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Abstract

We suggest to model human-annotated Word
Usage Graphs capturing fine-grained seman-
tic proximity distinctions between word uses
with a Bayesian formulation of the Weighted
Stochastic Block Model, a generative model
for random graphs popular in biology, physics
and social sciences. By providing a probabilis-
tic model of graded word meaning we aim to
approach the slippery and yet widely used no-
tion of word sense in a novel way. The pro-
posed framework enables us to rigorously com-
pare models of word senses with respect to
their fit to the data. We perform extensive ex-
periments and select the empirically most ade-
quate model.

1 Introduction

Word Usage Graphs (WUGs) are a relatively new
model of graded word meaning in context (Erk
et al., 2013; McCarthy et al., 2016; Schlechtweg
et al., 2021). They represent word uses (i.e., words
in context) within a weighted undirected graph,
with edge weights reflecting the semantic proxim-
ity between uses. WUGs may be obtained via hu-
man annotation by presenting annotators with pairs
of words uses and asking them for proximity judg-
ments. The WUGs may then be clustered into sets
of uses exhibiting high semantic proximity, in order
to reflect traditional word sense distinctions (Mc-
Carthy et al., 2016), and to provide insight into key
aspects of word meaning such as polysemy, vague-
ness, and lexical semantic change (Schlechtweg
et al., 2020, 2021).

We suggest to model WUGSs with a Bayesian for-
mulation of the Weighted Stochastic Block Model
(WSBM), a generative model for random graphs
popular in biology, physics and social sciences
(Aicher et al., 2014; Peixoto, 2017). The basic
assumption of WSBMs is that vertices belong to la-
tent blocks (clusters), and that vertices in the same

block are stochastically equivalent (i.e., they have
edges drawn from the same distribution). Fitting
the model is equivalent to determining the opti-
mal latent block structure providing a clustering
of word uses.

By using a Bayesian probabilistic model of
WUG data we aim to approach graded word mean-
ing in a rigorous scientific way: We perform model
selection, i.e., different models are compared ac-
cording to their fit to the data, and the model which
explains the data best is chosen as most adequate
representation of the semantic structure behind
human-annotated word uses. If blocks are equated
with word senses, this allows us to approach this
slippery and yet widely used concept in a novel
way. We may test long-standing hypotheses such
as whether a graded model allowing sense overlap
is a better model than a discrete one (Kilgarriff,
1997; Erk et al., 2013; McCarthy et al., 2016).

As a probabilistic model, the WSBM allows to
generate data from a fitted model, which is useful
for simulating realistic WUGs, e.g. when planning
annotation studies. A fitted WSBM may also be
used to predict values of unobserved edge weights,
which is helpful for enhancing annotations.

Our contributions can be summarized as follows:

e Introducing a rigorous scientific way to infer
the number and the nature of word senses.

e Improving WSBM with marginalizing over
edge probabilities.

e Model selection: inferring the most likely
number of discrete word senses for words in
DWUG DE/EN data sets (Schlechtweg et al.,
2021).

e Model checking: validating WSBMs as a rea-
sonable model of WUGs and word senses with
respect to external criteria.

e Publication of fitted WSBM models which
can be used for simulating realistic data.
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e Analysis: identifying shortcomings of WS-
BMs (such as edge probabilities, hub effect).

2 Related Work

Our approach generally falls within the area of
Bayesian probabilistic modeling (Koch, 2007).
More specifically, it is related to model-based graph
clustering techniques, e.g., Latent Space models
such as Gaussian Mixture Models (Hoff et al.,
2002; Duda and Hart, 1973). These methods are
common in the field of community detection (Abbe,
2017). Within computational linguistics our ap-
proach is most strongly related to generative prob-
abilistic topic models, where words in documents
are modeled as being drawn from a latent topic
distribution (Steyvers and Griffiths, 2007). Topics
are often interpreted as senses (Frermann and Lap-
ata, 2016; Perrone et al., 2019). Another common,
yet non-probabilistic, modeling approach for word
senses is to group word uses expressing similar
meanings into clusters based on contextual features
(Schiitze, 1998; Biemann, 2006).

As to our knowledge, only a small set
of studies is concerned with the modeling of
human-annotated WUGs (McCarthy et al., 2016;
Schlechtweg et al., 2020, 2021). This research
line is motivated by insights from lexical seman-
tics that word senses are no discrete objects (Kil-
garriff, 1997; Erk et al., 2013). Most important
to note is the pioneering work of McCarthy et al.
(2016) as the first to represent human-annotated
word uses within graphs and then clustering the
uses based on heuristics such as connected compo-
nents and cliques. McCarthy et al. derived edge
weights from human lexical substitution judgments
for the respective target words and binarized them
according to a threshold. This idea was recently
modified and extended by Schlechtweg et al. (2020,
2021). Schlechtweg et al. used semantic proximity
judgments to annotate edges. They applied correla-
tion clustering (Bansal et al., 2004) in connection
with a global threshold to group vertices with high
edge weights and developed an efficient iterative
sampling strategy for edges to reduce annotation
load. However, these approaches are ad-hoc clus-
tering methods which do not provide a probabilistic
model for WUGs.

3 Data

A Word Usage Graph G = (U,E,W) is a
weighted, undirected graph, where vertices u € U

4: Identical

3: Closely Related
2: Distantly Related
1: Unrelated

Table 1: DURel relatedness scale (Schlechtweg et al.,
2018).

represent word uses and weights w € W rep-
resent the semantic proximity of a pair of uses
(u1,uz) € E (Schlechtweg and Schulte im Walde,
submitted). In practice, semantic proximity can
be measured by human annotator judgments on
a scale of relatedness (Brown, 2008; Schlechtweg
etal., 2018) or similarity (Erk et al., 2013). Human-
annotated WUGs are often sparsely observed and
noisy, i.e., only a small percentage of edges from
the full graph are annotated, and annotators often
show disagreements, e.g. for ambiguous uses, as
can be seen in Figure 1.

Recently, Schlechtweg et al. (2020, 2021) devel-
oped a large-scale multi-lingual resource of WUGs.
Annotators were asked to judge the semantic relat-
edness of pairs of word uses (such as the two uses
of grasp in (1) and (2)) according to the scale in
Table 1.!

(1) He continued to grasp, between forefinger
and thumb, the edge of the cloth I had been
sewing.

(2) For just a moment he didn’t grasp the import
of what the old man had said.

The uses were sampled from diachronic corpora of
four languages (English, German, Latin, Swedish).
The data was annotated in four rounds. After each
round the accumulated annotations from the previ-
ous rounds wer represented in a WUG, which was
then clustered with correlation clustering (Bansal
et al., 2004), and then further use pairs were chosen
according to heuristics aiming to compare uses to
clusters to which they had not yet been compared.
Annotators showed high agreement, and compara-
ble to previous studies. The final resource consists
of WUGs for 168 words with a total of 100,000
judgments including nouns, verbs and adjectives
as well as monosemous and polysemous words. In
our experiments we use the German and English
subparts of the data set comprising 88 WUGs.
While for some WUGS a clustering structure
grouping vertices with high edge weights together

'nttps://www.ims.uni-stuttgart.de/
data/wugs
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Figure 1: Word Usage Graphs of German Festspiel (left), Abgesang (middle) and zersetzen (right). Vertices
represent uses of the respective target word. Edge weights represent the median of relatedness judgments between
uses (black/gray lines for high/low edge weights, i.e., weights > 2.5/weights < 2.5).

is obvious, for others this is not the case (cf. Mc-
Carthy et al., 2016). For example, see Figure 1
showing the annotated uses for three words from
Schlechtweg et al. (2021).

The uses of the word Festspiel on the left and
zersetzen on the right can be clearly partitioned
into one/two main clusters, while the uses of Abge-
sang in the middle have a less clearly clusterable
structure. Hence, it is unclear how many senses
Abgesang has and what the assignment of uses to
senses should be. We approach these two questions
by searching for the model which best explains the
data. The block structure inferred by this model
will then give us a number of blocks and an assign-
ment of uses to blocks.

4 Stochastic Block Model

The Stochastic Block Model (SBM) (Holland et al.,
1983) is a simple generative process of random
graphs based on the notion of groups of vertices.
It assumes that each vertex of an observed graph
(G is member of a latent block (group) and that G
was generated by first sampling vertices and then
sampling edges between these vertices where the
probability of observing an edge between two ver-
tices is only determined by the block membership.
Once this process is formulated mathematically,
the optimal latent block structure can be inferred
from G. For this, given the partition b = {b;} of G
into B blocks, where b; € [0, B — 1] is the block
membership of vertex i, we define a model that
generates a graph A with a probability

P(A|0,b)

where 6 are additional model (edge bundle) param-
eters that govern how the vertex partition affects
the placing of edges (Peixoto, 2014a). Therefore,
if we observe a graph A, the likelihood that it was
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generated by a given partition b is given by the
Bayesian posterior probability

Sy P(A]0,b)P(8,b)
P(4)

P(b|A) =

where P(6,b) is the prior probability of the model
parameters, and P(A) is called the evidence,
and corresponds to the total probability of the
data summed over all model parameters (Peixoto,
2014a). The standard SBM takes as parameters the
partition of the vertices into blocks banda B x B
matrix of edge counts e, where e, is the number
of edges between groups r and s.

4.1 Edge weights

The Weighted Stochastic Block Model (WSBM)
is an extension of the standard SBM to weighted
graphs (Aicher et al., 2014; Peixoto, 2017). In the
WSBM the inference of the latent block structure
is driven by both edge existence and edge weights.
This is achieved by treating edge weights as co-
variates that are sampled from some distribution
(e.g. binomial) conditioned on the vertex partition
(Peixoto, 2014a), i.e.,

P(A,20,7,b) = P(x|A,~,0)P(A6,b)

with the covariates being sampled only on existing
edges, and where -, is a set of parameters that
govern the sampling of the weights between groups
r and s. The posterior partition distribution is then

x|A,b)P(A|b)P(b)
P(A,z) ’

P|A,2) = L

omitting the parameters 6,y as in the non-
parametric WSBM through the use of marginal
likelihoods (Peixoto, 2017). In our experiments
we use the non-parametric, micro-canonical imple-
mentation of the WSBM which avoids explicitly



Figure 2: Word Usage Graphs of German Festspiel (left), Abgesang (middle) and zersetzen (right) with inferred

block structure.

encoding distribution parameters for edge weights
by replacing them with hard quantities (Peixoto,
2014c).> The non-parametric model avoids over-
fitting, and micro-canonical distributions are easier
to compute while approaching their canonical coun-
terparts asymptotically (Peixoto, 2017).3

4.2 Marginalizing over edge probabilities

The basic assumption of the WSBM is that ver-
tices in the same block are stochastically equivalent.
This should hold with respect to edge weights x
and edge probabilities A. However, the distribution
of edge probabilities in our case is guided exclu-
sively by Schlechtweg et al.’s sampling procedure.
Hence, the assumption of stochastic equivalence of
edge probabilities does not hold for WUGs. Thus,
we aim to make the block structure independent
from the observed edge probability distribution be-
tween blocks as far as possible.* We reach this by
marginalizing over edge probabilities, while keep-
ing their number the same between groups. The
latter is needed as the edge probabilities build the
support of the edge weights. The posterior partition
distribution is then

D(x]b) P(b)

P(ble) = =5

2We recover the non-microcanonical versions of the distri-
butions by fitting these to the observed edge weights between
blocks after fitting the WSBM.

3All  experiments were done with graph-tool:
https://graph-tool.skewed.de/. Additional
code is provided at https://github.com/kicasta/
Modeling_WUGS_WSBM.

*Note that degree-correction relaxes the homogeneity as-
sumption and would thus serve as a first modeling approach
(Karrer and Newman, 2011; Peixoto, 2019). However, the
degree-corrected model still suffers from the hub effect, i.e.,
vertices with many edges tend to be assigned to the same
block (Peixoto, 2020). This effect could be avoided with La-
tent Poisson models (Peixoto, 2020). However, we want the
inferred block structure to be largely independent from edge
probabilities, which neither of the models fully guarantees.

where

P(z|b) = > P(z|A,b)P(A|b)
AeA

and A is the set of all networks A that have the
same number of edges between groups as the ob-
served network A’ under block assignment b. We
sum over all possible edge assignments with the
same number of edges between groups. In this way
edge probabilities are marginalized and the poste-
rior distribution P(z|b) is mainly driven by edge
weights.

4.3 Inference

Finding the maximum of the posterior distribu-
tion of the WSBM is NP-hard (Peixoto, 2015).
Hence, we infer the optimal partitioning of vertices
P(b|x) asymptotically with multilevel agglomera-
tive Markov chain Monte Carlo Peixoto (2014b).
The central idea is to sample from P(b|z) by first
starting from some initial state and making move
proposals depending on the current state such that,
ultimately, the Markov Chain converges to P(b|x).
In order to alleviate the problem of metastable
states the chain is first equilibrated for a larger
number of blocks, which are then merged. (Find a
discussion of the problem of metastable states in
Peixoto (2014b).)

4.4 A Model for Word Senses?

The basic assumption of the WSBM with marginal-
ized edge probabilities is that vertices in the same
block are stochastically equivalent with respect to
edge weights. We argue that this assumption is rea-
sonable for word senses: From previous work we
inherit the insight that graded proximity judgments
reflect single-sense judgments (Erk et al., 2013;
McCarthy et al., 2016). This is to say that use pairs
expressing the same sense receive high values on
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Figure 3: Inferred number of blocks with best-fitting models (left). Correspondence to clustering result from

Schlechtweg et al. (2021) (right).

the annotation scale, while use pairs expressing
different senses receive low values. This behavior
can be modeled by assuming that same-sense pairs
receive edge weights chosen from a common dis-
tribution with a high mean, while the same holds
for different-sense pairs with a distribution with a
low mean. The interesting question is, though, how
well the WSBM (or any other model) can model the
unclear cases, i.e., use pairs receiving intermediate
judgments on the annotation scale. The WSBM is
a very general model that can learn many different
structures. It can handle heterogenous and over-
lapping edge weight distributions and also allows
blocks to be more or less related to each other. In
principle, it also allows mixed membership of ver-
tices in blocks (Peixoto, 2015). The advantage of
our approach is that we do not have to define senses
in any further way. As latent variables, they can be
found by themselves, guided by the independent
criterion of how well they explain the data.

Note that this approach does not in any way de-
pend on the concept of sense. In principle, any
other probabilistically formulated model aiming
to explain WUG data can be introduced. Such a
model does not have to rely on the idea of stochas-
tically equivalent blocks. If this model were to
explain the data better, the WSBM could be ne-
glected.

5 Model Selection’

Following Peixoto (2015) we select the best model
according to the Minimum Description Length
Principle (Griinwald and Grunwald, 2007). The
description length of a graph measures the amount
of information required to describe the data, if we

SWe provide all fitted models as well as our code

at https://github.com/kicasta/Modeling
WUGS_WSBM.
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encode it using a particular parametrization of the
model being tested. This approach corresponds to
an implementation of Occam’s razor, where the
simplest model is selected, among all possibilities
with the same explanatory power (Peixoto, 2014a).

5.1 Number of blocks

88 WUGs were fitted using three different distri-
butions for edge weights (see below). The optimal
number of blocks is found during fitting (Peixoto,
2014b). We start fitting by choosing an initial num-
ber of blocks 1 < b < 30. Peixoto’s algorithm then
tries to find a partition of the Graphinto1 < b < 30
blocks with minimum description length. It does so
by choosing some b’ > b, finding the best partition
of the graph into b’ blocks and then greedily merg-
ing these ' into b blocks. Then, it repeats this step
for a by and bs, such that b; < b < by and decides
whether it should increase the number of blocks
or decrease it depending on whether it results in
a decrease in description length. This is done un-
til convergence. Figure 3 (left) shows the optimal
number of blocks obtained for each WUG in the
above-described way. We see a tendency to favor
simpler structures over more complex ones. That
is, most WUGSs are modeled best with one or two
blocks. The highest number of blocks found is 5.
The inferred block structure for the three graphs in
Figure 1 is displayed in Figure 2 with 1/3/3 blocks
respectively.®

5.2 Edge Weight Distribution

Each WUG was fitted using three different distribu-
tions for edge weights: (micro-canonical versions
of) binomial, poisson and geometric. Figure 4 (left)
shows the number of graphs for which each dis-

SFor further example plots see Figures 7 and 8 in Ap-
pendix A.
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Figure 4: Comparison of model fit wrt. edge weight distributions (left), where Y-axis gives number of graphs for
which the respective distribution had minimum description length. Evaluation result of link prediction (right).

tribution type yielded the best fit. The binomial
distribution shows the best fits in the large major-
ity of cases. This makes sense, because it is also
the most general and flexible of the three distribu-
tions. Figure 5 shows the observed edge weight
distributions of the graphs between blocks after fit-
ting (red) and within blocks (blue), as well as the
respective inferred distributions (curve). Despite
the fact that edge weight distributions may be het-
erogenous (middle), there is a clear tendency for
negative edges between blocks and positive edges
within blocks. The inferred distributions reflect this
pattern.7

5.3 Analysis

We now take a closer look at the WUGS from Fig-
ures 1 and 2 and their block-related edge weight
distributions in Figure 5. For example, the fol-
lowing two use pairs of Festspiel homogeneously
received high ratings of 3 and 4. The best fit is
reached with one block and a binomial distribution.

(3) ...war die DDR bei den Wiener Festwochen,
den Salzburger Festspielen und...
“...the GDR was represented at the Wiener

Festwochen, the Salzburg Festival and...

...im Rahmen der Wettbewerbe und
Festspiele der Volkskunst...

“...as part of the competitions and festivals of
folk art...”

“)

Abgesang is a different case: It received heteroge-
nous judgments across the scale from 1-4. No clear
block structure is visible at first in Figure 1. The
best fit is obtained with three blocks and a binomial
distribution. The three blocks reflect meaningful

"Note that Figure 5 shows only the combined distributions
within and between blocks across all combinations. The per-
block distributions are very similar though, as can be seen in
Figure 9 in Appendix A for zersetzen.

fine-grained sense differences as displayed by the
following three examples:

(5) Inden ersten Strophen der Klage der Ceres
findet sich ein [...] 4 zeiliger Aufgesang mit
einem 8 zeiligen Abgesang.

‘In the first stanzas of Ceres’ lament there is a
[...] 4-line stance start with an 8-line stance
end’

(6) ...und radelte unter dem Abgesang
schmutziger Lieder davon.
“...and cycled off while singing dirty songs.’

(7) ...daB dieser Vorgriff auf den Sommer nicht
schon den Abgesang des Wintersports
bedeutet...

“...that this anticipation of summer doesn’t
mean the swan song of winter sports...’

We observe that the sparsity of the annotation has a
strong influence: if a word use is richly annotated
with several edges, then the model has information
on its relation to other blocks and can infer a reason-
able block assignment, even if there are annotation
errors. If, however, the use is only annotated with
e.g. one low-valued edge, the model is likely to
assign it to a block with semantically very different
uses which also tend to have low judgments with
other uses. That is, unrelated uses may appear ho-
mogeneous to the model, because they have similar
(as sparsely observed) relations to third uses. This
effect disappears with richer annotation.

Just as Abgesang, zersetzen yields the best fit
with three blocks and a binomial distribution. As
can be seen in Figure 5, the weights also cover
the whole scale. However, in this case they are
more homogeneously distributed within and be-
tween blocks. This is because zersetzen has two
main and clearly distinguishable senses, as illus-
trated by (8) and (9):
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Figure 5: Combined weight distributions of German Festspiel (left), Abgesang (middle) and zersetzen (right). The

curves show the inferred distributions.

...dass die Pflanzen das kohlensaure Gas
beym Sonnenlichte zersetzen...

...that the plants decompose the carbonic
acid gas in the sunlight...

(®)

(9) Das System des Frontstadtsenats hat die
westberliner Schule bedrohlich zersetzt.
‘The system of the front city senate has
destroyed the West Berlin school.’

There is a third block where uses are mostly varia-
tions of the sense in (9), e.g. referring to a rather
physical than chemical decomposition, or uses
where the meaning is unclear. We made a simi-
lar observation for other graphs (e.g. rag): There
are separate and semantically heterogeneous blocks
for unclear and sparsely annotated uses. German
zersetzen also illustrates an effect that we observe
across many graphs: While the inferred binomial
distribution within blocks (see Figure 5) can be
closely fit, the distribution between blocks has a
considerable error. This is mostly because weights
of 1 are rare, while weights of 4 are common. The
probability mass of weights between blocks is con-
centrated at 2, not 1. The binomial distribution
has considerable problems modeling this behavior.
Other distributions are also deficient, however: the
geometric distribution cannot model right-skewed
distributions at all, and thus has high errors for
within-block distributions. Consequently, the cases
where it yields the best fits, are the ones with a high
number of low edge weights (e.g. tip) which lead
to strongly left-skewed distributions. The poisson
distribution suffers from the problem that it cannot
model steep and peeked distributions. An impor-
tant challenge for future modeling approaches will
be to find appropriate distributions to model the
behavior of edge weights. We believe that a signed
(invertible) geometric distribution will yield good
fits in many cases. Another important challenge
will be to avoid sparsity of annotation, e.g. by de-
veloping efficient and iterative sampling techniques
for edges. It also should be examined how much

the inferred block structure is influenced by the dif-
ference in the way a particular annotator interprets
uses, yielding homogeneous judgments for edges
annotated exclusively by this annotator. This could
be modeled by multi-graph models (Peixoto, 2017)
where the information from each annotator can be
represented individually.

6 Model Checking

In order to validate the fitted models externally we
test whether the inferred clustering corresponds to a
clustering obtained with an independent algorithm.
Additionally, we use two internal validation criteria
which test how well the structural properties of the
observed graphs are recoverable from the inferred
models. For this we apply two strategies: (i) Poste-
rior Predictive Checking (Gelman et al., 2013) and
(ii) Link Prediction (Liben-Nowell and Kleinberg,
2007).

6.1 Correspondence to Independent
Clustering Algorithm

Figure 3 (right) shows the correspondence (accu-
racy) of the inferred block structures to those found
by Schlechtweg et al. (2021) with correlation clus-
tering and a global threshold on edge weights. The
results often show strong correspondence (> .9)
to Schlechtweg et al., although they were obtained
with a completely different approach. For a number
of graphs with one inferred block the structures are
exactly the same. However, there are also clear dif-
ferences: Especially for graphs with complex block
structures (e.g. tip or rag) the correspondence to
Schlechtweg et al. is very low. This also holds
for some cases with simpler block structure (e.g.
Gesichtsausdruck or multitude). Our three graphs
from Figure 1 nicely display this pattern: Festspiel
has a simple one-block structure and high accuracy
(= 1.0), while Abgesang has a complex structure
and low accuracy (< 0.6). zersetzen has three
blocks (as Abgesang), but two main and clearly
separated blocks and rather high accuracy.
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Figure 6: Sampled Word Usage Graphs of German Festspiel (left), German Abgesang (middle) and zersetzen

(right).

In summary, the two clustering algorithms often
make similar decisions, but different decisions es-
pecially where the clustering structure is complex
and unclear.

6.2 Posterior Predictive Checking

We now test how well a model P(b|A, z) fitted
to a WUG G = (U, E, W) retains the structural
properties of GG. For this we create a new graph
H = (U, E,Wy = {}) with the same vertices and
edges as GG, but without the weights. This means
Ug = Uy and Eg = Ejg. Then for all edges e
€ Ep we sample from the inferred distribution D
with parameters P that best describes the weight
distribution for the respective block combination
(bey , bey) of e. For a model with a very close fit to
the data the drawn edge weights will resemble the
observed weights. We then visually compare the
observed and the sampled graphs (Figures 6 vs. 2).

In Figure 6 we can see that in simple graphs
like Festspiel the inferred structure coincides com-
pletely with the observed one. However, in graphs
with a more complex structure like Abgesang and
zersetzen (see Figure 5, middle and right) no dis-
tribution is flexible enough to fully describe the
observed weight distributions, reflecting the obser-
vations from above. This is clearly manifested in
the amount of high weights (black edges) inferred
between the different blocks which are not present
in the observed graph (see Figure 2).

6.3 Link Prediction

With link prediction we test how well a fitted model
P(b|A, z) from a WUG G = (U, E, W) can pre-
dict unobserved annotations, i.e., missing edges in
the graph. For this we randomly delete 5% of the
edges of GG and predict them by drawing from the
distribution D as described above. We then quan-
tify the difference between each predicted w), and

the corresponding observed edge weight w, and
define the Inverse Mean Error

[wo — wp

IME =1 —
4—-1

as a measure of how well a model structure predicts
the observed graph structure (Figure 4, right). For
about half of the graphs this score is quite high
(IME > .8), i.e., the sampled weights are close to
the observed values. Again, simpler block struc-
tures are easier to fit and are thus better predictable.
For half of the graphs the predictability is lower
though, for some even < .5. These results quantita-
tively confirm our observations from above, i.e., the
fitted distributions often do not model the observed
graphs sufficiently well.

7 Conclusion

We suggested to model human-annotated Word Us-
age Graphs with a Bayesian formulation of the
Weighted Stochastic Block Model, compared sev-
eral variations of the model and chose the best-
fitting model in a principled way. In addition, we
demonstrated how to interpret the inferred model
as a model of word senses, but also that this in-
terpretation is in no way necessary. The inferred
models provide a stochastically-driven clustering
and can be used to simulate realistic WUGs. An
analysis of the model fits illustrated that more flex-
ible distributions for edge weights are needed to
yield good fits for a range of graphs.

We would like to emphasize that we do not
claim that the WSBM is the best model for WUGs.
Rather, we propose WSBMs as a reasonable prob-
abilistic model for our data that can be rigorously
compared against competing models in a Bayesian
probabilistic framework, and potentially be ne-
glected.
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In the future, we aim to test more flexible edge
weight distributions and to compare WSBMs to
further probabilistic models, such as Gaussian Mix-
ture models (Duda and Hart, 1973) and Latent
Space models (Hoff et al., 2002). These models
are interesting because they explicitly enforce the
triangular property on graphs, which certain types
of proximity judgments are known to obey (Erk
et al., 2013). We also aim to explore Mixed Mem-
bership SBMs (Airoldi et al., 2008; Peixoto, 2015)
and multi-graph models (Peixoto, 2017) where the
information from each annotator can be represented
individually.
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A Additional Plots

Find additional plots in Figures 7, 8 and 9.
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Figure 7: Word Usage Graphs of German Ausnahmegesetz (left), stroke (middle) and plane (right).

Figure 8: Word Usage Graphs of German Sensation (left), German artikulieren (middle) and verbauen (right).
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Figure 9: Detailed weight distribution of German zersetzen. Distribution within blocks in the diagonal and between
blocks outside. Block ‘0’ maps the cyan cluster, Block ‘1’ the green cluster and Block ‘2’ the yellow one in Figure
2. The bars represent the observed values while the curves represent the inferred binomial distribution.
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