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Abstract

Cross-lingual word embeddings provide a way
for information to be transferred between lan-
guages. In this paper we evaluate an ex-
tension of a joint training approach to learn-
ing cross-lingual embeddings that incorporates
sub-word information during training. This
method could be particularly well-suited to
lower-resource and morphologically-rich lan-
guages because it can be trained on modest
size monolingual corpora, and is able to rep-
resent out-of-vocabulary words (OOVs). We
consider bilingual lexicon induction, including
an evaluation focused on OOVs. We find that
this method achieves improvements over pre-
vious approaches, particularly for OOVs.

1 Introduction

Word embeddings are an essential component in
systems for many natural language processing tasks
such as part-of-speech tagging (Al-Rfou’ et al.,
2013), dependency parsing (Chen and Manning,
2014) and named entity recognition (Pennington
et al., 2014). Cross-lingual word representations
provide a shared space for word embeddings of
two languages, and make it possible to transfer in-
formation between languages (Ruder et al., 2019).
A common approach to learn cross-lingual embed-
dings is to learn a matrix to map the embeddings
of one language to another using supervised (e.g.,
Mikolov et al., 2013b), semi-supervised (Artetxe
et al., 2017), or unsupervised (e.g., Lample et al.,
2018) methods. These methods rely on the as-
sumption that the geometric arrangement of em-
beddings in different languages is the same. How-
ever, it has been shown that this assumption does
not always hold, and that methods which instead
jointly train embeddings for two languages pro-
duce embeddings that are more isomorphic and
achieve stronger results for bilingual lexicon induc-
tion (BLI, Ormazabal et al., 2019), a well-known in-
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trinsic evaluation for cross-lingual word representa-
tions (Ruder et al., 2019; Anastasopoulos and Neu-
big, 2020). The approach of Ormazabal et al. uses
a parallel corpus as a cross-lingual signal. Parallel
corpora are, however, unavailable for many lan-
guage pairs, particularly low-resource languages.
Duong et al. (2016) introduce a joint training ap-
proach that extends CBOW (Mikolov et al., 2013a)
to learn cross-lingual word embeddings from mod-
est size monolingual corpora, using a bilingual
dictionary as the cross-lingual signal. Bilingual
dictionaries are available for many language pairs,
e.g., Panlex (Baldwin et al., 2010) provides transla-
tions for roughly 5700 languages. These training
resource requirements suggest this method could be
well-suited to lower-resource languages. However,
this word-level approach is unable to form represen-
tations for out-of-vocabulary (OOV) words, which
could be particularly common in the case of low-
resource, and morphologically-rich, languages.
Hakimi Parizi and Cook (2020b) propose an ex-
tension of Duong et al. (2016) that incorporates sub-
word information during training and therefore can
generate representations for OOVs in the shared
cross-lingual space. This method also does not re-
quire parallel corpora for training, and could there-
fore be particularly well-suited to lower-resource,
and morphologically-rich, languages. However,
Hakimi Parizi and Cook only evaluate on synthetic
low-resource languages. We refer to the methods
of Duong et al. and Hakimi Parizi and Cook as
DUONG2016 and HAKIMI2020, respectively.
Most prior work on BLI focuses on in-
vocabulary (IV) words and well-resourced lan-
guages (e.g., Artetxe et al., 2017; Ormazabal et al.,
2019; Zhang et al., 2020), although there has been
some work on OOVs (Hakimi Parizi and Cook,
2020a) and low-resource languages (Anastasopou-
los and Neubig, 2020). In this paper, we evaluate
HAKIMI2020 on BLI for twelve lower-resource
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languages, and also consider an evaluation focused
on OOVs. Our results indicate that HAKIMI12020
gives improvements over DUONG2016 and several
strong baselines, particularly for OOVs.

2 Joint Training Incorporating
Sub-word Information

Equation 1 shows the cost function for
DUONG2016, which jointly learns embed-
dings for a word w; and its translation w;, where
h; is a vector encoding the context, o is a weight
parameter, and Dg and D, are the source and target
language vocabularies, respectively.

0 = Z (alog a(ugihi)

i€ DsUDy
+ (1= a)logo(ul hi)

p
+ > o, (w) log o (—uly, hi))
j=1
(1)

Following Bojanowski et al. (2017), HAKIM12020
modifies Equation 1 by including sub-word infor-
mation during the joint training process as follows:

0= Z (alog S(wi, hi)
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+ (1 — a) log S(lﬂi, hl)
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where GG, is the set of sub-words appearing in
w and z4 is the sub-word embedding for g. h is
calculated by averaging the representations for each
word appearing in the context, where each word
is itself represented by the average of its sub-word
embeddings.

HAKIMI2020 use character n-grams as sub-
words. Specifically, each word is augmented with
special beginning and end of word markers, and
then represented as a bag of character n-grams,
using n-grams of length 3—-6 characters. The en-
tire word itself (with beginning and end of word
markers) is also included among the sub-words.

Language Family # Tokens # Dict. entries
Afrikaans Germanic 25M 70k
Albanian Albanian 21M 17k
Azerbaijani  Turkic 36M 25k
Bengali Indic 26M 114k
Bosnian Slavic 18M 23k
Croatian Slavic 54M 388k
Estonian Uralic 38M 201k
Greek Greek 78M 253k
Hebrew Semitic 143M 79k
Hindi Indic 34M 296k
Hungarian  Uralic 133M 460k
Turkish Turkic T9M 319k

Table 1: The language family, size of corpus, and size
of Panlex dictionary, for each source language.

3 Experimental Setup

We consider BLI from twelve lower-resource
source languages to English. The languages
(shown in Table 1) were selected to cover a va-
riety of language families, while having small
to medium size Wikipedias and BLI evaluation
datasets available. We compare HAKIMI2020 with
DUONG2016, VECMAP (Artetxe et al., 2018), and
MEEMI (Doval et al., 2018). In each case, we use
cosine similarity to find the closest target language
translations for a source language word. We eval-
uate using precision@N (Ruder et al., 2019) for
N =1,5,10.

3.1 Training Corpora and Dictionaries

The corpus for each language is a Wikipedia dump
from 27 July 2020, cleaned using tools from Bo-
janowski et al. (2017), and tokenized using Eu-
ropalExtract (Ustaszewski, 2019), except for Ben-
gali and Hindi, which are tokenized using NLTK
(Bird et al., 2009). Because DUONG2016 and
HAKIMI2020 can learn high quality cross-lingual
embeddings from monolingual corpora of only 5M
sentences each, we down-sample the English cor-
pus for these two methods to 5M sentences.

DUONG2016 benefits from a relatively large
training dictionary (Duong et al., 2016), there-
fore, for DUONG2016 and HAKIMI2020 we follow
Duong et al. to create large training dictionaries
by extracting translation pairs from Panlex. Details
of the training corpora and Panlex dictionaries are
shown in Table 1.

3.2 Baselines

We compare against two baselines: VECMAP
(Artetxe et al., 2018), a supervised mapping-based
method, and MEEMI (Doval et al., 2018), a post
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processing method. We consider various training
corpora and dictionaries to create strong baselines.

Supervised mapping-based approaches tend to
see a reduction in performance with seed lexicons
larger than roughly 5k pairs (Vuli¢ and Korho-
nen, 2016). Training translation pairs from MUSE
(Lample et al., 2018) are therefore used, except
for Azerbaijani, which is not included in MUSE,
where training pairs from Anastasopoulos and Neu-
big (2020) are used. We first train VECMAP us-
ing these MUSE pairs, and embeddings learned
from the full English corpus, to give this base-
line access to as much training data as is avail-
able. We then consider this approach, but using the
down-sampled English corpus. We found that the
smaller English corpus gave higher precision@ N
(for N = 1, 5, and 10) for both the IV and OOV
evaluations in Section 4. This could be due to the
smaller corpus having a smaller vocabulary. We
then also consider VECMAP trained using Panlex
training pairs and embeddings learned from the
down-sampled English corpus.

We next consider MEEMI applied to each of the
three sets of cross-lingual embeddings obtained
from VECMAP. In each case we train MEEMI
using the same training pairs (MUSE or Panlex)
that were used to train VECMAP. In Section 4 we
report results for the baseline that performs best.

3.3 Hyper-Parameter Settings

Hakimi Parizi and Cook (2020b) show that
DUONG2016 performs best using its default param-
eters, i.e., an embedding size of 200 and window
size of 48, but that HAKIMI2020 performs better
using an embedding size of 300 and window size
of 20. We use these parameter settings here.
fastText is used to train monolingual embeddings
for VECMAP and MEEMI. We use skipgram with
its default settings, except the dimension of the
embeddings is set to 300 (Bojanowski et al., 2017).

4 Experimental Results

In this section, we present results for BLI for IV
words, and then OOV source language words.

4.1 BLI for In-Vocabulary Words

For these experiments we use MUSE test data for
all languages except Azerbaijani, where we use
test data from Anastasopoulos and Neubig (2020).
Because our focus here is on IV words, we only
consider translation pairs that are IV with respect to

% Precision

Method @l @5 @10
MEEMI 38.64 5542 60.45
DUONG2016 22.12 4571 52.08
HAKIMI2020 3091 56.00 62.24

Table 2: Precision@ N for BLI for IV words, averaged
over the twelve languages. The best precision for each
evaluation measure is shown in boldface.

the embedding matrices learned from our corpora.
We compare HAKIMI2020 with DUONG2016 and
MEEMI trained using the down-sampled English
corpus and MUSE training pairs, which performed
best of the baselines considered for each evaluation
measure. Results are shown in Table 2.!

HAKIMI2020 improves over DUONG2016, indi-
cating that DUONG2016 can indeed be improved by
incorporating sub-word information during train-
ing. Comparing HAKIMI2020 and MEEMI, the
results are more mixed. In terms of precision@1,
MEEMI substantially outperforms HAKIMI12020,
although for precision@10 HAKIMI2020 outper-
forms MEEMI.

4.2 BLI for OOVs

Following Hakimi Parizi and Cook (2020a) we
use Panlex to construct a test dataset of transla-
tion pairs in which the source language words are
OOV and the target language words are I'V. How-
ever, Hakimi Parizi and Cook observe that some
translations in Panlex are noise. To avoid noisy
translations, we use all translation pairs for which
the source language word is OOV with respect to
the embedding matrix, i.e., the embedding models
have no direct knowledge of these words, but is
attested in the source language corpus, i.e., there
is evidence that this is indeed a word in the source
language.” The resulting test datasets consist of
between 806 translation pairs in the case of Azer-
baijani to roughly 11k pairs for Hungarian.

Here we compare against the VECMAP base-
line using the down-sampled English corpus and
Panlex training pairs, which performed best of
the baselines considered for each evaluation mea-
sure. For VECMAP, we follow Hakimi Parizi
and Cook (2020a) by forming a representation

"Results for each of the twelve languages are available in
the appendix.

For each embedding method, we set the minimum fre-
quency for words in the embedding matrix to 5; as such, all
methods have the same source language vocabulary.
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% Precision

Language Method @1 @5 @10
VECMAP 5.65 11.84 14.89

Afrikaans ~ COFY 10.68 B )
HAKIMI2020 9.42 21.80 27.41
HAKIMI2020+coprYy 19.16 30.15 35.17

VECMAP 6.28 12.00 15.75

Albanian copy 5.62 } )
HAKIMI2020 7.93 1520 18.61
HAKIMI2020+coprYy 13.11 19.49 22.58

VECMAP 3.60 893 1141

Azerbaijani copy 5.96 ) )
HAKIMI2020 10.17 16.00 17.25
HAKIMI2020+copry 10.92 19.35 21.96

VECMAP 1.60 450 6.00

Bengali COPY 0.27 - -
HAKIMI2020 5.31 1095 13.85
HAKIMI2020+copPYy 5.28 10.86 13.76

VECMAP 3.82  8.28 10.83

Bosnian COPY 21.23 - -
HAKIMI2020 8.17 15.71 18.58
HAKIMI2020+coPYy 29.19 35.88 38.11

VECMAP 6.41 13.29 17.03

Croatian COPY 4.35 B )
HAKIMI2020 11.86 24.70 30.13
HAKIMI2020+copPYy 15.65 28.02 33.21

VECMAP 5.29 10.61 13.79

Estonian copy 7.56 g )
HAKIMI2020 8.15 18.79 23.66
HAKIMI2020+copPYy 14.93 24.65 29.15

VECMAP 6.66 14.30 17.91

Greek COPY 1.90 - -
HAKIMI2020 11.65 23.55 28.05
HAKIMI2020+copPYy 13.50 25.15 29.58

VECMAP 3.07 8.38 10.53

Hebrew COPY 11.15 - -
HAKIMI2020 8.18 17.08 20.55
HAKIMI2020+coPYy 19.02 26.89 29.75

VECMAP 209 516 698

Hindi COPY 0.06 - -
HAKIMI2020 4.57 11.64 15.39
HAKIMI2020+coprYy 4.60 11.66 15.41

VECMAP 430 949 12.50

Hungarian COPY 4.60 - -
HAKIMI2020 7.82 1742 21.66
HAKIMI2020+coprYy 11.62 20.56 24.53

VECMAP 339 723 9.62

. COPY 8.15 - -
Turkish 1 k1M12020 713 1543 1938
HAKIMI2020+corYy 14.27 21.31 24.77

VECMAP 435 950 12.27

Average COPY 6.70 - -
HAKIMI2020 836 17.36 21.21
HAKIMI2020+corYy 14.27 22.83 26.50

Table 3: Precision@N for BLI for OOV source lan-
guage words. The best precision for each dataset and
evaluation measure is shown in boldface.

for the OOV source language word from its sub-
word embeddings, and then mapping it into the
shared space. We cannot, however, compare di-
rectly against DUONG2016 because it is a word-
level approach that cannot represent OOVs. We
therefore instead compare against a baseline in
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which the OOV source language word is copied
into the target language. This approach, referred to
as COPY, could work well in the case of borrowings
and named entities.’

Table 3 shows the results. HAKIMI2020 outper-
forms VECMAP for all languages and evaluation
measures. This finding suggests that sub-word in-
formation can be more effectively transferred in
a cross-lingual setting when sub-words are incor-
porated into the training process — as is the case
for HAKIMI12020 — than when they are not — as
for VECMAP here. Comparing HAKIMI2020 to
COPY, although there are several languages for
which COPY outperforms HAKIMI2020, on aver-
age, HAKIMI2020 performs better. In the cases
that COPY outperforms HAKIMI2020, it appears to
be largely related to the presence of English abbre-
viations in the source language Wikipedia dump.

Because of the relatively strong performance
of COPY on several languages, we propose an ap-
proach that combines COPY and HAKIMI2020, re-
ferred to as HAKIMI2020+COPY. Given a source
language word, we first check whether it is in the
target language embedding matrix. If so, we as-
sume it is a word that does not require translation
(e.g., a named entity) and copy it into the target
language.* If the source language word is not in
the target language embedding matrix, we apply
HAKIMI2020 to find the target language transla-
tion under this model. This approach improves over
both COPY and HAKIMI2020 for all languages, ex-
cept Bengali, and gives substantial improvements
on average.’ Although COPY is a very simple ap-
proach, it is complementary to HAKIMI2020, and
the two approaches can be effectively combined to
improve BLI for OOVs.

5 Conclusions

We evaluated an extension of a joint training ap-
proach to learning cross-lingual embeddings that
incorporates sub-word information during training,
which could be well-suited to lower-resource and
morphologically-rich languages because it can be

3copy only produces one target language candidate for a
given source word, and as such we only compute precision@ 1
for this method.

*This assumption can be incorrect, e.g., Afrikaans kifs is
IV for English, but translates to English moment.

SWe also observe that there is little improvement for
HAKIMI2020+COPY over HAKIMI2020 on Hindi. For both
Hindi and Bengali COPY achieves very low precision, and so
little or no improvement can be obtained over HAKIMI2020
by combining COPY with HAKIMI2020.



trained on modest amounts of monolingual data and
can represent OOVs. In two BLI tasks for twelve
lower-resource languages focused on IV words and
OOVs, we found that this method improved over
previous approaches, particularly for OOVs. Eval-
uation data and code for learning the cross-lingual
embeddings is available.

In future work we plan to explore the impact
of the target language on the quality of the cross-
lingual embeddings, and in particular consider
source and target languages from the same family.
We further intend to evaluate these cross-lingual
embeddings in down-stream tasks for low-resource
languages, such as language modelling (Adams
et al., 2017) and part-of-speech tagging (Fang and
Cohn, 2017), and to compare against approaches
based on contextualized language models.
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