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Abstract

Transformer-based language models (LMs)
continue to advance state-of-the-art perfor-
mance on NLP benchmark tasks, including
tasks designed to mimic human-inspired “com-
monsense” competencies. To better under-
stand the degree to which LMs can be said
to have certain linguistic reasoning skills, re-
searchers are beginning to adapt the tools and
concepts of the field of psychometrics. But to
what extent can the benefits flow in the other
direction? I.e., can LMs be of use in predicting
what the psychometric properties of test items
will be when those items are given to human
participants? We gather responses from numer-
ous human participants and LMs (transformer-
and non-transformer-based) on a broad diag-
nostic test of linguistic competencies. We then
use the responses to calculate standard psy-
chometric properties of the items in the di-
agnostic test, using the human responses and
the LM responses separately. We then deter-
mine how well these two sets of predictions
match. We find cases in which transformer-
based LMs predict psychometric properties
consistently well in certain categories but con-
sistently poorly in others, thus providing new
insights into fundamental similarities and dif-
ferences between human and LM reasoning.1

1 Introduction

The current generation of transformer-based lan-
guage models (TLMs) (Vaswani et al., 2017) con-
tinues to surpass expectations, consistently achiev-
ing state-of-the-art results on many natural lan-
guage processing (NLP) benchmark tasks. Espe-
cially surprising is their remarkable performance
on benchmark tasks designed to assess “common-
sense” reasoning (e.g., Wang et al., 2018, 2019),

1Code and data to reproduce our experiments can be found
on Github: https://github.com/Advancing-Machine-Human-
Reasoning-Lab/transformer-psychometrics

possibly owing to their ability to encode and re-
trieve a surprising amount of structural knowledge
(Goldberg, 2019; Hu et al., 2020; Cui et al., 2020;
Petroni et al., 2019; Davison et al., 2019), despite
initial worries that all connectionist language mod-
els in general would suffer the same limitations
as previous generations (Sun, 1992, 1995; McClel-
land, 1995; Klahr, 1999; McLaughlin, 2009).

Understanding how TLMs reason is a complex
task made more difficult by the fact that the sizes of
contemporary TLMs are so large as to effectively
render them black boxes. As such, researchers are
continually searching for new methods to under-
stand the strengths and limitations of TLMs. One
promising approach is to draw from psychometrics,
a sub-field of psychology particularly suited to deal-
ing with perhaps the most mysterious black box of
them all: the human mind. Psychometrics is con-
cerned with psychological measurement—i.e., how
to measure latent attributes like reasoning skills,
attitudes, and personality traits. Psychometricians
have developed tools to measure such properties
even when the mechanisms that give rise to them
are not fully understood, thus suggesting a possi-
ble fruitful application of those tools to complex
artificial black boxes like TLMs. Although some
have called for bridging the gap between psycho-
metrics and AI (Bringsjord and Schimanski, 2003;
Bringsjord, 2011; Bringsjord and Licato, 2012;
Dowe and Hernández-Orallo, 2012; Hernández-
Orallo et al., 2016; Wilcox et al., 2020), the amount
of work attempting to do so is limited: although
some existing work attempts to use advances in
psychometrics to benefit the study of TLMs, none
to our knowledge have used SOTA TLMs (or even
LMs in general) to benefit psychometrics.

To illustrate, assume that someone wishes to de-
sign a test to assess the degree to which a person
possesses mastery of some cognitive skill S. A
good place to start is for a panel of experts to de-

https://github.com/Advancing-Machine-Human-Reasoning-Lab/transformer-psychometrics
https://github.com/Advancing-Machine-Human-Reasoning-Lab/transformer-psychometrics
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sign a set of test items (questions) I , such that they
believe solving I requires S. However, although
many NLP benchmarks tend to consider this suffi-
cient, the items in I only have face validity, in that
they only have been demonstrated to superficially
test for S. To go beyond face validity, one must
assess I’s psychometric properties by establishing
their validity (how well the items actually measure
the phenomenon S they purport to measure), relia-
bility (how stable the items are as measurements),
and fairness (how well the items are free from bi-
ases against certain sub-populations of subjects).2

But establishing these psychometric properties can
be prohibitively costly, requiring large numbers of
human participants to answer the items in I and it-
eratively refine them. This drawback motivates the
central research question of our paper: Can TLMs
be used to predict psychometric properties of
test items? If so, the benefit for psychometric prac-
titioners3 is enormous, as it can reduce the need
for multiple rounds of costly empirical testing. But
the benefits for NLP are significant as well: know-
ing how the psychometric properties of items differ
when applied to artificial versus human populations
will give us unique insight into how they solve such
problems, and how they can be improved.

Main Contributions of this Paper: We present
the first exploration into how well TLMs can be
used to predict certain psychometric properties of
linguistic test items. To do this, we identified a
subset of items from the GLUE broad coverage di-
agnostic (Wang et al., 2018), and collected human
responses on these items in order to assess simple
psychometric properties, designing a novel user
validation procedure to do so. We then assess the
performance of 240 LMs on these diagnostic items.
Our resulting analysis clearly shows that TLMs ex-
cel in modeling psychometric properties in certain
sub-categories of linguistic skills, thus providing
fruitful directions for future work.

2 Related Work

What reason do we have to suspect that TLMs can
predict the psychometric properties of test items?
Although TLMs were not primarily designed to
compute in a human-like way, there are some rea-

2Note however that we focus only on validity and reliabil-
ity in this work.

3In other words, professionals responsible for designing
standardized tests or other evaluations meant to assess latent
attributes of individuals.

sons to suspect that they may have the ability to
effectively model at least some aspects of human
linguistic reasoning: They consistently demonstrate
superior performance (at least compared to other
LMs) on human-inspired linguistic benchmarks
(Wang et al., 2018, 2019), and they are typically
pre-trained using a lengthy process designed to em-
bed deep semantic knowledge, resulting in efficient
encoding of semantic relationships (Zhou et al.,
2020; Petroni et al., 2019; Davison et al., 2019; Cui
et al., 2020). Common optimization tasks for pre-
training transformers, such as the masked LM task
(Devlin et al., 2018) are quite similar to the word
prediction tasks that are known to predict children’s
performance on other linguistic skills (Borovsky
et al., 2012; Neuman et al., 2011; Gambi et al.,
2020). Finally, TLMs tend to outperform other
LMs in recent work modeling human reading times,
eye-tracking data, and other psychological and psy-
cholinguistic phenomena (Merkx and Frank, 2021;
Schrimpf et al., 2020b,a; Hao et al., 2020; Bhatia
and Richie, 2020; Laverghetta Jr. and Licato, 2021;
Laverghetta Jr. et al., 2021).

There are many studies probing TLMs in various
ways, a body of work sometimes called “BERTol-
ogy” (Rogers et al., 2021; Belinkov and Glass,
2019). However, work explicitly bridging psycho-
metrics with AI is less common. Xue (2019) aug-
mented the DINA (De La Torre, 2009) and DINO
(Templin and Henson, 2006) cognitive diagnostic
models (Sessoms and Henson, 2018) with a feed-
forward neural network that used a semi-supervised
learning objective. The architecture achieved su-
perior results to multiple baselines. Ahmad et al.
(2020) created a deep learning architecture for ex-
tracting psychometric dimensions related to health-
care, specifically numeracy, literacy, trust, anxiety,
and drug experiences. Their architecture did not
use transformers, and relied instead on a sophisti-
cated combination of convolutional and recurrent
layers in order to extract representations of emo-
tions, demographics, and syntactic patterns, among
others. Eisape et al. (2020) examined the corre-
lation between human and LM next-word predic-
tions and proposed a procedure for achieving more
human-like cloze probabilities. In NLP, methods
from item response theory (IRT) (Reckase, 2009)
have been particularly popular. Lalor et al. (2018)
used IRT models to study the impact of question
difficulty on the performance of deep models on
several NLP tasks. In a follow-up study, Lalor and
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Yu (2020) used IRT models to estimate the com-
petence of LSTM (Hochreiter and Schmidhuber,
1997) and BERT models during training. This al-
lowed them to create a dynamic curriculum learn-
ing (Bengio et al., 2009) algorithm, which achieved
superior performance to the same models trained
using a static scheduler for several tasks. Sedoc
and Ungar (2020) used IRT to efficiently assess
chat-bots. Martı́nez-Plumed et al. (2019) used IRT
to analyze the performance of machine learning
classifiers in a supervised learning task. IRT has
also been used to evaluate machine translation sys-
tems (Otani et al., 2016) and speech synthesizers
(Oliveira et al., 2020), and also in computer vision
(RichardWebster et al., 2018).

This literature clearly indicates that there has
been a lot of interest in applying psychometrics
to AI. So far, most of this effort has focused on
specific use cases, and has not attempted to broadly
assess commonalities between machine and human
reasoning. Most similar to our current work is Lalor
et al. (2019), who showed that deep models could
achieve a strong correlation with IRT parameters
fitted using human data on several NLP datasets.
However, they compared the human responses to
LSTMs and neural semantic encoders (Munkhdalai
and Yu, 2017), and did not consider TLMs. Fur-
thermore, they focused on the SNLI dataset, which
is less challenging than the GLUE diagnostic and
does not group questions based on fine-grained lin-
guistic competencies.

Besides the GLUE diagnostic, other taxonomies
have been proposed, such as TaxiNLI (Joshi et al.,
2020b). Although TaxiNLI includes some types of
reasoning which have no clear analogue in GLUE,
many of their categories are quite similar.4 Since
the TaxiNLI questions were also taken from the
MNLI dataset, we were concerned they would be
too easy for some of the larger TLMs we planned to
evaluate. We, therefore, chose to focus specifically
on the challenging GLUE diagnostic set and leave
TaxiNLI for future work.

3 Gathering Language Model Data

The GLUE and SuperGLUE benchmarks (Wang
et al., 2018, 2019) are suites of NLP tasks designed
to test the general linguistic capabilities of LMs.
Included as part of the GLUE benchmark is a set
of diagnostic questions, called the broad coverage

4Both GLUE and TanxiNLI test for temporal reasoning,
but place them at different levels in the taxonomy.

diagnostic, which are all formatted as natural lan-
guage inference (NLI) problems. NLI problems
consist of two sentences: a premise (p) and hypoth-
esis (h), and solving such a problem involves as-
sessing whether p textually entails h. There are typ-
ically three choices: either p does textually entail
h (entailment), p entails that h is impossible (con-
tradiction), or h’s truth can not be determined from
p alone (neutral). The NLI task is therefore quite
general and can encompass a wide variety of other
“commonsense” reasoning tasks. The broad cover-
age diagnostic was manually curated by linguistics
and NLP experts and is meant to assess broad psy-
cholinguistic competencies of LMs across multiple
categories. For instance, the propositional structure
category contains questions that exploit proposi-
tional logic operators; e.g., p = “The cat sat on
the mat.” and h = “The cat did not sit on the mat.”
The diagnostic covers four main categories of lin-
guistic competencies: lexical semantics, predicate-
argument structure, logic, and knowledge and com-
mon sense. These categories are further divided
into multiple sub-categories, each of which covers
a specific and interesting phenomenon in language.
The GLUE diagnostic thus aims to be a compre-
hensive test of linguistic reasoning skills, making
it suitable for our present study.

To evaluate our models, we selected a subset of
the GLUE diagnostic questions that were a mem-
ber of only one sub-category, to better isolate fac-
tors. In most cases, there were enough questions
in a single sub-category that we could just drop all
questions that belonged to multiple sub-categories,
further details on this preprocessing can be found
in Appendix A. After performing preprocessing,
we had 811 remaining diagnostic questions encom-
passing 20 sub-categories. Each sub-category had
at least 15 questions, and we selected 7 of the sub-
categories to use in our experiments:

1. morphological negation (MN)

2. prepositional phrases (PP)

3. lexical entailment (LE)

4. quantifiers (Q)

5. propositional structure (PS)

6. richer logical structure (RLS)

7. world knowledge (WK)
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We selected these 7 sub-categories based on
how much the average performance of the LMs
improved after pre-training and finetuning. A sub-
stantial performance improvement indicated the
category was solvable by the models, and would
therefore provide a meaningful comparsion to the
human data. We gathered responses to the diagnos-
tic from a wide array of TLMs, including BERT
(Devlin et al., 2018), RoBERTa (Liu et al., 2019),
T5 (Raffel et al., 2020), ALBERT (Lan et al., 2020),
XLNet (Yang et al., 2019), ELECTRA (Clark et al.,
2020), Longformer (Beltagy et al., 2020), Span-
BERT (Joshi et al., 2020a), DeBERTa (He et al.,
2020), and ConvBERT (Jiang et al., 2020). Each
of these models differs from the others along one
or more factors, including underlying architecture,
pre-training objective and data, or the general cat-
egory the model belongs to (autoregressive, au-
toencoding, or sequence-to-sequence). For most
of these models we used the Transformers (Wolf
et al., 2020) implementation, the exception being
T5, which was implemented in PyTorch Lightning
(Falcon and .al, 2019). We use LSTM-based LMs
(Hochreiter and Schmidhuber, 1997) as a baseline,
further details on the LMs can be found in Ap-
pendix A.

We used the SNLI (Bowman et al., 2015), MNLI
(Williams et al., 2018), and ANLI (Nie et al., 2020)
training and dev sets to finetune our models. We
found that the amount of finetuning data had a
significant impact on final diagnostic performance.
Therefore, to increase the variance in our results as
much as possible we used the following training
set partitions for all model configurations:

• SNLI alone

• MNLI alone

• SNLI + MNLI

• SNLI + MNLI + ANLI

Both the train and dev sets were shuffled before
every trial. We finetuned our models for between
5 to 10 epochs. We used the reported Matthews
correlation (Matthews, 1975) on the dev set during
training to determine when the performance had sat-
urated; when this correlation stopped consistently
increasing for at least a few dev set evaluations we
stopped training. We evaluated on the dev set every
15,000 steps. All the transformer’s key hyperparam-
eters were selected in a similar way to the study

by Lalor et al. (2019). For all models, we used a
learning rate of 1∗10−5 and a max sequence length
of 175. Since running even a small grid search to
optimize the hyperparameters of each model would
have dramatically increased the number of trials,
we instead chose to fix these hyperparameters to be
similar to what was used in prior work (e.g. Devlin
et al., 2018). We also found that nearly all mod-
els consistently achieved a Matthews correlation of
about 0.5 or higher on the dev set, and thus con-
cluded that our hyperparameters were suitable. It is
important to note that our goal in finetuning was not
to completely optimize the model’s performance
on these NLI datasets. Rather, since the diagnostic
is formatted as an NLI task, we hoped that finetun-
ing would help the models to learn what the output
labels should be.5 To evaluate these models, we
experimented with four different training regimes:

• Zero shot: The model is initialized with ran-
dom weights in the hidden layers and is eval-
uated on the diagnostic without any training.
This is meant to test whether there is any prop-
erty of the architecture itself which is useful
for solving the diagnostic.

• Pre-train, no finetune: The model is pre-
trained but not finetuned.

• No pre-train, finetune: The model weights
are initialized randomly, but we finetune the
model before evaluating it.

• Pre-train and finetune: The model is pre-
trained and finetuned.

For BERT, we experimented with both Devlin
et al.’s pre-trained models, and a BERT model we
trained from scratch. Our BERT model had an iden-
tical architecture to bert-base and was pre-trained
on Google’s One Billion Words corpus (Chelba
et al., 2014). We used the same hyperparameters
from the BERT paper (Devlin et al., 2018), using a
learning rate of 4 ∗ 10−5, a max sequence length of
128, a warmup ratio of 0.01, and a weight decay of
0.01. We used the Transformers library to pre-train
this model, and saved every end-of-epoch check-
point. We pre-trained for 52 epochs and used every
10th checkpoint to gather diagnostic data separately.
This allowed us to study the effect pre-training had
on diagnostic performance.

5Finetuning T5 is necessary to avoid random output.
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In summary, this process allowed us to vary the
underlying architecture, the number of trainable
parameters, and the amount of finetuning data used
in each trial. This allowed us to treat each trained
model as effectively being a different “individual”
(and we will refer to them as such), which might
have a radically different cognitive profile from its
counterparts. For example, a roberta-base model
that was pre-trained and finetuned on all 3 NLI
datasets might produce very different response pat-
terns than a roberta-large model evaluated zero-
shot. We used three Tesla V100 GPUs with 32GB
of video memory each, as well as preemptable
GPUs on Google Colab,6 to train all models. Wher-
ever possible, we used Apex7 to speed up training.

4 Human Studies

As our purpose in gathering this LM data was to
evaluate it against human performance, we addi-
tionally ran a human study. To do this, we recruited
workers on Amazon Mechanical Turk (mTurk8) to
complete our subset of GLUE diagnostic questions.
While mTurk makes conducting large-scale human
studies convenient, there are also well-documented
problems with participants not completing tasks in
good faith (Berinsky et al., 2014, 2016; Keith et al.,
2017). There are multiple techniques for filtering
out bad-faith participants, such as the use of “atten-
tion check” questions, sometimes called “instruc-
tional manipulation checks” (Hauser and Schwarz,
2015), which are designed so that a good-faith par-
ticipant would be unlikely to get them incorrect.
But this alone would not suffice for our purposes
here, as we want a certain amount of low-scoring
participants on some sub-categories, so that the
population variances on sub-category items would
better reflect their actual variances.9 Therefore, we
designed a procedure for distinguishing bad-faith
from low-performing participants.

We first obtained attention checks from the
ChaosNLI dataset (Nie et al., 2020), which gath-
ered over 450,000 human annotations on questions
from SNLI and MNLI. Since each question in
ChaosNLI was annotated by 100 different workers,
if inter-annotator agreement for a given question is

6https://colab.research.google.com
7https://github.com/NVIDIA/apex
8https://www.mturk.com
9If we only kept high-performing participants, the item

variances would be skewed to be low and roughly the same,
which would not reflect the true variances we would expect to
see from a large population of good-faith participants.

high, we conclude that question is likely extremely
easy to solve. These questions were also in the
same format as the diagnostic questions, which
made it less likely that workers would realize they
were being given an attention check. We gathered
36 questions from ChaosNLI where the agreement
for the correct label was at least 90%. The labels
for this subset were perfectly balanced. These were
enough questions to ensure that each phase of our
trials used a unique set of attention check questions.

The human studies were split up into 5 phases,
and workers who did sufficiently well in a given
phase were given a qualification to continue to the
next phase:

1. On-boarding: A qualifying HIT (human
intelligence task) open to any worker located
in the United States, who had completed at
least 50 HITs with an approval rating of at
least 90%. The HIT consisted of 5 attention
check questions, given to each worker in the
same order. We gathered responses from up
to 200 workers.

2. Phase 1: Included questions from morpho-
logical negation, and 3 attention checks. We
gathered up to 45 responses.

3. Phase 2: Included questions from lexical
entailment and prepositional phrases, as well
as 6 attention checks. We gathered up to 36
responses.

4. Phase 3: Included questions from quantifiers
and propositional structure, as well as 6
attention checks. We gathered up to 27
responses.

5. Phase 4: Included questions from richer log-
ical structure and world knowledge, as well
as 6 attention checks. We gathered responses
from all accepted workers from Phase 3.

In each phase, questions were randomly ordered,
except for attention checks which were spread
evenly throughout the survey. We used Qualtrics10

to create the surveys for each HIT and collect the
responses. Participants were first presented with

10https://www.qualtrics.com



17

instructions for the task and some examples, which
were based on the instructions originally given to
annotators for the MNLI dataset.11 The questions
from each category were a randomly chosen subset
of 15 questions tested on the LMs for that cate-
gory, balanced for each label. For each question,
workers also had to provide a short justification
statement on why they believed their answer was
correct, which was used to help filter out bad faith
participants. To validate the responses to our sur-
veys, we developed the following authentication
procedure:

Stage 1: Look for duplicate IPs or worker IDs,
indicating that the worker took the HIT more than
once. If there are any, reject the second and future
HITs, but keep the first submission.
Stage 2: If the worker’s overall score was less
than 40%, reject the HIT. If their overall score was
greater than 60%, accept the HIT. For workers who
scored between 40% and 60%, we still rejected
the HIT if they got less than 75% of the attention
checks correct.
Stage 3: Finally, examine the justifications of all
workers not previously rejected. Here we were look-
ing for simple, but clear, reasons for why work-
ers chose their answer. We included this step be-
cause we found in a pilot study that workers some-
times provided nonsensical justifications for their
answers even when they did well on the survey,
making it unclear whether they were truly pay-
ing attention. We checked that the justifications
appeared relevant to the question (some workers
seemed to paste random text from other websites
into the justification), that they did not paste part
of the question for their justification, that they did
not use the same justification for every question,
and that they did not use short nonsensical phrases
for their justification (some workers simply wrote
“good” or “nice” as their justification). This allowed
us to keep some low-scoring participants who had
put genuine effort into the task.

Manual inspection of the resulting responses sug-
gested that workers who passed stage 3 consistently
gave higher quality responses than those who did
not. These workers gave more detailed justifica-
tions that clearly articulated their thought process,
often citing specific details from the question. On
the other hand, workers who failed to give good jus-
tifications also tended to perform quite poorly, gen-

11https://nyu-mll.github.io/GLUE-human-
performance/mnli.html

erally scoring at or below random chance, which
further indicated that they were not actually paying
attention. We, therefore, believe the use of justifi-
cations helped us gather higher-quality responses.
Further details on the human study can be found in
Appendix B.

5 Experimental Results

Using the procedures described in §3 and §4,
we gathered results from 27 human participants
and 240 neural LMs (183 transformer-based and
57 LSTM-based). In addition to the LSTMs, we
also include a true random baseline which simply
guesses randomly on every question. In the follow-
ing experiments, we use the human performance
on each category as the basis for analyzing the per-
formance of the artificial populations, specifically
in terms of how well each artificial population’s
responses correlate with the human data.

Category DT DL DR

MN -0.28, <0.5 0.27, >0.5 -0.14, >0.5
PP 0.86, <0.001 0.47, <0.1 0.42, <0.5
LE 0.62, <0.05 0.17, >0.5 -0.22, <0.5
Q 0.57, <0.05 -0.22, <0.5 0.41, <0.5
PS 0.93, <0.001 0.27, <0.5 0.37, <0.5

RLS 0.28, <0.5 -0.03, >0.5 -0.37, <0.5
WK 0.79, <0.001 0.46, <0.1 -0.25, <0.5

Table 1: Given DH , Spearman correlation and p-values
were calculated with transformer-based (DT ), LSTM-
based (DL), and random (DR) estimates of problem
difficulty (percentage of the population that got the
item correct). Note here we have bolded cells whose
correlations (absolute values) were highest, but their p-
values were not always significant.

5.1 Classical Test Theory
We began by examining how well TLMs could
predict simple problem difficulty in the human
data. This measure comes from classical test theory
and is calculated simply as how many members
of the population get a given item right. For each
item i in a given sub-category in our subset of the
GLUE diagnostic, we calculated the percentage
of human participants who got that question cor-
rect (Di

H ), and then the corresponding percentage
for the TLMs (Di

T ), LSTM-based LMs (Di
L), and

the random baseline (Di
R). We then calculated the

Spearman correlation (Spearman, 1961) between
Di
H and each of the other populations. Results

are shown in Table 1. In almost all cases, TLMs
achieve a much stronger correlation with the human
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data than either baseline, and most were statistically
significant. The main exceptions are morphological
negation (MN) and richer logical structure (RLS),
both of which fail to produce strong correlations.
As we will see, this pattern will repeat in other
measurements as well.

IIC-based Clustering An important idea in psy-
chometrics is that questions that rely on the same
skills should have similar chances of being an-
swered correctly by a given participant (Rust and
Golombok, 2014). Whether questions rely on sim-
ilar skills can be tested using the inter-item cor-
relation (IIC) between two items, where high IIC
suggests that the items rely on similar underlying
reasoning skills. Thus, it can be assumed that if
items cluster together when using IIC as a distance
metric, they rely on similar underlying cognitive
skills. To explore this, given a correlation measure
c ranging from -1 to 1, we convert it into a distance
metric by taking 1− c. We use this metric to apply
k-medoids clustering to the diagnostic questions,
using the silhouette method (Rousseeuw, 1987) to
find the optimal number of clusters. For each sub-
category, we perform clustering using human, trans-
former, LSTM, and random data separately (H ,
T , L, and R respectively). We use the k-medoids
implementation from scikit-learn extra12 and use
scikit-learn (Pedregosa et al., 2011) to calculate the
silhouette coefficient.

After clustering, for each pair of items (i, j) we
define CDi,j as 1 if i and j are in the same cluster as
determined by dataset D ∈ {H,T, L,R}. Finally,
to determine how well clusters from the LM re-
sponses match the human responses, we calculate
Pearson correlation (Pearson, 1895) between CH

and each of CT , CL, and CR. Results are shown
in Table 2. Similar to Table 1, we see statistically
significant correlations from TLMs in every sub-
category, except for morphological negation (MN),
where TLMs again achieve only weak correlation.

Per Model Analysis The previous results give
us some insights into the performance of the entire
TLM population. However, individual transformers
might differ somewhat in the specific skills they
are proficient in. To study this, we performed the
same simple problem difficulty experiment, but
this time only used the diagnostic results from a
single transformer architecture (for instance just
BERT). We did this for each architecture, and then

12https://github.com/scikit-learn-contrib/scikit-learn-extra

Figure 1: Change in correlation for each TLM archi-
tecture on each category, compared to the entire TLM
population. Best viewed in color.

on each diagnostic sub-category, we computed the
difference between the single architecture’s cor-
relation and the overall correlation from Table 1.
The heatmap in Figure 1 shows the results, with
cooler colors indicating a stronger decrease in cor-
relation and warmer colors indicating a stronger
increase. In many cases, the correlation is almost
the same as the value reported in Table 1. However,
in some cases the difference is striking. For ex-
ample, RoBERTa gets a much stronger correlation
on morphological negation than any other model.
Overall, it appears that most models are achieving
close to the mean correlation, but there are a few
significant differences.

Category CT CL CR

MN 0.18, <0.1 0.40, <0.001 -0.14, <0.5
PP 0.31, <0.01 -0.15, <0.5 -0.01, >0.5
LE 0.31, <0.01 -0.03, >0.5 -0.16, <0.5
Q 0.24, <0.05 -0.01, >0.5 0.06, >0.5
PS 0.51, <0.001 0.03, >0.5 0.04, >0.5

RLS 0.46, <0.001 -0.07, <0.5 0.04, >0.5
WK 0.28, <0.01 0.00, >0.5 -0.09, <0.5

Table 2: Pearson correlation and p-values for how well
items clustered using human responses match the clus-
ters which used transformer-based (CT ), LSTM-based
(CL), and random (CR) items.

5.2 Item Response Theory
Models from classical test theory have an impor-
tant shortcoming: they provide no clear way to
separate the characteristics of the test taker and the
test items. In practice, the observed performance
on a test is affected by both the test taker and the
test itself. This intuition is formalized in a psycho-
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metrics approach known as item response theory
(IRT), in which both item characteristics and in-
dividual ability are modeled and used to predict
performance (Baker and Kim, 2004). IRT models
are often regarded as more informative than classi-
cal models and have become standard tools when
designing evaluation scales. Formally, let j be an
individual taking a test, i be an item on that test,
and θj be that individual’s latent ability. Then the
probability that j answers i correctly is defined as:

P (yi = 1|θj) = ci +
1− ci

1 + e−ai(θj−bi)
(1)

Where ai, bi, and ci are item parameters and yi = 1
indicates a correct answer. ai is the discrimination
parameter, which refers to how effective the item is
for picking out high versus low ability test takers.
bi is the difficulty parameter, which models how
easy or difficult the item is. Finally, ci is the prob-
ability of guessing correctly. If both guessing and
discrimination are held constant, we get the one-
parameter or Rasch model (Rasch, 1993). Given a
large number of human responses to a set of items,
parameters for IRT models can be estimated us-
ing the marginal maximum likelihood method and
expectation maximization (Bock and Aitkin, 1981).

Since TLMs correlated well with humans using
the classical techniques we tested, we wished to
examine whether this would still hold using IRT
models. To do this, we used the diagnostic results
from each population to fit Rasch models. We used
the ltm R package to fit all models (Rizopoulos,
2006). This gave us separate difficulty parameter
estimates bi for each item i, for each population.
To determine how well the difficulty parameters
matched between populations, we calculated the
Pearson correlation between the bi using our hu-
man response data (H), and the bi obtained using
the other populations (T , L, R). Results are shown
in Table 3. As before, TLMs consistently get a
stronger correlation than either baseline on most
sub-categories, except for morphological negation
(MN) and richer logical structure (RLS). Interest-
ingly, LSTM-based LMs achieved statistically sig-
nificant and stronger correlations than TLMs on
certain sub-categories: world knowledge (WK) and
prepositional phrases (PP). The only other experi-
ment where LSTM-based LMs achieved stronger
correlation was reported in Table 2, where they
achieved superior correlation to TLMs on morpho-
logical negation (MN).

Category DT DL DR

MN 0.08, >0.5 0.29, <0.5 0.19, >0.5
PP 0.48, <0.1 0.69, <0.01 -0.25, <0.5
LE 0.88, <0.001 -0.06, >0.5 0.14, >0.5
Q 0.61, <0.05 0.03, >0.5 0.12, >0.5
PS 0.61, <0.05 0.05, >0.5 -0.25, <0.5

RLS 0.16, >0.5 -0.05, >0.5 -0.31, <0.5
WK 0.52, <0.05 0.59, <0.05 -0.1, >0.5

Table 3: Pearson correlation and p-values for
transformer-based (DT ), LSTM-based (DL), and ran-
dom (DR) estimates of problem difficulty computed
using Rasch models.

6 Discussion

Our analysis has revealed some interesting patterns
that would have been difficult to discern using tra-
ditional evaluation metrics. Overall, TLMs perform
consistently better than either of our baselines in
modeling human psychometric properties. How-
ever, this improvement is also not uniform across
all psycholinguistic categories. In fact, we have
found some regularities in this regard. For instance,
TLMs failed to achieve a strong correlation on mor-
phological negation in all cases. This might be
explained by two facts: there is little relative vari-
ance in the human responses in this sub-category,
and the average accuracy of human participants
was above 90%, as opposed to LM accuracy of
55%. This sub-category also tests for reasoning
over negation, which prior studies found that trans-
formers struggle with (Rogers et al., 2021). This
ability to analyze the specific kinds of reasoning
transformers have become proficient in is a clear
advantage psychometrics have over typical NLP
evaluations. The NLP community is becoming in-
creasingly aware of the need to construct more
fine-grained evaluation benchmarks (Wang et al.,
2018; Joshi et al., 2020b), and we believe our work
complements these efforts nicely.

Of course, this study also has limitations. The
number of human participants in our study was
somewhat small compared to typical psychometrics
studies, which makes it difficult to draw stronger
conclusions. One of the main criticisms IRT models
draw is that they can require thousands of responses
to get good estimates of the latent parameters (Min
and Aryadoust, 2021). As stated earlier, practical
limitations on population size is a common problem
in psychometrics research, one which our present
work hopes to alleviate somewhat. Future work will
need to repeat our experiments with much larger
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population sizes, and also take measures to ensure
sufficient diversity in the study population (e.g.,
age, income, education level, English fluency, etc.).
Improvements in the computational efficiency of
TLMs is likely also necessary for our approach to
be practical, as it is unlikely most pyschometricians
have access to extensive GPU resources. One possi-
ble solution would be to identify a subset of TLMs
that preserves the psychometric properties of the
entire population, which might allow us to achieve
similar results with fewer models.

Furthermore, although we reported in detail on
certain psychometrics measures where our method
demonstrated promising results for TLMs, it is
worth reporting that certain other measures we ex-
amined did not appear to align well. For example,
item-total correlations using human data did not
appear to correlate with any LM data better than
with the random baseline. Likewise, our LMs failed
to predict average inter-item correlations between
either random subsets of items or our diagnostic
sub-categories. More work is needed to better un-
derstand why.

Finally, while our experiments have given us
some insights into the validity and reliability of the
diagnostic items, it is unclear whether our approach
can allow us to measure their fairness. Although it
is an important property, fairness is somewhat more
controversial than other psychometric properties,
in part because there are multiple interpretations
of what constitutes test bias (Warne et al., 2014).
Being able to probe the fairness of items would
have interesting downstream applications. For in-
stance, it might indicate whether a diagnostic gives
an unfair advantage to certain types of classifiers.

7 Conclusion

We believe our work offers a clear path forward for
bridging psychometrics and AI. The use of psycho-
metrics measures gives us a more nuanced under-
standing of the latent abilities of LMs than single-
valued measures like accuracy or F1 can provide.
Furthermore, the increasingly powerful ability of
TLMs to model human “commonsense” reasoning
and knowledge suggests new ways to predict psy-
chometrics properties of test items, reducing the
need for costly human empirical data.
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A Additional Details on Language Model
Experiments

To create the subset of the GLUE diagnostic, there
were three cases where we needed to merge mem-
bers of one sub-category into another to prevent
overlap:

1. negation and double negation questions were
merged into morphological negation.

2. symmetry/collectivity was merged into core
arguments.

3. Questions in both world knowledge and
named entities were merged into named enti-
ties.

Each of these was cases where the sub-categories
overlapped highly. For a full listing of the sub-
categories and their descriptions, see (Wang et al.,
2018). We experimented with multiple different
snapshots of each TLM, which differed in the num-
ber of trainable parameters. We obtained these snap-
shots from HuggingFace.13 For each model we
used a smaller version, designated with the small
or base suffix, and a larger version, designated with
the base or large suffix. For example, for BERT we
experimented with both bert-base and bert-large,
where bert-large had more trainable parameters.
For ALBERT, we used the base and xxlarge ver-
sions.

For the LSTMs, we used a PyTorch implemen-
tation designed specifically for NLI.14 We initial-
ized the LSTM-based LMs with GloVe word em-
beddings (Pennington et al., 2014). We ran a non-
exhaustive grid search to generate a population of
LSTMs, changing the number of recurrent layers,
size of the hidden layers, learning rate, and dropout
(Srivastava et al., 2014) probability.

B Human Study Details

We paid workers the following amount for each
phase:

• On-boarding: $0.50

• Phase 1: $3.60

• Phase 2: $7.20

• Phase 3: $7.20

• Phase 4: $7.20

Our payment structure was designed to incen-
tivize workers to put forth their best effort when
completing the task. Workers were informed that
successfully completing each task would award
them the opportunity to earn additional payment
on each subsequent phase. However, if on a given
phase a worker failed our authentication protocol

13https://huggingface.co/models
14https://github.com/pytorch/examples/tree/master/snli
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https://www.aclweb.org/anthology/2020.emnlp-demos.6
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we rejected their work and did not pay them. Work-
ers were informed before starting every study that
we would evaluate the quality of their work, and
that it might be rejected if we found evidence that
they did not put forth an honest effort.


