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Abstract

We introduce a new approach for smoothing
and improving the quality of word embed-
dings. We consider a method of fusing word
embeddings that were trained on the same
corpus but with different initializations. We
project all the models to a shared vector space
using an efficient implementation of the Gen-
eralized Procrustes Analysis (GPA) procedure,
previously used in multilingual word transla-
tion. Our word representation demonstrates
consistent improvements over the raw models
as well as their simplistic average, on a range
of tasks. As the new representations are more
stable and reliable, there is a noticeable im-
provement in rare word evaluations.

1 Introduction

Continuous (non-contextualized) word embeddings
have been introduced several years ago as a stan-
dard building block for NLP tasks. These models
provide efficient ways to learn word representations
in a fully self-supervised manner from text corpora,
solely based on word co-occurrence statistics. A
wide variety of methods now exist for generating
word embeddings, with prominent methods includ-
ing word2vec (Mikolov et al., 2013a), GloVe (Pen-
nington et al., 2014), and FastText (Bojanowski
et al., 2017). Recently, contextualized embeddings
(Peters et al., 2018; Devlin et al., 2019), replaced
the use of non-contextualized embeddings in many
settings. Yet, the latter remain the standard choice
for typical lexical-semantic tasks, e.g., semantic
similarity (Hill et al., 2015), word analogy (Jurgens
et al., 2012), relation classification (Barkan et al.,
2020a), and paraphrase identification (Meged et al.,
2020). These tasks consider the generic meanings
of lexical items, given out of context, hence the use
of non-contextualized embeddings is appropriate.
Notably, FastText was shown to yield state-of-the-
art results in most of these tasks (Bojanowski et al.,

2017).
While word embedding methods proved to be

powerful, they suffer from a certain level of noise,
introduced by quite a few randomized steps in the
embedding generation process, including embed-
ding initialization, negative sampling, subsampling
and mini-batch ordering. Consequently, different
runs would yield different embedding geometries,
of varying quality. This random noise might harm
most severely the representation of rare words, for
which the actual data signal is rather weak (Barkan
et al., 2020b).

In this paper, we propose denoising word em-
bedding models through generating multiple model
versions, each created with different random seeds.
Then, the resulting representations for each word
should be fused effectively, in order to obtain a
model with a reduced level of noise. Note, how-
ever, that simple averaging of the original word
vectors is problematic, since each training session
of the algorithm produces embeddings in a differ-
ent space. In fact, the objective scores of both
word2vec, Glove and FastText are invariant to mul-
tiplying all the word embeddings by an orthogonal
matrix, hence, the algorithm output involves an
arbitrary rotation of the embedding space.

For addressing this issue, we were inspired by
recent approaches originally proposed for aligning
multi-lingual embeddings (Chen and Cardie, 2018;
Kementchedjhieva et al., 2018; Alaux et al., 2019;
Jawanpuria et al., 2019; Taitelbaum et al., 2019).
To obtain such alignments, these methods simulta-
neously project the original language-specific em-
beddings into a shared space, while enforcing (or
at least encouraging) transitive orthogonal transfor-
mations. In our (monolingual) setting, we propose
a related technique to project the different embed-
ding versions into a shared space, while optimizing
the projection towards obtaining an improved fused
representation. We show that this results in im-
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proved performance on a range of lexical-semantic
tasks, with notable improvements for rare words,
as well as on several sentence-level downstream
tasks.

2 Word Averaging in a Shared Space

Assume we are given an ensemble of k pre-trained
word embedding sets, of the same word vocabulary
of size n and the same dimensionality d. In our
setting, these sets are obtained by training the same
embedding model using different random parame-
ter initializations. Our goal is to fuse the k embed-
ding sets into a single “average” embedding that is
hopefully more robust and would yield better per-
formance on various tasks. Since each embedding
set has its own space, we project the k embedding
spaces into a shared space, in which we induce av-
eraged embeddings based on a mean squared error
minimization objective.

Let xi,t ∈ Rd be the dense representation of the
t-th word in the i-th embedding set. We model
the mapping from the i-th set to the shared space
by an orthogonal matrix denoted by Ti. Denote
the sought shared space representation of the t-th
word by yt ∈ Rd. Our goal is to find a set of
transformations T = {T1, ..., Tk} and target word
embeddings y = {y1, ..., yn} in the shared space
that minimize the following mean-squared error:

S(T, y) =
k∑

i=1

n∑
t=1

‖Tixi,t − yt‖2 . (1)

For this objective, it is easy to show that for a set
of transformations T1, ..., Tk, the optimal shared
space representation is:

yt =
1

k

k∑
i=1

Tixi,t.

Hence, solving the optimization problem pertains
to finding the k optimal transformations.

In the case where k = 2, the optimal T can be
obtained in a closed form using the Procrustes Anal-
ysis (PA) procedure (Schönemann, 1966), which
has been employed in recent bilingual word trans-
lation methods (Xing et al., 2015; Artetxe et al.,
2016; Hamilton et al., 2016; Artetxe et al., 2017a,b;
Conneau et al., 2017; Artetxe et al., 2018a,b; Ruder
et al., 2018). In our setting, to obtain an improved
embedding, we wish to average more than two em-
bedding sets.

However, if k > 2 there is no closed form so-
lution to (1) and thus, we need to find a solution
using an iterative optimization process. To that
end, we follow several works that suggested em-
ploying the General Procrustes Analysis (GPA) pro-
cedure, which is an extension of PA to multi-set
alignment (Gower, 1975; Kementchedjhieva et al.,
2018). Generally, the GPA consists of an alternate
minimization procedure where we iterate between
finding the orthogonal transformations and comput-
ing the shared space. The optimal transformation
from each embedding space to the shared space is
found by minimizing the following score,

S(Ti) =

n∑
t=1

‖Tixi,t − yt‖2 , i = 1, ..., k.

The minimum of S(Ti) can then be found by
the closed form PA procedure. The updated trans-
formation is Ti = UiV

>
i , where UiΣiV

>
i is the

singular value decomposition (SVD) of the d× d
matrix

∑n
t=1 ytx

>
i,t. At each step in the iterative

GPA algorithm, the score (1) is monotonically de-
creased until it converges to a local minimum point.

Algorithm 1 Shared Space Embedding Averaging
1: Input: Ensemble of k word embedding sets.
2: Task: Find the optimal average embedding.
3: Preprocessing:
4: Compute the cross-correlation matrices:
5: Cij = C>

ji =
∑n

t=1 xj,tx
>
i,t 1 ≤ i < j ≤ k

6: Initialization: T1 = · · · = Tk−1 = 0, Tk = I
7: while not converged do
8: for i = 1, ..., k do
9: UΣV > = SVD

(∑
j 6=i TjCij

)
10: Ti ← UV >

11: end for
12: end while
13: Compute the average embedding:
14: yt ← 1

k

∑k
i=1 Tixi,t t = 1, ..., n

For large vocabularies, GPA is not efficient,
because, in each iteration, when computing the
SVD we need to sum over all the vocabulary
words. To circumvent this computational cost, we
adopt the optimization procedure from Taitelbaum
et al. (2019), which we apply within each itera-
tion. Instead of summing over the whole vocab-
ulary, the following extension is proposed. Let
Cij =

∑
t xj,tx

>
i,t be the cross-correlation matrix
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original denoised

word2vec 0.40± 0.005 0.059± 0.003
GloVe 0.38± 0.006 0.058± 0.003
FastText 0.35± 0.003 0.054± 0.001

Table 1: Average MSE scores of the embedding models
with and without applying the SSEA algorithm.

for a pair (i, j) of two original embedding spaces,
which can be computed once, for all pairs of spaces,
in a pre-processing step. Given the matricesCij the
computational complexity of the iterative averag-
ing algorithm is independent of the vocabulary size,
allowing us to compute efficiently the SVD. The re-
sulting algorithm termed Shared Space Embedding
Averaging (SSEA) is presented in Algorithm 1.1

3 Experimental Setup and Results

This section presents our evaluation protocol,
datasets, data preparation, hyperparameter configu-
ration and results.

3.1 Implementation Details and Data
We trained word2vec (Mikolov et al., 2013a), Fast-
Text (Bojanowski et al., 2017) and GloVe (Pen-
nington et al., 2014) embeddings. For word2vec
we used the skip-gram model with negative sam-
pling, which was shown advantageous on the evalu-
ated tasks (Levy et al., 2015). We trained each
of the models on the November 2019 dump of
Wikipedia articles2 for k = 30 times, with dif-
ferent random seeds, and used the default reported
hyperparameters; we set the embedding dimension
to d = 200, and considered each word within the
maximal window cmax = 5, subsampling3 thresh-
old of ρ = 10−5 and used 5 negative examples for
every positive example. In order to keep a large
amount of rare words in the corpus, no preprocess-
ing was applied on the data, yielding a vocabulary
size of 1.5 · 106. We then applied the SSEA algo-
rithm to the embedding sets to obtain the average
embedding. The original embedding sets and aver-
aged embeddings were centered around the 0 vector
and normalized to unit vectors.

3.2 Improved Embedding Stability
We next analyze how our method improves em-
bedding quality and consistency, notably for rare

1The algorithm demonstration code is available at
github.com/aviclu/SSEA. In practice, we utilized an efficient
PyTorch implementation based on Taitelbaum et al. (2019).

2dumps.wikimedia.org/enwiki/latest/
3To speed up the training.

Figure 1: Average MSE for word embeddings vs their
corpus occurrence count (binned with resolution of 50).

words. To that end, for any two embedding sets,
u and v, we can find the optimal mapping Q be-
tween them using the PA algorithm and compute
its mean square error (MSE), 1

n

∑
t=1 ‖Qut−vt‖2.

We define the stability of an embedding algorithm
by the average MSE (over 10 random pairs of sam-
ples) between two instances of it. This score mea-
sures the similarity between the geometries of ran-
dom instances generated by a particular embedding
method , and thus reflects the consistency and sta-
bility of that method. The scores of the different
models are depicted in Table 1. As observed, after
applying SSEA the Average MSE drops by an or-
der of magnitude, indicating much better stability
of the obtained embeddings.

We can perform a similar analysis for each word
separately. A consistent embedding of the t-th
word in both sets u and v should result in a small
mapping discrepancy ‖Qut−vt‖2. Figure 1 depicts
MSE for the models and their computed SSEA, as
a function of the word’s frequency in the corpus.
The denoised version of the models is marked with
a ‘D-’ prefix. For clarity of presentation, we did
not include the results for GloVe (which are similar
to word2vec). As expected, embedding stability
always increases (MSE decreases) with word fre-
quency. SSEA is notably more stable across the
frequency range, with the error minimized early on
and reduced most drastically for low frequencies.

3.3 Comparison of methods
We next compare our denoised model, denoted with
a ‘D-’ prefix, with the original embedding models.
As an additional baseline, we considered also the
naı̈ve averaged embedding model, denoted with
a ‘A-’ prefix, where for every word we computed
the simplistic mean embedding across all origi-

https://github.com/aviclu/SSEA
https://dumps.wikimedia.org/enwiki/latest/
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Method SimLex999 MEN WS353 AP Google MSR SemEval2012(2) BLESS RW

word2vec 33.7 72.4 60.7 62.2 69.5 51.3 19.2 79 42
A-word2vec 33.1 72.3 60.8 61.9 69.2 51.2 19 78.1 41.7
D-word2vec 33.9 73.2 60.8 63.1 70.3 51.9 20 79.6 43.4

GloVe 34.4 73.4 62.3 63.3 75.1 54.5 19.7 79.2 47.2
A-GloVe 34.2 73.1 61.9 62.8 74.7 54.2 19.6 79 47.1
D-GloVe 34.8 75.1 62.7 64.3 75.9 55.2 20.1 79.9 48.5

FastText 41.2 78.6 70.7 72.2 75.7 63.4 19.8 81.5 47.1
A-FastText 41 78.1 69.7 72.1 74.1 62.8 19.4 80.8 46.6
D-FastText 42.2 79.3 71.8 72.9 77.4 63.8 20.2 82.7 50.3

Table 2: Results for lexical-semantic benchmarks. Best performance is bolded.

nal spaces. Note that we did not compare other
proposed embeddings or meta-embedding learn-
ing methods, but rather restricted our analysis to
empirically verifying our embedding aggregation
method and validating the assumptions behind the
empirical analysis we performed.

3.4 Evaluations on Lexical Semantic Tasks

We evaluated the performance of our method over
lexical-semantic tasks, including word similarity,
analogy solving, and concept categorization: Sim-
Lex999 (Hill et al., 2015), MEN (Bruni et al.,
2014), WS353 (Finkelstein et al., 2002), AP (Al-
muhareb and Poesio, 2004), Google (Mikolov
et al., 2013b), MSR (Mikolov et al., 2013c),
SemEval-2012 (Jurgens et al., 2012), BLESS (Ba-
roni and Lenci, 2011) and RW (Luong et al., 2013),
(focusing on rare words). For the analogy task, we
reported the accuracy. For the remaining tasks, we
computed Spearman’s correlation between the co-
sine similarity of the embeddings and the human
judgments.

Results The results of the lexical-semantic tasks
are depicted in Table 2, averaged over 30 runs for
each method. Our method obtained better perfor-
mance than the other methods, substantially for
FastText embeddings. As shown, the naı̈ve averag-
ing performed poorly, which highlights the fact that
simply averaging different embedding spaces does
not improve word representation quality. The most
notable performance gain was in the rare-words
task, in line with the analysis in Fig. 1, suggesting
that on rare words the raw embedding vectors fit
the data less accurately.

3.5 Evaluations On Downstream Tasks

For completeness, we next show the relative ad-
vantage of our denoising method also when ap-
plied to several sentence-level downstream bench-
marks. While contextualized embeddings domi-

nate a wide range of sentence- and document- level
NLP tasks (Peters et al., 2018; Devlin et al., 2019;
Caciularu et al., 2021), we assessed the relative
advantage of our denoising method when utilizing
(non-contextualized) word embeddings in sentence-
an document- level settings. We applied the ex-
act procedure proposed in Li et al. (2017) and
Rogers et al. (2018), as an effective benchmark
for the quality of static embedding models. We
first used sequence labeling tasks. The morphologi-
cal and syntactic performance was evaluated using
part-of-speech tagging, POS, and chunking, CHK.
Both named entity recognition, NER, and multi-
way classification of semantic relation classes, RE,
tasks were used for evaluating semantic informa-
tion at the word level. For the above POS, NER
and CHK sequence labeling tasks, we used the
CoNLL 2003 dataset (Sang and Meulder, 2003)
and for the RE task, we used the SemEval 2010
task 8 dataset (Hendrickx et al., 2010). The neural
network models employed for these downstream
tasks are fully described in (Rogers et al., 2018).
Next, we evaluated the following semantic level
tasks: document-level polarity classification, PC,
using the Stanford IMDB movie review dataset
(Maas et al., 2011), sentence level sentiment po-
larity classification, SEN, using the MR dataset of
short movie reviews (Pang and Lee, 2005), and clas-
sification of subjectivity and objectivity task, SUB,
that uses the Rotten Tomatoes user review snippets
against official movie plot summaries (Pang and
Lee, 2004). Similarly to the performance results in
Table 2, the current results show that the suggested
denoised embeddings obtained better overall per-
formance than the other methods, substantially for
FastText embeddings.

4 Related Work

A similar situation of aligning different word em-
beddings into a shared space occurs in multi-lingual
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Method POS CHK NER RE PC SEN SUB

word2vec 81.5 80.1 93.3 71.4 89.2 73.9 76.4
A-word2vec 78 77.5 90.9 67.4 86.4 64.3 75.6
D-word2vec 81.6 80.2 93.6 73.1 89.7 74 77.4

GloVe 77.5 70.4 85.2 66.7 80.2 70.2 72.7
A-GloVe 77.1 70.2 84.9 62.3 77.7 62.2 71.8
D-GloVe 77.8 71.1 86.6 68.2 80.8 71.3 73.9

FastText 80.6 79.1 92.2 74 88.9 74.9 73.9
A-FastText 78.4 78.8 90.2 73.6 89 74.1 73.3
D-FastText 82.4 81.2 94.9 75.2 90.5 77.3 76.7

Table 3: Results for downstream task. Best perfor-
mance is bolded.

word translation tasks which are based on distinct
monolingual word embeddings. Word translation
is performed by transforming each language word
embeddings into a shared space by an orthogonal
matrix, for creating a “universal language”, which
is useful for the word translation process. Our set-
ting may be considered by viewing each embedding
set as a different language, where our goal is to find
the shared space where embedding averaging is
meaningful.

The main challenge in multilingual word trans-
lation is to obtain a reliable multi-way word corre-
spondence in either a supervised or unsupervised
manner. One problem is that standard dictionar-
ies contain multiple senses for words, which is
problematic for bilingual translation, and further
amplified in a multilingual setting. In our case of
embedding averaging, the mapping problem van-
ishes since we are addressing a single language
and the word correspondences hold trivially among
different embeddings of the same word. Thus, in
our setting, there are no problems of wrong word
correspondences, neither the issue of having differ-
ent word translations due to multiple word senses.
Studies have shown that for the multi-lingual trans-
lation problem, enforcing the transformation to
be strictly orthogonal is too restrictive and perfor-
mance can be improved by using the orthogonal-
ization as a regularization (Chen and Cardie, 2018)
that yields matrices that are close to be orthogonal.
In our much simpler setting of a single language,
with a trivial identity word correspondence, enforc-
ing the orthogonalization constraint is reasonable.

Another related problem is meta-embedding
(Yin and Schütze, 2016), which aims to fuse in-
formation from different embedding models. Var-
ious methods have been proposed for embedding
fusion, such as concatenation, simple averaging,
weighted averaging (Coates and Bollegala, 2018;

Kiela et al., 2018) and autoencoding (Bollegala and
Bao, 2018). Some of these methods (concatenation
and autoencoding) are not scalable when the goal
is to fuse many sets, while others (simple averag-
ing) yield inferior results, as described in the above
works. Note that our method is not intended to
be a competitor of meta-embedding, but rather a
complementary method.

An additional related work is the recent method
from (Muromägi et al., 2017). Similarly to our
work, they proposed a method based on the Pro-
crustes Analysis procedure for aligning and averag-
ing sets of word embedding models. However, the
mapping algorithm they used is much more compu-
tationally demanding, as it requires to go over all
the dictionary words in every iteration. Instead, we
propose an efficient optimization algorithm, which
requires just one such computation during each it-
eration, and is theoretically guaranteed to converge
to a local minimum point. While their work fo-
cuses on improving over the Estonian language, we
suggest evaluating this approach on English data
and on a range of different downstream tasks. We
show that our method significantly improves upon
rare words, which is beneficial for small sized /
domain-specific corpora.

5 Conclusions

We presented a novel technique for creating bet-
ter word representations by training an embedding
model several times, from which we derive an aver-
aged representation. The resulting word representa-
tions proved to be more stable and reliable than the
raw embeddings. Our method exhibits performance
gains in lexical-semantic tasks, notably over rare
words, confirming our analytical assumptions. This
suggests that our method may be particularly use-
ful for training embedding models in low-resource
settings. Appealing future research may extend our
approach to improving sentence-level representa-
tions, by fusing several contextualized embedding
models.
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