Recovering Lexically and Semantically Reused Texts

Ansel MacLaughlin; Shaobin Xu; David A. Smith
Khoury College of Computer Science
Northeastern University
{ansel, shaobinx, dasmith}@ccs.neu.edu

Abstract

Writers often repurpose material from existing
texts when composing new documents. Be-
cause most documents have more than one
source, we cannot trace these connections us-
ing only models of document-level similarity.
Instead, this paper considers methods for local
text reuse detection (LTRD), detecting local-
ized regions of lexically or semantically simi-
lar text embedded in otherwise unrelated mate-
rial. In extensive experiments, we study the
relative performance of four classes of neu-
ral and bag-of-words models on three LTRD
tasks — detecting plagiarism, modeling jour-
nalists’ use of press releases, and identifying
scientists’ citation of earlier papers. We con-
duct evaluations on three existing datasets and
a new, publicly-available citation localization
dataset. Our findings shed light on a num-
ber of previously-unexplored questions in the
study of LTRD, including the importance of in-
corporating document-level context for predic-
tions, the applicability of of-the-shelf neural
models pretrained on “general” semantic tex-
tual similarity tasks such as paraphrase detec-
tion, and the trade-offs between more efficient
bag-of-words and feature-based neural models
and slower pairwise neural models.

1 Introduction

When composing documents in many genres—
from news reports, to scientific papers, to politi-
cal speeches—authors obtain ideas and inspiration
from source documents and present them in the
form of direct copies, quotations, summaries, or
paraphrases. In the simplest case, e.g. in con-
gressional bills, writers include text from earlier
versions of the same document along with new
material (Wilkerson et al., 2015). In news me-
dia, journalists often paraphrase or quote speeches,
press releases, and interviews (Niculae et al., 2015;

*Equal contribution.
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Tan et al., 2016). In academia, citations of papers
usually appear along with summaries of their con-
tributions (Qazvinian and Radev, 2010). These
are instances of lexical and semantic local text
reuse, where both source and target documents
contain lexically or semantically similar passages,
surrounded by text that is unrelated or dissimilar.
Often, reused text is presented without explicit
links or citations, making it hard to track infor-
mation flow.

While many state-of-the-art (SoTA) NLP archi-
tectures have been trained on the closely-related
tasks of document- and sentence-pair similarity de-
tection (Reimers and Gurevych, 2019) and ad-hoc
retrieval (Dai and Callan, 2019), prior methods for
local text-reuse detection (LTRD) are mostly lim-
ited to lexical matching (Lee, 2007; Clough et al.,
2002; Leskovec et al., 2009; Wilkerson et al., 2015;
Smith et al., 2014) with some dictionary expan-
sion (Moritz et al., 2016). To our knowledge, only
Zhou et al. (2020) has applied neural models to
this problem, proposing hierarchical neural mod-
els that use a cross-document attention mechanism
to model local similarities between two candidate
documents.

In this paper, we conduct a large-scale evalu-
ation of several lexical overlap and SoTA neural
models for LTRD. Among the neural models, we
benchmark not only the hierarchical neural models
proposed by Zhou et al. (2020), but also study the
effectiveness of three classes of models not yet ap-
plied to LTRD: 1) BERT-based (Devlin et al., 2019)
passage encoders trained on generic paraphrase, se-
mantic textual similarity, and IR data (Reimers and
Gurevych, 2019); 2) feature-based BERT models
with direct sentence-level supervision; and 3) fine-
tuned BERT-based models for sequence-pair tasks.

We conduct evaluations on four datasets, includ-
ing 1) PAN and S20RC (Zhou et al., 2020), bench-
mark LTRD datasets for plagiarism detection and
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citation localization; 2) Pr2News (MacLaughlin
et al., 2020), a dataset of text reuse in news arti-
cles labeled with a mix of expert, non-expert, and
heuristic annotation; 3) ARC-Sim, a new, publicly
available! citation localization dataset created us-
ing citation links in the ACL ARC (Bird et al.,
2008).

Our experiments address a number of previously-
unexplored questions in the study of LTRD, includ-
ing 1) the impact of training on weakly-supervised
data on model accuracy; 2) the effectiveness of
SoTA neural models trained on “general” seman-
tic similarity data for LTRD tasks; 3) the impor-
tance of incorporating document-level context; 4)
the effects of domain-adaptive pretraining (Guru-
rangan et al., 2020) on the accuracy of fine-tuned
BERT models; and 5) the trade-offs between more
efficient lexical overlap and feature-based neural
models and slower pairwise neural models.

2 Related Work

LTRD methods have been applied in many do-
mains, including tracking short “memes” in news
and social media (Leskovec et al., 2009), tracing
specific policy language embedded in proposed leg-
islation (Wilkerson et al., 2015; Funk and Mullen,
2018), studying reuse of scripture in historical
and theological writings (Lee, 2007; Moritz et al.,
2016), tracing information propagation in news and
social media (Tan et al., 2016; Clough et al., 2002;
MacLaughlin et al., 2020), and detecting plagia-
rism on the web (Potthast et al., 2013; Sanchez-
Pérez et al., 2014; Vani and Gupta, 2017). Most
applications, however, use only lexical overlap and
alignment methods to detect reuse, sometimes with
lemmatization and dictionary curation.

Our work builds on the recent efforts of Zhou
et al. (2020), who demonstrate the efficacy of hi-
erarchical neural models in detecting instances of
non-literal reuse where authors paraphrase, sum-
marize, and heavily edit source content. However,
as discussed in §1, we conduct a much larger set
of experiments beyond those of Zhou et al. (2020).
In addition to the hierarchical neural models with
document-level supervision proposed by Zhou et al.
(2020), we evaluate four sets of models: lexical
overlap models, SOTA neural models trained for
general paraphrase detection, hierarchical neural
models with sentence-level supervision, and fine-
tuned sequence-pair BERT models. Further, in

'https://github.com/maclaughlin/ARC-Sim
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addition to evaluating models on the benchmark
LTRD datasets introduced by Zhou et al. (2020),
we conduct experiments on two more challenging
datasets: ARC-Sim, a new citation localization
dataset with hard negative examples, and Pr2News
(MacLaughlin et al., 2020), a dataset of text reuse
in science news articles with heuristically-labeled
training data.

Also related to our work is research studying
sentence-pair problems, e.g. paraphrase detection
(PD) (Dolan and Brockett, 2005), semantic tex-
tual similarity (STS) (Cer et al., 2017) and textual
entailment, (Bowman et al., 2015), and document-
ranking problems, e.g. ad-hoc retrieval (Croft et al.,
2009). In fact, it is trivial to adapt existing ap-
proaches to sentence-pair and document ranking
problems to LTRD. As discussed in §3, we cast
LTRD as sentence classification and ranking, iden-
tifying which sentences in a target text are lexically
or semantically reused from some portion of the
source. Thus, in order to adapt sentence-pair mod-
els to this task, we simply compute scores for all
pairs of (source sentence, target sentence), and use
some function (e.g. max) to aggregate the scores
for each target sentence. Similarly, one can adapt
existing ad-hoc retrieval approaches by treating
each target sentence as a query and computing a
score with the corresponding source. These ap-
proaches, however, may suffer from a lack of con-
textualization and/or efficiency issues. Sentence-
pair models that encode each source and target
sentence separately, while efficient, might miss im-
portant contextualizing information in surrounding
sentences. Similarly, neural IR models that pro-
cess each target sentence as a separate query do not
contextualize target sentences and also require a
computationally-expensive forward pass for each
query. We study the importance and impact of
these limitations in our work, testing the effective-
ness of multiple SOTA BERT-based architectures
for sequence-pair similarity and ranking.

3 Problem Definition

Following Zhou et al. (2020), we define LTRD as
two tasks: document-to-document (D2D) align-
ment and sentence-to-document (S2D) align-
ment. In D2D, for a given pair of documents
(source document S, target document T'), we aim
to predict whether T reuses content from S. Thus,
each pair has a corresponding binary label of 1 if
T reuses content, else 0. Note, this is different than
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evaluating the similarity of the two documents as
a whole, since, in this setting, only a small portion
of T is adapted from S, and most of it is possibly
unrelated. In S2D, given an (S, T) pair, we aim
to predict which specific sentences t; € T contain
reused S content. Thus, each pair has n correspond-
ing labels, one label for each sentence t; € T.2

4 Models

‘We benchmark four classes of models on this task:

4.1 Lexical Overlap Models

We evaluate two unsupervised metrics:

e TF-IDF Cosine Similarity: Simple word
overlap metrics are commonly-used baselines
to measure the similarity between two pas-
sages for PD (Dolan and Brockett, 2005), STS
(Reimers and Gurevych, 2019), document re-
trieval (Croft et al., 2009), and LTRD (Tan
et al., 2016; Lee, 2007; Clough et al., 2002).

Rouge (Lin, 2004): Since authors of derived
documents often paraphrase and summarize
source content, we evaluate Rouge, a popular
summarization evaluation metric. We evaluate
Rouge-{1, 2, L}, selecting the best configura-
tion for each dataset using validation data.

We compute two versions of each metric: single-
pair (sp) and all-pairs (ap). In sp, for a given doc-
ument pair (S, T), we compute a score for each
sentence t; € T by computing its similarity to the
entire S. In ap, we compute a score for each sen-
tence t; € T by computing its similarity to each
sentence s; € S, then selecting the maximum score
over all s;. These scores are then thresholded to
make binary predictions. For the D2D task, we
predict T as positive if it contains at least one pos-
itively predicted sentence. For the S2D task, we
evaluate the predicted score for each t; € T.

4.2 Pretrained Sentence-BERT Encoders

We evaluate Sentence-BERT (SBERT) (Reimers
and Gurevych, 2019), a SoTA pretrained passage
encoder for semantic-relatedness tasks. SBERT
models are trained by 1) adding pooling (e.g. mean
pooling) to the output of BERT; 2) training on pairs

2We could also study the sentence-to-sentence problem,
learning to identify which source sentence(s) contain the con-
tent reused in a given target sentence, if any. However, as
noted by Zhou et al. (2020), no datasets exist yet which con-
tain such fine-grained annotation.
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or triplets of passages to learn semantically mean-
ingful passage representations; 3) at test time, com-
puting the similarity between two passages as the
cosine similarity between their pooled representa-
tions. We evaluate three SBERTS trained for differ-
ent tasks:

¢ Semantic Textual Similarity (STS):
Robertas, spag (Liu et al., 2019) trained on
SNLI (Bowman et al., 2015) and MultiNLI
(Williams et al., 2018) then fine-tuned on the
STS-B (Cer et al., 2017) train set.

e Paraphrase Detection (PD): distilled
Robertag 45 (Sanh et al., 2019) fine-tuned
on a large-scale paraphrase detection corpus.

e Information Retrieval (IR): distilled
Robertag 45 (Sanh et al., 2019) fine-tuned
on MS MARCO (Campos et al., 2016).

Note, these pretrained SBERT models are not
trained for LTRD. Instead, they are trained on large-
scale datasets for other related tasks (PD, STS, IR).
These experiments thus evaluate how well off-the-
shelf tools generalize to a new task and domain.

Just as the lexical models, we evaluate in sp
and ap settings. Following Reimers and Gurevych
(2019), we embed each source document, source
sentence, and target sentence separately, then com-
pute cosine similarity for each pair.

4.3 Hierarchical Neural Models (HNM)

We also benchmark three HNM. Similar to SBERT
(§4.2), HNM operate on frozen embeddings (Peters
et al., 2019) which are computationally efficient
since they only need to be calculated once (i.e. only
one BERT forward pass for each source or target
sentence). Unlike SBERT, however, HNM also
have task-specific model architectures that learn to
contextualize and align sentences.

BERT-HAN (shallow) (Zhou et al., 2020): this
model mean pools frozen BERT embeddings to
generate sentence representations, then uses a hi-
erarchical attention network (HAN) (Yang et al.,
2016) to add document-level context and a cross-
document attention (CDA) mechanism to align pas-
sages across documents. See Zhou et al. (2020).

At training time, BERT-HAN only calculates
loss at the document-pair level, i.e. D2D classifica-
tion. There is no sentence-level supervision (S2D).
At inference, two sets of predictions are output: 1)
the D2D prediction, as during training; 2) the in-
termediate hidden representations of the sentences



t; € T are extracted, then ranked by their similar-
ity to the final hidden representation of the entire
source document S.

GRU-HAN (deep) (Zhou et al., 2020): this
model mirrors BERT-HAN, except with GloVe
(Pennington et al., 2014) embeddings and a HAN
with CDA at both the word and sentence level. It
follows the same training and testing regime.

BCL-CDA: We adapt the BCL model from
MacLaughlin et al. (2020) (originally designed for
the task of intrinsic source attribution on Pr2News)
for LTRD by adding a final CDA layer (Zhou et al.,
2020). After generating contextualized representa-
tions of each source and target sentence with BCL,
a CDA layer computes an attention-weighted rep-
resentation of each target sentence, weighted by
its similarity to the source sentences. The CDA-
weighted and original target sentence representa-
tions are then concatenated and fed into a final layer
for prediction.

At training time, BCL-CDA is supervised with
target sentence labels. At testing time, it makes
target sentence-level predictions (S2D) just as in
training. We make a D2D prediction for each (S,
T) pair by taking the max over its sentence-level
predictions. See Appendix C for full model details.

4.4 Fine-tuned BERT-based Models

Finally, we evaluate fine-tuned BERT-based models
for sequence pair classification. Unlike the other
three classes of models described above, features
for these fine-tuned models cannot be precomputed.
Instead, at test time, a separate forward pass is re-
quired for each (S, T) or (S, t;) pair. Thus, though
these models might achieve better performance
than feature-based alternatives (Peters et al., 2019),
it may be unfeasible to test them on large collec-
tions where many pairwise computations would be
required.

Sequence Pair Models: We fine-tune
Robertap,s. (Liu et al., 2019) using the standard
setup for sequence-pair tasks such as PD, STS,
and IR (Devlin et al., 2019; Akkalyoncu Yilmaz
et al., 2019). We create an input example for each
(source document S, target sentence t;) pair:

[CLS] < s1,...,sn > [SEP| t; [SEP]
where < sy, ...,s, > contains the source docu-
ment, split into sentences, with each sentence
separated by a special [SSS] token (“source
sentence start”) and t; is a single target sentence.
We feed the [CLS] representation into a final layer
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Table 1: Dataset statistics: the total number of (source
S, target T') example pairs, the average # of sentences
and words in each S and T, and the average # of posi-
tively labeled T sentences in each positive (S, T) pair.
For Pr2News, we report the average # of T sentences
with label > 0 in the human-labeled val and test sets.

Avg. Source Avg. Target
Dataset | # Examples | # Sents # Words | # Sents # Words # Positive
PAN 18,903 23.7 527.6 224 538.5 14.0
S20RC 188,311 7.2 190.7 11.5 335.8 1.2
Pr2News 64,779 353 934.7 30.1 761.3 8.7
ARC-Sim | 105,381 5.0 126.6 16.7 400.8 1.2

to make a prediction for t;. Thus, making a
prediction for an entire (S, T) document pair
requires n forward passes, one for each t; € T.

Domain-adapted Sequence Pair Models: As
shown by Gururangan et al. (2020), further pre-
training BERT-based models on in-domain text
improves performance on a variety of tasks. We
explore the effects of DAPT for LTRD, testing
Roberta models domain-adapted on either biomed-
ical publications, computer science publications or
news data. We fine-tune these models as above.

Sequential Sequence Pair Models: Since the
fine-tuned models discussed above operate on a
single t; at a time, they cannot leverage informa-
tion from the surrounding target context. Following
the success of BERT-based models for sequential
sentence classification (Cohan et al., 2019), we
construct new input examples containing the full
source and target documents, split into sentences:

[CLS]< s1, ..., sn >[SEP|< ti,...,t, >[SEP]
Again, < si,...,sp > contains the source sen-
tences. Similarly, < tq,...,t, > contains the tar-
get sentences, with each separated by a special
[TSS] token (“target sentence start”). We feed the
final [TSS] representations into a multi-layer feed-
forward network to make a prediction for each tar-
get sentence.

Each pair is labeled with all corresponding tar-
get sentence labels. Since many pairs exceed
Roberta’s 512 Wordpiece length limit, we use
Longformerpg,s. (Beltagy et al., 2020), a Roberta-
based model with an adapted attention pattern to
handle up to 4,096 tokens. We put global attention
on the [SSS] and [TSS] tokens to allow the model
to capture cross-document sentence similarity.

5 Datasets

We benchmark the proposed models on four differ-
ent datasets (Table 1). See Appendix A for further
dataset stastics and preprocessing details.



5.1 PAN (Zhou et al., 2020)

PAN contains pairs of (S, T) web documents where
T has potentially plagiarized S. Positive pairs
contain synthetic plagiarism, generated by meth-
ods such as back-translation (Potthast et al., 2013).
Negative examples are created by replacing S with
another, unplagiarized source text, S, sampled from
the corpus. D2D labels are binary: plagiarized or
not. The S2D labels for t; € T are 1 if t; plagia-
rizes S, else 0 (labels in negative pairs are 0).

5.2 Pr2News (MacLaughlin et al., 2020)

Pr2News contains pairs of (press release S, science
news article T'), where each T has reused content
from S. There are three aspects of this dataset
which are unlike the others we study: 1) All (S, T)
pairs are positive and contain reuse. Thus, we only
evaluate the S2D task. 2) While the val and test
sets are human-annotated, the (S, T) pairs in the
training set are labeled using a heuristic (TF-IDF
cosine similarity). Though there has been some
success training neural models on scores generated
by word-overlap heuristics for the problems of doc-
ument retrieval (Dehghani et al., 2017) and source
attribution (MacLaughlin et al., 2020), applications
of weakly-supervised models have not yet been
studied on human-labeled LTRD test sets. 3) Tar-
get sentences, t; € T, in the val and test sets are
labeled on a 0-3 ordinal scale, ranging from no
reuse (0) to near or exact duplication (3).

5.3 S20RC (Zhou et al., 2020)

S20RC is a citation localization dataset, contain-
ing (abstract S, paper section T pairs. Citation
localization consists of identifying which t; € T,
if any, cite the source. All citation marks are re-
moved from the texts, so models can only make
predictions by comparing the language of S and
T, not just simply identify citation marks. Positive
examples are created by sampling scientific papers
from the broader S20ORC corpus (Lo et al., 2020),
finding sections in those papers that contain cita-
tion(s) to another paper in the corpus, and pairing
together the (cited source abstract S, citing section
T). Negative pairs are created by pairing T with
S, the abstract of a paper it does not cite. The D2D
labels are O for negative pairs, 1 for positive. The
S2D labels for t; € T are 1 if t; contains a citation
of S, else 0. S2D labels for negative pairs are all 0.

The design of this dataset follows the assumption
that the citing sentence(s) in T often paraphrase or
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summarize some portion of the cited paper, which
is, in turn, summarized by its abstract S. This
assumption, however, may be incorrect if the cit-
ing sentence is a poor summary of the cited paper
(Abu-Jbara and Radev, 2012) or it refers to con-
tent in the cited paper which is not included in
the abstract. Nevertheless, this assumption allows
for easy creation of large-scale, real-world LTRD
datasets. This is in contrast to Pr2News, which
is substantially smaller due its reliance on human-
annotated val and test labels, and PAN, which uses
automatic methods to generate synthetic examples.
We discuss the trade-offs of using citation marks to
generate LTRD datasets in §5.4.

54 ARC-Sim

Motivated by the design of S2ORC, we propose a
new citation localization dataset® built on the ACL
Anthology Conference Corpus (ARC) (Bird et al.,
2008). Just as S20RC, we construct our dataset
using citations links between papers. Thus, we
first break up each ARC paper by section, then use
ParsCit (Councill et al., 2008) to find all sections
that cite another paper in ARC. Positive examples
are pairs (abstract S, paper section T') where S is
cited by at least one t; € T. Using this method we
generate 61,131 positive (S, T) pairs. Most (88%)
T contain only one positive sentence.

To create negative examples, we pair each S
from the positive samples with a new section, T,
that does not cite it. Importantly, T is sampled from
the same target paper as the original T. This gen-
erates 44,250 negative pairs.* We argue that these
negative samples method will be both more diffi-
cult and realistic than those in S20RC. In S20RC,
negatives are generated by sampling a new source
Sto pair with T'. However, due to the large scale of
the corpus, S and T are often completely unrelated
(e.g. Bio vs. CS). These examples, therefore, are
trivial and can be easily classified using simple lex-
ical overlap. In ARC-Sim, however, negatives are
generated by sampling a new section T from the
same paper as T. We hypothesize that differentiat-
ing between these positive and negative examples
will 1) be more difficult since T is likely still topi-
cally related to S and may contain some spurious
lexical or semantic overlap; 2) be more indicative
of real-world performance, since real users may

> Available for download here.

“We sample 1 negative pair per (source abstract, target
paper), so target papers that cite the source in more than 1
section will have more positive examples than negative.


https://github.com/maclaughlin/ARC-Sim

need to identify which specific sections in a full
target paper reuse content from the source. Further
preprocessing and dataset split information is de-
tailed in Appendix A. We use the same labeling
scheme as S20RC.

With dataset creation complete, we sample a
set of 50 positive pairs from the val set to ana-
lyze in depth. Three expert annotators (authors
of this paper) perform the LTRD task, predicting
which t; € T reuse content from S. Five pairs are
marked by all annotators (Fleiss’ Kappa: 0.83).
The remaining 45 are split into 15 per annotator.
Overall, we find that annotators mark more sen-
tences as reused (avg. 1.6 sents / target) than the
true citation labels (1.3 / target). This is reason-
able since T often only cites S once, even if it
discusses S in multiple sentences (Qazvinian and
Radev, 2010). These false negatives are one dis-
advantage of using citation marks as supervision.
Further, we find that annotators and ground truth
often, but not always, agree — annotators identify at
least one true citing sentence in 72% of pairs. This
difference is mostly due to 1) citing sentences that
discuss source content not described in the source
abstract; 2) OCR errors that can make text hard to
read. On the whole, we find that ACL-Sim is a use-
ful LTRD dataset, but there are clear avenues for
improvement, such as manually annotating reused
sentences without citation marks and improving
OCR.

6 Evaluation Settings & Metrics

D2D Metrics: We evaluate the D2D task as (S, T)
pair classification using F1 score. A positive label
indicates that T reuses content from S. A negative
label indicates no text reuse. There is no D2D task
for Pr2News since all examples are positive.

S2D Metrics: We evaluate S2D in two settings:
corpus level (i.e. evaluating all target sentences
from all pairs at once), and document level (i.e.
evaluating the sentences in each target document
w.r.t each other, then averaging scores across doc-
uments). The metrics for each setting depend
on the dataset. At the corpus level, we evaluate
binary-label datasets (PAN, S20RC, ARC-Sim)
with sentence-level F1 and ordinal-label datasets
(Pr2News: 0-3 scale), with spearman’s correlation
(p) and NDCG@N (where N is the number of tar-
get sentences in the test set). At the document level,
we evaluate binary-label datasets with mean aver-
age precision (MAP) and top-k accuracy (Acc@k),
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defined as the proportion of test examples where a
positively-labeled sentence in T is ranked in the top
k by the model. We evaluate ordinal-label datasets
with NDCG@{1,3,5}. Note, in order for these
document-level metrics to be meaningful, T must
contain at least one positive sentence. Thus, our
document-level evaluations are only calculated on
the positive (S, T) pairs in each dataset.> Since
Pr2News only contains positive examples, we use
the full test set for all evaluations.

BERT-HAN & GRU-HAN: Since both HAN
models are trained on document-level, not sentence-
level, labels, we cannot train them on Pr2News,
where all document-level labels are positive. Thus,
we skip evaluating the HAN models on this dataset.

Domain-adapted RoBERTa Models: We eval-
uate three DAPT models: 1) Biomed-DAPT for
S20RC and Pr2News since they contain biomed-
ical texts, 2) News-DAPT for Pr2News since the
target documents are news articles, 3) CS-DAPT
model for S20RC and ARC-Sim since they contain
CS papers.> We do not apply DAPT to PAN since
no models are adapted to a similar domain.

7 Results & Discussion

As seen in Tables 2 & 3, BERT-based models fine-
tuned on LTRD data perform the best in general,
outperforming lexical overlap, SBERT, and HNM.
Overall, models achieve their best performances on
PAN. We suspect that this is because many positive
(S, T) pairs are easy, containing many plagiarized
passages with high lexical overlap, and since many
negative (S, T) pairs are topically unrelated and
share little lexical or semantic overlap. On the other
end of the spectrum is ARC-Sim, where models
score relatively poorly. We hypothesize that this is
because most T only contain one citing sentence
and since, as discussed in §5.4, we focus on select-
ing hard negative target texts, T, sampled from the
same document as the original T.

SWe confirmed that Zhou et al. (2020) calculate their
document-level metrics, MRR, P@5 and P@10, across all
(S, T) pairs. For the negative pairs, they give models full
credit on the S2D task if their corresponding D2D prediction
is correct. We argue that this is not indicative of model perfor-
mance, and thus conduct our document-level evaluations on
only positive pairs.

8CS- and Biomed-DAPT models are adapted on an internal
version of the S20RC corpus (Lo et al., 2020). Since the
S20RC LTRD dataset is randomly sampled from that same
corpus, it is possible that the DAPT models are pretrained on
some portion of the S20RC LTRD test set. We do not believe
this overlap exists for any other (DAPT, LTRD dataset) pairs.
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Table 2: D2D and S2D results on PAN and S20RC.

PAN S20RC
Setting Model D2D-F1 S2D-FI [ MAP Acc@! Acc®3 Acc@5 | D2D-FI S2D-FI | MAP Acc@l Acc@3 Acc@5
TFIDF 845 696 | 924 973 998 998 | 904 271 |529 360 659 796
Single-pair Rouge 828 595 | 922 981 997 999 | 713 213 [471 302 580 730
baselines SBERT-STS 788 328 | 766 917 990 1000 | 833 236 |480 304 506 754
SBERT-PD 808 368 | 808 951 992 998 | 876 222 |444 267 545 712
SBERT-IR 760 416 | 775 895 983 995 | 899 254 |506 335 625 716
TFIDF 8.7 794 | 945 977 997 1000 | 9L1 265 |5L1 336 637 788
All-pairs Rouge 918 808 | 949 982 997 998 | 749 213 [454 274 566 738
basolines SBERT-STS 893 744 | 931 982 998 999 | 859 246 |483 305 603 763
SBERT-PD 908 761 | 944 985 998 999 | 886 217 |429 248 532 703
SBERT-IR 83 718 | 918 979 994 998 | 908 255 |504 328 627 780
Hiorarchical  BertcHan (Shallow) | 746 443 | 546 462 745 864 | 008 100 |377 194 462 631
Nowm Vo s Gru-Han (Deep) 772 443 | 540 428 760 894 | 918 102 [404 215 500 681
BCL-CDA 741 688 | 811 781 905 946 | 886 372 | 589 425 723 849
Fine-tumed " Roberta 950 822 | 968 992 999 1000 | 888 542 | 767 657 883 044
BERT Biomed-Roberta - - - - - - 903 540 |77.6 668 892 947
CS-Roberta - - - - - - 899 541 | 777 612 893 949
Longformersequentiar | 766~ 68.3 | 896 907 963 985 | 966 585 |755 636 880 944

7.1 Impact of Weak Supervision

In general, the supervised BERT-based models out-
perform the unsupervised lexical overlap baselines.
The exception to this finding is Pr2News, where
the lexical overlap baselines Rouge,;, and Rouges),
have the best corpus-level and document-level S2D
scores, respectively. This result is perhaps not un-
expected, since, unlike other datasets, the label-
ing methods of Pr2News differ substantially be-
tween training (heuristic generated by TFIDEF,,
scores), validation (non-expert-labeled) and test
(expert-labeled). However, our results still contrast
Dehghani et al. (2017), who, working on a doc-
ument ranking task, find that weakly-supervised
neural models consistently outperform the unsuper-
vised methods used to label their training data. We
hypothesize that our negative finding might be due,
in part, to the small scale of Pr2News and our re-
liance on only a single heuristic as the supervision
signal source. To address this, future work could
explore applications on larger weakly-supervised
LTRD datasets, e.g. closer in scale to the 50M
document collection of Dehghani et al. (2017), and
improving the weak-supervision signal to better re-
flect human judgements, e.g. through combination
of multiple heuristics (Boecking et al., 2021).

7.2 Effectiveness of Off-the-shelf Tools

Next, we take a closer look at the performances
of SBERT (Reimers and Gurevych, 2019). Note,
these off-the-shelf models are trained on the re-
lated tasks of either PD, STS, or IR, not on our
LTRD datasets. Though PD, STS, and IR receive
substantially more attention in the NLP and IR
literature, prior research has not yet explored the
generalizability of models trained on these tasks
to LTRD. We focus in particular on SBERT-PD,
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since Reimers and Gurevych (2019) recommend it
for various applications and claim that it achieves
strong results on various similarity and retrieval
tasks. Examining our results, however, we find the
opposite — SBERT performs worse in general than
the lexical overlap baselines, and SBERT-PD per-
forms no better than SBERT-IR (though both better
than SBERT-STS). We suspect that the SBERT
models would perform better if they were fine-
tuned on in-domain LTRD data. However, since
we aimed to evaluate the effectiveness of an off-
the-shelf tool, we did not test this hypothesis.

7.3 Importance of Document-level Context

To examine the importance of incorporating
document-level context for LTRD, we compare the
results of Roberta and Longformer.” As noted in
§4, input to both models follows the standard BERT
sequence-pair setup (Devlin et al., 2019). However,
Roberta operates on pairs of source documents and
single target sentences (S, t;), while Longformer
operates on full document pairs (S, T), making
predictions for all target sentences simultaneously.

From Tables 2 & 3, we see that modeling tar-
get document context does not consistently im-
prove performance. While Longformer outper-
forms Roberta on the D2D and corpus-level S2D
tasks on most datasets, Roberta consistently scores
higher on document-level S2D. To investigate the
discrepancy between Longformer’s strong corpus-
level S2D performance and its relatively weaker
document-level S2D scores, we examine S20RC

7Longformer is initialized from Robertag,se, but has addi-
tional parameters and is further pretrained on a long-document
corpus. Thus, though we cannot disentangle these effects from
the benefits of incorporating document-level context, we be-
lieve our experiments provide a relatively fair comparison
between two SoTA models for short vs. long input sequences.



Table 3: D2D and S2D results on ARC-Sim and S2D results on Pr2News.

ARC-Sim Pr2News

Setting Model D2D-F1 S$2D-FI | MAP Acc@l Acc@3 Acc@5| p NDCG@N |NDCG@1 NDCG@3 NDCG@5
TE-IDF T4 184 | 448 301 525 655 |600 908 76.0 70.0 71.0
Single-pair Rouge 75.3 146 | 366 218 424 555 |645 942 71.3 77.0 717
. SBERT-STS 76.3 150 | 396 236 470 614 [355 816 40.3 12.8 492
baselines SBERT-PD 772 166 | 414 258 481 625 [364 826 48.7 51.2 55.4
SBERT-IR 76.9 169 | 413 257 492 628 |353 797 54.0 54.7 54.5
TE-IDF 773 183 | 431 276 514 643 | 667  97.1 66.7 69.8 72.8
All-pairs Rouge 75.1 129 | 359 202 420 564 |672 973 69.7 74.6 774
baselines SBERT-STS 76.7 158 | 392 231 467 608 [580 9438 59.2 61.1 64.4
SBERT-PD 772 166 | 404 244 478 613 [63.0 964 70.3 70.8 714
SBERT-IR 77.4 169 | 402 243 479 625 [561 942 56.3 62.4 63.3
Hiorarchical _ Bert-Han (Shallow) 787 75 | 355 198 411 565 | - - - - -
Newral Models Gru-Han (Deep) 79.7 22.1 43.5 27.2 53.2 67.3 - - - - -
BCL-CDA 79.9 308 | 553 385 677 804 |263 802 243 325 37.1
Fine-tuned " Roberta 820 416 | 697 570 818 904 |605  93.7 713 68.6 714
BERT Biomed-Roberta - - - - - - |601 933 68.6 66.2 69.9
News-Roberta - - - - - - |606 934 68.3 67.8 70.6
CS-Roberta 816 440 | 695 567 817 898 | — - - - -
Longformersequentiar | 845 465 | 683 550 809 888 |627 959 69.5 70.4 70.8

and ARC-Sim. At the corpus-level, Roberta mostly
makes false positives (FP) errors, while Long-
former makes roughly equal FP and FN errors
(and fewer errors overall). For both models, most
of these FPs occur in positive (S, T) pairs, i.e.
pairs where at least one t; cites S. As discussed
in §5, these errors are reasonable, since T often
only cites S once, even if it discusses S in multiple
sentences (Qazvinian and Radev, 2010). Roberta’s
more-frequent FP errors, however, do not affect
its document-level scores as much. Since, at the
document-level, we evaluate how well models rank
the t; in each T w.r.t each other, models perform
well if they score positive sentences higher than
negatives (no reuse). Indeed, though Roberta pre-
dicts high scores for many negatives, it does better
than Longformer at scoring positives higher, lead-
ing to better ranking performance.

Next, we first perform error analysis on PAN,
the only dataset where Roberta outperforms Long-
former across all metrics. We find that Roberta
makes few D2D errors, of which most (80%) are
FPs. Longformer, on the other hand, not only
makes substantially more errors overall, but splits
them roughly equally between FPs and FNs. These
FNs are especially surprising since many positive
examples in PAN have high lexical overlap. On
the other hand, for the corpus-level S2D task, we
find that both models have similar numbers of TPs
and FNs, but that Longformer generates an order of
magnitude more FPs, i.e. predicting that negative
target sentences contain reuse.

7.4 Effects of Domain-adaptive Pretraining

We next examine the benefits of DAPT. Gururangan
et al. (2020) find that further pretraining Roberta
on text from a new domain improves downstream
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performance, provided that this new domain is sim-
ilar to the downstream task. To examine whether
this finding holds for LTRD, we conduct DAPT
evaluations on three datasets — S20RC, ARC-Sim
and Pr2News. Unlike Gururangan et al. (2020),
however, we find mixed results. On ARC-Sim and
Pr2News, standard Roberta models outperform the
corresponding DAPT models on most metrics. The
ARC-Sim findings are especially surprising, since
its domain (NLP papers) is substantially different
from Roberta’s standard pretraining data (books,
news, web documents) and since Gururangan et al.
(2020) show strong performance gains from DAPT
on a classification dataset also based on ACL-ARC.
Moving on to S20RC, our findings are reversed,
with both DAPT models outperforming Roberta.
However, as noted in §6, since the extra pretraining
data for these DAPT models is sampled from the
same corpus as S20RC, we cannot be sure how
much of this boost is due to DAPT models pretrain-
ing on S20RC’s test data.

7.5 Trade-offs between Models

Finally, we discuss the trade-offs between models,
focusing on differences in performance and rela-
tive computational efficiency. On one end of the
efficiency spectrum are the lexical overlap metrics
(TFIDF, Rouge-{1,2}) which are easily scaled to
large document collections by simply keeping track
of the ngrams in each source or target passage, then
computing word-overlap scores for each (S, T)
pair.8 As discussed in §4, we evaluate these metrics
in two settings, sp and ap, depending on whether
we compute similarity scores between target sen-

8Rouge-L cannot be scaled as easily as the other lexical
overlap baselines. However, it performs worse than Rouge-1
and -2 on all validation sets and is not applied to any test data.



tences and entire source documents or with each
source sentence separately (then compute an aggre-
gate score). Though no single metric or evaluation
setting consistently achieves the best performance,
these models provides a very strong baseline, espe-
cially on the D2D task.

In the middle of the efficiency spectrum are
SBERT and HNM. Though these models require an
expensive forward pass to generate an embedding
for each source or target passage, these embeddings
can then be saved and reused. Scores for each (S,
T) pair can be computed relatively quickly by ei-
ther computing cosine similarity scores (SBERT)
or running the pair through a lighter-weight task-
specific architecture (HNM). However, we find
mixed and negative results regarding their effec-
tiveness. Specifically, as discussed in §7.2, off-
the-shelf SBERT models generally lag behind the
computationally-cheaper lexical overlap baselines.
Results are slightly more positive, though, for the
HNMs. BCL-CDA, the best HNM, achieves the
second best performance on two datasets (S20RC,
ARC-Sim). However, it still lags behind the best
model, fine-tuned BERT, by a significant margin.
Further, it performs worse than lexical overlap base-
lines on the other datasets, PAN and Pr2News.
Turning next to the HAN models, we find that
though they achieve competitive D2D performance
on two of the three datasets, they have very weak
S2D scores. We suspect that this is because they
are only trained on the D2D task — at test time,
they make sentence-level predictions by computing
similarity scores between hidden source and target
representations extracted from a pretrained D2D
model. Due to this training formulation, the HAN
models fail to learn sentence-level representations
that are useful for prediction. See Appendix B for
a discussion of our efforts to replicate the results
from the HAN models on our datasets.

Lastly, the least efficient models are fine-tuned
BERTS, which require a separate forward pass to
compute a score for each (S, T) or (S, t;) pair. As
is the trend with other NLP tasks, though, these
computationally-intense and parameter-rich mod-
els achieve the best average performance. This
finding is clearest on S20RC and ARC-Sim, where
few t; contain reuse and that reuse is non-literal
(e.g. paraphrase). On these datasets, the best
fine-tuned BERT outperforms the next-best model
(BCL-CDA) by an average of 6.3% (D2D) and
15.5% (S2D). However, on datasets where target
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documents directly copy large spans of source
content with minimal changes (PAN) or where
large-scale supervised training data is unavailable
(Pr2News), fine-tuned BERT provides much less or
no improvement over the lexical overlap metrics.

8 Conclusion

We study methods for local text reuse detection,
identifying passages in a target document that lexi-
cally or semantically reuse content from a source.
Through evaluations on four datasets, including a
new citation localization dataset, we confirm the
strong performance of BERT models fine-tuned on
our task. However, we also find that lexical-overlap
methods, e.g. TFIDF, provide strong baselines, fre-
quently outperforming off-the-shelf neural passage
encoders and hierarchical neural models.

Based on these findings, we suggest practitioners
take one of two approaches: 1) in instances with
little labeled training data or where most reuse is
exact (i.e. copying), use traditional lexical over-
lap models; 2) in instances with large-scale labeled
training data and where much of the reuse is non-
literal (e.g. summarization, paraphrasing), use a
lexical overlap method to filter possible (S, T)
pairs, then run a more expensive fine-tuned BERT
on that subset. We suggest users opt for fine-tuned
BERT models over pretrained passage encoders
(SBERT) or HNMs for this second step since they
achieve substantially higher performance. Sugges-
tion #2 follows current approaches to neural IR,
where neural models only rerank smaller lists of
documents retrieved by a cheaper lexical overlap
method, e.g. TF-IDF. Performance may be fur-
ther boosted by fine-tuning BERT-based models
that incorporate document-level context (i.e. Long-
former) or ones that are adapted to the target do-
main of interest (i.e. DAPT), but often the standard
Robertap,se achieves highly competitive results.
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A Data Preprocessing

Table 4 lists the training, validation and test set
sizes for each dataset. Each split is separated into
the number of positive examples that contain reuse
and the number of negative examples that do not.
Below we discuss the data preprocessing steps we
follow for each dataset:

ARC-Sim We create this dataset using papers
from the ACL Anthology Conference Corpus (Bird
et al., 2008). Since we use citation marks to iden-
tify instances of text reuse, we use ParsCit (Coun-
cill et al., 2008) to first identify all in-line citation
marks. We then create examples by matching to-
gether a section in a paper that contains a citation
with the abstract of the cited paper (assuming the
cited paper is also in the ACL ARC). Since cita-
tion marks have a distinctive lexical pattern, we
remove them all after matching the pairs. We then
split sections and abstracts into sentences using
Stanford CoreNLP (Manning et al., 2014), keeping
track of where the original citation was in order to
generate S2D labels. We create negative examples
by matching a cited abstract together with another
section from the same paper as the original citing
section (the new section is selected so that it does
not cite the paper). Finally, for computational fea-
sibility, we limit source documents to 20 sentences
and target sections to 50, the 90th percentiles in the
data. We remove pairs where the citation occurs
after the 50th sentence in the target section. We
split the dataset into train/val/test by cited abstract
S, yielding the splits detailed in Table 4.

PAN: We download the public dataset. We filter
out 1) malformed positive pairs that do not con-
tain any positively-labeled sentences or contain
positively-labeled sentences with no words; 2) ex-
tremely long pairs which cause GPU memory is-
sues for our models, removing (source, target) pairs
that contain more than 4,000 tokens total (80th per-
centile). Following Zhou et al. (2020), we split
documents into sentences and tokenize them using
NLTK (Bird and Loper, 2004).

For the hierarchical neural models (BERT-HAN,
GRU-HAN, BCL-CDA), we follow Zhou et al.
(2020) and cap documents at a predefined number
of sentences so that the models fit in GPU memory.
We cap source documents at 50 sentences (90th per-
centile). We split examples with target documents
containing more than 45 sentences (90th percentile)
into multiple examples, i.e. (source document, first
45 sentences of target document), (source docu-
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Table 4: Number of examples in the training, validation and test sets of each dataset, split into numbers of positive

and negative examples. Pr2News contains no negative examples.

Train Val Test
Dataset #Pos #Neg #Pos #Neg #Pos #Neg
PAN 6,152 7,567 1,243 1336 1,253 1,352
S20RC 74,807 75,861 9,262 9,562 9,258 9,561
Pr2News 64,684 - 45 - 50 -
ARC-Sim 50,197 36,227 5,269 3,852 5,665 4,171

ment, next 45 sentences of target document), and
so on. Predictions for split examples are merged
back together at test time.

S20RC: We download the public dataset. As
for PAN, we filter out malformed positive pairs that
do not contain any positively-labeled sentences or
contain positively-labeled sentences with no words.
S20RC examples, are, in general, short and do
not require length-based filtering. Following Zhou
et al. (2020), we split documents into sentences
and tokenize them using NLTK (Bird and Loper,
2004).

For the hierarchical neural models (BERT-HAN,
GRU-HAN, BCL-CDA), we cap source documents
at 20 sentences (99th percentile). We split exam-
ples with target documents containing more than 29
sentences (99th percentile) into multiple examples
and merge back predictions at test time.

Pr2News: We obtain the preprocessed and fil-
tered Pr2News dataset from MacLaughlin et al.
(2020, §4-5), who created it with data from Alt-
metric. We evaluate models on the provided test
set of 50 expert-labeled (press release, news arti-
cle) pairs. We use the set of 45 non-expert-labeled
(press release, news article) pairs as our validation
set (we filter out the 5 spurious validation set pairs
noted by MacLaughlin et al. (2020)). Finally, we
use the remaining 64,684 pairs labeled with their
TF-IDF cosine similarity heuristic as training data.
For pairs with more than one matched press release,
we select the press release with the highest TFIDF
cosine similarity to the news article.

For the hierarchical neural models (BERT-HAN,
GRU-HAN, BCL-CDA), we cap source documents
at 54 sentences (90th percentile). We split exam-
ples with target documents containing more than 57
sentences (90th percentile) into multiple examples
and merge back predictions at test time.
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B Implementation of BERT-HAN and
GRU-HAN

Although we use the official source code from
Zhou et al. (2020) to run the HAN models, our
results differ on PAN and S20RC from their
originally reported results (mostly slightly, but,
in one instance, substantially). With the excep-
tion of using BERT p45E as the passage encoder
for BERT-HAN instead of BERT [ 4rc g, we fol-
low their recommended hyperparameters. But,
as compared with the results from Zhou et al.
(2020), on the D2D task (measured by F1), BERT-
HAN’s scores are substantially lower on PAN and
slightly lower on S20RC. GRU-HAN’s scores, on
the other hand, are very slightly higher on both
PAN and S20RC. We hypothesize that the minor
differences in performance are due to 1) differ-
ences in model random initialization (Reimers and
Gurevych, 2017); 2) differences in the datasets — as
noted in Appendix A, we filtered out some exam-
ples from PAN and S20RC since they contained
some malformed positive examples with either no
positively-labeled sentences or positively-labeled
sentences that were empty strings; 3) for BERT-
HAN, we use BERTg45£ as the encoder rather
than BERT 4rgE. Despite these factors, BERT-
HAN’s large performance drop on PAN is still sur-
prising. However, we emphasize that even when
using Zhou et al. (2020)’s original numbers, BERT-
HAN still lags behind both our lexical overlap base-
lines and fine-tuned BERT models, so our overall
takeaways from §7 still stand.

For the S2D task, our results are not directly
comparable to the original numbers of Zhou et al.
(2020) for two reasons:

1. We use different metrics — we use MAP and
Acc@k, while they use MRR and P@k. MAP
is more appropriate than MRR since there
are often multiple positively-labeled target
sentences. Acc@k is more appropriate than
P@k when k is greater than the number of
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positively-labeled target sentences. When
there are fewer than k positively-labeled tar-
get sentences in an example, a perfect system
will still have a P@k < 1. Systems receive
a perfect Acc@k score, on the other hand, if
at least one positively-labeled target sentence
appears anywhere in the top k.

. We evaluate on different sets of the data — as
noted in §6 , Zhou et al. (2020) calculate their
S2D ranking metrics (MRR, P@Xk) on all test
examples, both positive and negative. How-
ever, these metrics cannot be computed on
negative examples where no target sentences
contain reuse. We confirmed with Zhou et al.
(2020) that, in these instances, they give their
models full credit if the corresponding D2D
prediction is correct, i.e. the model predicts
that the target document contains no reuse.
Since many negative examples in PAN and
S20RC are easy to classify, this manner of
calculation substantially inflates the results.
To address this, we calculate our S2D rank-
ing metrics (MAP, Acc@k) on only the sub-
set of positive examples. Calculating in this
way shows substantially decreased S2D per-
formance for the HAN models.

C Model Hyperparameters & Best

Configurations

Below, we discuss all searched hyperparameters
(HP) for each model. For all models, we search
for a threshold, ¢ € [0, 1], to differentiate between
positive and negative sentence and document pre-
dictions (not used for the Pr2News dataset). Table 5
lists the optimal HP values for each dataset (as se-
lected by average performance on the val set).

All neural models, with the exception of BCL-
CDA (Tensorflow: Abadi et al. (2015)) were imple-
mented in Pytorch (Paszke et al., 2019) and run on
16GB or 32GB Nvdia P100s or V100s.

TF-IDF: We search over n-gram size (unigrams
or unigrams & bigrams).

Rouge: We search over three different Rouge
measures, Rouge-{1, 2, L}.

Sentence-BERT: None except threshold. We
test the following pretrained Sentence-BERT
models:  Semantic Textual Similarity: stsb-
roberta-large, Paraphrase Detection: paraphrase-
distilroberta-base-v1l, Information Retrieval:
msmarco-distilroberta-base-v2.
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BERT-HAN (shallow): We use the suggested
batch size (256), HAN hidden dimension size (50),
and early stopping criterion (no improvement on
val set for 5 epochs). We perform a search over
Adam (Kingma and Ba, 2015) learning rates €
{1e-5, 2e-5, 5e-5, le-4}. We use BERTp45E
as the sentence encoder instead of BERT srcE
for efficiency reasons. For the S20RC and ARC-
Sim datasets, we find that BERT-HAN’s S2D per-
formance is substantially higher when we rank
sentences by the complement of their scores, i.e.
scoreénew = 1 — scoreyyq. This, in effect, inverts
the predicted target sentence ranking for each doc-
ument (we select this transformation based on val
set results). We are only able to achieve results
roughly on par with those reported in Zhou et al.
(2020) using this trick. This trick is not necessary
for the PAN dataset nor for the GRU-HAN model.

GRU-HAN (deep): We use batch size 128 and
50 dimensional GloVe embeddings. Otherwise, the
HPs are the same as for BERT-HAN.

BCL-CDA: We adapt the BCL model from
MacLaughlin et al. (2020) for LTRD as follows
(see MacLaughlin et al. (2020) for details of the
BCL model): Each source and target sentence is
fed into frozen BERT 5 455 separately. We then
use a CNN with 1-max pooling over time to aggre-
gate the token representations from BERT’s second
to last layer into a single representation for each
sentence. We search over CNN filter size € {3,5,7}
and number of filters € {50, 100, 200}. The sen-
tence representations in each source or target docu-
ment are then contextualized with document-level
BiLSTMs (two separate BiLSTMs for source or tar-
get documents). We search over hidden dimension
size € {64, 128} (same dimensionality for both
BiLSTMs). After the BiLSTM layer, we are left
with s; € S and t; € T, contextualized sentence
representations for the sentences in the source and
target documents. Next, we use a sentence-level
CDA layer to compute %;, an attention-weighted
(Luong et al., 2015, §3.1: general attention) rep-
resentation of ¢;, weighted by its similarity to the
sentences s; € S. Finally, we concatenate [ti:ti]
and feed this to a final layer to make a prediction
for each target sentence.

We set dropout at 0.2, batch size at 32, and
search over the max number of epochs (10, with
early stopping). We optimize with Adam with
learning rate € {1e-4, Se-4}. For the PAN, S20RC
and ARC-Sim datasets, we use weighted cross-
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Table 5: Best HP configurations for all models across all datasets. ¢ is the classification threshold (only for PAN,
S20RC and ARC-Sim). BERT-HAN and GRU-HAN have two thresholds, one for document classification, the
other for sentence classification. All other models have a single, sentence-level threshold. n-gram is the n-gram
range for TF-IDF (unigrams or unigrams and bigrams). For the neural models: e is epochs, I is learning rate, and
w is the weight placed on positive examples in weighted cross-entropy loss (weight on negative examples is 1).
For BCL-CDA, fs is the CNN filter size, nf is number of CNN filters, and [hd is the BILSTM hidden dimension.
‘~’ indicates that there are no HPs to be optimized. ‘X’ indicates that the model is not trained on that dataset.

PAN S20RC ARC-Sim Pr2News
TF-IDF | t = 0.10,n-gram=1 &2 t =0.04,n-gram=1&2 t =0.04,n-gram=1&2 n-gram = n-gram = 1 & 2
Single-pair Rouge | t = 0.03, rouge =R-2 t = 0.02, rouge =R-2 t = 0.02, rouge =R-2 rouge = R-2
baselines ) Robertameqn (STS) | t = 0.46 t =0.48 t =0.48 -
DistilRoberta;,eqn (PD) | t = 0.41 t=0.39 t = 0.42 -
DistilRoberta,p,eqn (IR) | £ = 0.38 t = 0.38 t =0.44 -
TF-IDF | t = 0.17,n-gram=1& 2 t =0.14,n-gram=1 t =0.14,n-gram=1 n-gram=1&?2
All-pairs Rouge | t = 0.40, rouge =R-1 t = 0.27, rouge =R-1 t = 0.24, rouge =R-1 rouge = R-2
baselines ~ Robertamean (STS) | ¢ = 0.63 t =0.53 t=0.52 -
DistilRoberta,peqn (PD) | t = 0.58 t =0.42 t = 0.45 -
DistilRoberta,peqn (IR) | £ = 0.61 t =0.43 t =0.48 -
Froz Bert-Han (Shallow) | doct = 0.41,sentt = O, | doct = 0.34,sentt = 0.0, | doc t = 0.33, sent t = X
B’Z}Q’ Ir =5¢-5 Ir =2e-5 0.08, I = le-4
Gru-Han (Deep) | doct = 0.34,sentt = 0, | doct = 0.33, sent t = | doct =042, sentt = 0.11, | X
Ir =le-5 0.01, Ir = 5e-5 Ir =le4
BCL-CDA | t = 0.57,lr =5e-4,e =7, | t = 0.44,lr =5e-4,e =5, | t = 0.74,lr =led,e =3, | Ir =5e-4, e =7, fs = T,
w=>5,fs=5nf=50,|w=5fs=3nf=50,|w =15 fs = 5 nf = | nf =200,lhd =128
lhd = 128 lthd =128 200, lhd = 64
Biomed-Robertag;pgre | X t =0.34,lr =25, e =| X Ir =3e-5,e =1
N 2, w=3
Fme-ﬂtuned CS-Robertagingre | X t =047, lr =25, e = |t =0.5L1lr =25e=| X
BERT b _ —
3,w=3 5w =10
News-Robertagingre | X X X Ir =3e-5,e =1
Robertasingle t =0.91,1lr =3e5,e =4, | t = 04,lr =2-5,e =4, | t = 0.39,lr =25, e = | lr =25, e=2
w=1 w =3 3,w=35
Longformerseq | t = 0.52,Ir = 5e — 5, | t = 0.41,1lr =3e-5,e =19, | t = 0.53,1lr =3e-5,e =12 Ilr=5e —5,e=7
e=9w=>5 w =5 w=>5

entropy loss since the datasets are unbalanced
(many more negative sentences than positive). We
search over the weight w to put on examples from
the positive class. Weights vary by dataset since
datasets are not equally imbalanced: PAN € {1, 3,
5}, S20RC € {3, 5, 10}, ARC-Sim € {10, 15, 20}.
Following MacLaughlin et al. (2020), we use MAE
loss for Pr2News.

Fine-tuned RoBERTag,.sr, DAPT, and
Longformer: We search over Adam learning rate
€ {2e-5, 3e-5, 5e-5}. We use batch size 32 (with
gradient accumulation to ensure that batches fit
in GPU memory) and train models for 10 epochs
at most (20 for Longformer), with early stopping.
For PAN, S20RC and ARC-Sim, following BCL-
CDA, we search over weight w for weighted cross-
entropy loss. We search over the same w ranges
for each dataset as for BCL-CDA, except for ARC-
Sim, where we search over w € {5, 10, 20}. We
use MAE loss for Pr2News.
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