
like him.

OH2
2 : The boy was very sad

about it.
0.423 Contradiction

Table 5: Examples of generated possible next events for solving αNLI using our LMI model. Column 3: Hy-
pothesis and possible next events chosen by our LMI +MT L model; Column 4: Reasoning type between the
hypothesis Hj and O2; Column 5: BERTScore between the OHj

2 and O2; Column5: Human evaluation of the
possible next events with respect the observation O2.

(i) examples (a), (b) and (d) depicting the scenario
where possible next events and observation pairs
correctly achieve higher BERTscores 11, (ii) exam-
ple (c) depicting the scenario where an incorrect
possible next event and observation pair achieves
higher BERTscores than the correct one. Intuitive
reasons for these scenarios are, for example, for
(a): there is a higher word overlap and semantic
similarity between a correct next event and observa-
tion O2, for example (b): there is higher semantic
similarity; whereas for example (c): although there
is a higher semantic dissimilarity, the word over-
lap between the wrong possible next event (“She
started to feel sick.”) and the observation (“She felt
much better afterwards.”) is much higher.

6 Manual Evaluation

Since the automatic scores only account for word-
level similarity between observations and gener-
ated possible next events, we conduct a manual
evaluation study, to assess the quality of sentences
generated by our LMI model.

Annotation Study on LMI generations. The
annotation was performed by three annotators with
computational linguistic background. We provide
each of the three annotators with observations, hy-
potheses and sentences, as produced by our LMI

11BERTscore matches words in candidate and reference
sentences by cosine similarity.

model, for 50 randomly chosen instances from the
αNLI task. They obtain i) generated sentences
for a next possible event for the correct and incor-
rect hypothesis, as well as ii) the sentence stating
observation O2.

We ask each annotator to rate the sentences ac-
cording to four quality aspects as stated below.

Grammaticality: the sentence is i) grammatical,
ii) not entirely grammatical but understand-
able, or iii) completely not understandable;

Redundancy: the sentence contains redundant or
repeated information;

Contradiction: the sentence contains any pieces
of information that are contradicting the given
observation O2 or not;

Relevance: the possible next event is i) relevant,
ii) partially relevant, or iii) not relevant.

For each aspect, they are asked to judge the sen-
tence generated for the correct hypothesis12. Only
for Contradiction, they are asked to judge both
sentences, for correct and the incorrect hypotheses.

Results and Discussion. Figures 5, 7, and 6
present the results of manual evaluations of the
generation quality, according to the different crite-
ria described above.

12The correct hypothesis was marked for the annotation.
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84.0%

4.0%

12.0%

Grammatical
Understandable
Gibberish

Figure 5: Human evaluation of the grammaticality of
generated sentences: ratio of i) grammatical, ii) not en-
tirely grammatical but understandable, iii) completely
not understandable sentences.

46.0%

24.0%

30.0%

Relevant

Partially 
Relevant

Irrelevant

Figure 6: Human evaluation of the Relevance of gener-
ated sentences for possible next events.

For measuring inter-annotator agreement, we
computed Krippendorff’s α (Hayes and Krippen-
dorff, 2007) for Grammaticality and Relevance, as
it is suited for ordinal values, and Cohen’s Kappa
κ for Redundancy and Contradiction. We found
α values are 0.587 and 0.462 for Grammaticality
and Relevance, respectively (moderate agreement)
and κ values 0.61 and 0.74 for Redundancy and
Contradiction (substantial agreement). We aggre-
gated the annotations from the three annotators
using majority vote. Figure 5 shows that the major-
ity of sentences (96%) are grammatical or under-
standable. Figure 7 shows that most sentences for
correct labels are non-redundant (84%) and non-
contradictory (88%), whereas for incorrect labels
39 instances are found to be contradictory with the
observation O2 (78%). The manual evaluation sup-
ports our hypothesis that the generated sentences
for correct labels should be more similar (less con-
tradictory) compared to the sentences generated for
incorrect labels. Figure 6 shows the ratio of sen-
tences considered by humans as relevant, partially
relevant, and irrelevant. The results show that 46%
of cases are relevant (based on majority agreement)
and 24% of cases are partially relevant. This yields
that the generated sentences are (partially) relevant
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Figure 7: Human evaluation of Redundancy and Con-
tradiction of generations for possible next events.

in most cases and thus should support abduction
for both unsupervised (LMI + BERTScore) and
supervised (LMI +MT L) models.

Impact of Reasoning types. Finally, to better
assess the performance of our model, we deter-
mine what types of reasoning underly the abductive
reasoning tasks in our data, and examine to what
extent our models capture or not these reasoning
types. We consider again the 50 instances that were
annotated by our previous annotators and manually
classify them into different reasoning types. We
broadly divided the data into 6 categories: (i) Moti-
vation, (ii) Spatial-Temporal, (iii) Emotional, (iv)
Negation, (v) Reaction, (vi) Situational fact. The
most frequent type was Emotional (10), most infre-
quent was Spatial (7). We ask a new annotator to
annotate the reasoning types for these 50 instances.
Considering the relevance and contradiction cate-
gories from the previous annotations we determine
that for Negation (8), Emotional (10), and Reac-
tion (8) all generated events for correct labels are
partially or fully relevant and non-contradictory.
An intuitive reason can be that we train our LMI
model to learn how different counterfactual hypo-
thetical events emerging from a single premise can
lead to the same or different outcomes through a
series of events. Some counterfactual events (s

′
2)

are negations of the original event (s2) in the TIME-
TRAVEL dataset. This may support the reasoning
class Negation. For the other categories: Moti-
vation, Spatial-temporal, and Situational fact, we
detect errors regarding (missing) Relevance in 21%,
14% and 28% of cases, respectively. Table 6 illus-
trates an example from the class Situational Fact,
where our generated next event is irrelevant and
redundant.
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O1: Jenna hit the weight hard in the gym.
O2: She took a cold bath in order to alleviate her pain.
H1: Her neck pain stopped because of this.
H2: Jenna pulled a muscle lifting weights.
OH1

2 : She decided to take a break .
OH2

2 : Jenna lost weight in the gym.

Table 6: Error Analysis: An example of generated pos-
sible next event OHj

2 from Situational Fact category.

7 Related Work

Commonsense Reasoning. There is growing in-
terest in this research field, which led to the cre-
ation of several new resources on commonsense
reasoning, in form of both datasets, such as So-
cialIQA (Sap et al., 2019b), CommonsenseQA (Tal-
mor et al., 2019), CosmosQA (Huang et al., 2019)
and knowledge bases, e.g. ConceptNet (Speer et al.,
2017), ATOMIC (Sap et al., 2019a), or Event2Mind
(Rashkin et al., 2018). Recently, many works pro-
posed to utilize external static knowledge graphs
(KGs) to address the bottleneck of obtaining rele-
vant commonsense knowledge. Lin et al. (2019)
proposed to utilize knowledge graph embeddings
to rank and select relevant knowledge triples or
paths. Paul and Frank (2019) proposed to extract
subgraphs from KGs using graph-based ranking
methods and further Paul et al. (2020) adopted the
graph-based ranking method and proposed to dy-
namically extend the KG to combat sparsity. In
concurrent work, Paul and Frank (2021) introduced
a method to dynamically generate contextually rel-
evant knowledge that guides a model while per-
forming the narrative story completion task.

Both hypothetical reasoning and abductive rea-
soning are understudied problems in NLP. Recently,
Tandon et al. (2019) proposed a first large-scale
dataset of “What if...” questions over procedural
text. They introduced the dataset to study the effect
of perturbations in procedural text. Related to our
work, Qin et al. (2019) investigated the capabili-
ties of state-of-the-art LMs to rewrite stories with
counterfactual reasoning. In our work we utilize
this dataset to model how to generate possible next
events emerging from different hypothetical and
counterfactual events. Mostafazadeh et al. (2016)
designed the narrative cloze task, a task to choose
the correct ending of a story.13 Conversely, Bha-
gavatula et al. (2020) proposed a task that requires

13Their dataset, ROCStories, was later extended in Qin et al.
(2019) and Bhagavatula et al. (2020).

reasoning about plausible explanations for narra-
tive omissions. Our research touches on the issue
of hypothetical reasoning about alternative situ-
ations. We found that making language models
learn how different hypothetical events can evolve
from a premise and result in similar or different fu-
ture events forming from a premise and how these
events can result in similar or different future events
helps models to perform better in abduction.

Explainability. Despite the success of large pre-
trained language models, recent studies have raised
some critical points such as: high accuracy scores
do not necessarily reflect understanding (Min et al.,
2019), large pretrained models may exploit super-
ficial clues and annotation artifacts (Gururangan
et al., 2018; Kavumba et al., 2019). Therefore,
the ability of models to generate explanations has
become desirable, as this enhances interpretabil-
ity. Recently, there has been substantial effort
to build datasets with natural language explana-
tions (Camburu et al., 2018; Park et al., 2018;
Thayaparan et al., 2020). There have also been
numerous research works proposing models that
are interpretable or explainable (Rajani et al., 2019;
Atanasova et al., 2020; Latcinnik and Berant, 2020;
Wiegreffe and Marasović, 2021). Our work sheds
light in this direction, as ourMT L model not only
predicts the plausible hypothesis Hj but also gener-
ates possible next events OHj2 and chooses the one
that is closer to the given context, thereby making
our model more expressive.

Abductive Reasoning. There has been long-
standing work on theories of abductive reasoning
(Peirce, 1903, 1965a,b; Kuipers, 1992, 2013). Re-
searchers have applied various frameworks, some
focused on pure logical frameworks (Pople, 1973;
Kakas et al., 1992), some on probabilistic frame-
works (Pearl, 1988), and others on Markov Log-
ics (Singla and Mooney, 2011). Recently, moving
away from logic-based abductive reasoning, Bha-
gavatula et al. (2020) proposed to study language-
based abductive reasoning. They introduced two
tasks: Abductive Natural Language Inference
(αNLI) and Generation (αNLG). They establish
baseline performance based on state-of-the-art lan-
guage models and make use of inferential struc-
tured knowledge from ATOMIC (Sap et al., 2019a)
as background knowledge. Zhu et al. (2020) pro-
posed to use a learning-to-rank framework to ad-
dress the abductive reasoning task. Ji et al. (2020)
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proposed a model GRF that enables pre-trained
models (GPT-2) with dynamic multi-hop reasoning
on multi-relational paths extracted from the exter-
nal ConceptNet commonsense knowledge graph
for the αNLG task. Paul and Frank (2020) have
proposed a multi-head knowledge attention method
to incorporate commonsense knowledge to tackle
the αNLI task. Unlike our previous work in Paul
and Frank (2020), which focused on leveraging
structured knowledge, in this work, we focus on
learning about what will happen next from dif-
ferent counterfactual situations in a story context
through language model fine-tuning. Specifically,
we study the impact of such forward inference on
the αNLI task in a multi-task learning framework
and show how it can improve performance over a
strong BERT model.

8 Conclusion

We have introduced a novel method for addressing
the abductive reasoning task by explicitly learning
what events could follow other events in a hypothet-
ical scenario, and learning to generate such events,
conditioned on a premise or hypothesis. We show
how a language model – fine-tuned for this capabil-
ity on a suitable narrative dataset – can be leveraged
to support abductive reasoning in the αNLI tasks,
in two settings: an unsupervised setting in combina-
tion with BertScore, to select the proper hypothesis,
and a supervised setting in aMT L setting.

The relatively strong performance of our pro-
posed models demonstrates that learning to choose
from generated hypothetical next events the one
that is most similar to the observation, supports
the prediction of the most plausible hypothe-
sis. Our experiments show that our unsupervised
LMI+BERTScore model outperforms some of the
strong supervised baseline systems on αNLI. Our
research thus offers new perspectives for training
generative models in different ways for various
complex reasoning tasks.
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