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Abstract

Many modern messaging systems allow
fast and synchronous textual communication
among many users. The resulting sequence of
messages hides a more complicated structure
in which independent sub-conversations are in-
terwoven with one another. This poses a chal-
lenge for any task aiming to understand the
content of the chat logs or gather information
from them. The ability to disentangle these
conversations is then tantamount to the success
of many downstream tasks such as summariza-
tion and question answering. Structured in-
formation accompanying the text such as user
turn, user mentions, timestamps, is used as a
cue by the participants themselves who need
to follow the conversation and has been shown
to be important for disentanglement. DAG-
LSTMs, a generalization of Tree-LSTMs that
can handle directed acyclic dependencies, are
a natural way to incorporate such information
and its non-sequential nature. In this paper, we
apply DAG-LSTMs to the conversation disen-
tanglement task. We perform our experiments
on the Ubuntu IRC dataset. We show that the
novel model we propose achieves state of the
art status on the task of recovering reply-to re-
lations and it is competitive on other disentan-
glement metrics.

1 Introduction

Online chat and text messaging systems like Face-
book Messenger, Slack, WeChat, WhatsApp, are
common tools used by people to communicate in
groups and in real time. In these venues multiple
independent conversations often occur simultane-
ously with their individual utterances interspersed.

It is reasonable to assume the existence of an
underlying thread structure partitioning the full
conversation into disjoint sets of utterances, which
ideally represent independent sub-conversations.
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[12:19] <tapia>
and some dist-upgrade [...]

[12:19] <microhaxo>
lol thats what im using

[12:19] <bob2>
: you’re using hoary [...

[12:19] <microhaxo>
and it wont connect meh

[12:19] <tapia>
: no, breezy

® Xi ° P;
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Figure 1: Excerpt from the IRC dataset (leff) and our
reply-to classifier architecture (right). Blue dots repre-
sent a unidirectional DAG-LSTM unit processing the
states coming from the children of the current node.
Red dots represent the GRU units performing thread
encoding. At this point in time, we are computing the
score (log-odds) of fifth utterance replying to the third.

The task of identifying these sub-units, disentan-
glement, is a prerequisite for further downstream
tasks among which question answering, summa-
rization, and topic modeling (Traum et al., 2004;
Shen et al., 2006; Adams and Martell, 2008; El-
sner and Charniak, 2010). Additional structure can
generally be found in these logs, as a particular
utterance could be a response or a continuation of
a previous one. Such reply-to relationships implic-
itly define threads as the connected components of
the resulting graph topology, and can then be used
for disentanglement (Mehri and Carenini, 2017;
Dulceanu, 2016; Wang et al., 2008; Gaoyang Guo
et al., 2018).

Modeling work on conversation disentanglement
spans more than a decade. Elsner and Charniak
(2008, 2010) use feature based linear models to find
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pairs of utterances belonging to the same thread
and heuristic global algorithms to assign posts to
threads. Mehri and Carenini (2017) and Jiang
et al. (2018), while also adopting similar heuris-
tics, use features extracted through neural models,
LSTMSs (Hochreiter and Schmidhuber, 1997) and
siamese CNNs (Bromley et al., 1993) respectively.
Wang et al. (2011) follow a different approach by
modeling the interactions between the predicted
reply-to relations as a conditional random field.

One challenge in building automatic systems that
perform disentanglement is the scarcity of large
annotated datasets to be used to train expressive
models. A remarkable effort in this direction is the
work of Kummerfeld et al. (2019a) and the release
of a dataset containing more that 77k utterances
from the IRC #Ubuntu channel with annotated
reply-to structure. In the same paper, it is shown
how a set of simple handcrafted features, pooling
of utterances GloVe embeddings (Pennington et al.,
2014), and a feed-forward classifier can achieve
good performances on the disentanglement task.
Most of the follow-up work on the dataset relies on
BERT (Devlin et al., 2019) embeddings to gener-
ate utterance representations (Zhu et al., 2020; Gu
et al., 2020; Li et al., 2020). Zhu et al. (2020) use
an additional transformer module to contextualize
these representations, while Gu et al. (2020); Li
et al. (2020) use an LSTM. Two exceptions are Liu
et al. (2020), which models thread membership in
an online fashion and discards reply-to relation-
ships, and the recent Yu and Joty (2020a) which
uses pointer networks (Vinyals et al., 2015).

In this short paper, we use DAG-structured
LSTMs (Irsoy et al., 2019) to study disentangle-
ment. As a generalization of Tree-LSTMs (Tai
et al., 2015a), DAG-LSTMs allow to faithfully
represent the structure of a conversation, which
is more properly described as a directed acyclic
graph (DAG) than a sequence. Furthermore, DAG-
LSTMs allow for the systematic inclusion of struc-
tured information like user turn and mentions in
the learned representation of the conversation con-
text. We enrich the representation learned by the
DAG-LSTM by concatenating to it a representation
of the thread to which the utterance belongs. This
thread encoding is obtained by means of a GRU
unit (Cho et al., 2014) and captures thread specific
features like style, topic, or persona. Finally we
manually construct new features to improve user-
name matching, which is crucial for detecting user
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mentions, one of the most important features for
disentanglement.

Our results are summarized in Table 1. The
DAG-LSTM significantly outperforms the BiL-
STM baseline. Ablation studies show the impor-
tance of the new features we introduce. When aug-
mented by thread encoding and a careful handling
of posts predicted to be thread starters, the DAG-
LSTM architecture achieves state of the art perfor-
mances on reply-to relation extraction on the IRC
Ubuntu dataset and it is competitive on the other
metrics which are relevant to disentanglement.

2 Methodology

2.1 Problem Statement

A multi-party chat C is a sequence of posts (¢;);,
i = 1,...,|C|]. For each query post ¢; we look
for the set of link posts R(c¢;) such that ¢; replies
to, or links to, c; for ¢; € R(c;). When a post
c is a conversation starter we define, consistently
with Kummerfeld et al. (2019a), R(c) = {c}, that
is c replies to itself, it is a self-link. This reply-to
binary relation defines a DAG over C'. By taking
the union of the reply-to relation with its converse
and by calculating its transitive closure, we obtain
an equivalence relation on C' whose equivalence
classes are threads, thus solving the disentangle-
ment problem.

We frame the problem as a sequence classifica-
tion task. For each query post c; we consider its L
preceding posts O, = {¢;i—r—1,...,¢i} and pre-
dict one of them as its link. In the IRC Ubuntu
dataset, predicting a single link per query post is
a good approximation, holding true for more than
95% of the annotated utterances. We use L = 50
in the following. As described in Sections 2.2 and
2.3, for each query utterance c;, we construct a con-
textualized representation, ¢; = ¢(c;, C'). We do
the same for each of the links ¢; € O, using a
representation ) that can in principle differ from ¢.
We then calculate p(c; replies-to ¢;) = p(cjlc;) as

exp(sij)
eve0., eXP(Sik)’

plejle) = 5 (M

where s;; = s(¢;,vj, fij) is a real-valued scoring
function described in Section 2.4 and f;; are ad-
ditional features. The parameters of the resulting
model are learned by maximizing the likelihood
gssociated to Eq. 1. At inference time we predict

j= argmaxcjeo%p(cj |ci).



2.2 Contextual Post Representation

The construction of the ¢ and 1) representations
closely follows Irsoy et al. (2019). Every post ¢;
is represented as a sequence of tokens (t/,),,. An
embedding layer maps the tokens to a sequence
of d;-dimensional real vectors (w,),. We use the
tokenizer and the word embeddings from Kum-
merfeld et al. (2019a), d; = 50. We generate
a representation y; of c¢; by means of a single
BiLSTM layer unrolled over the sequence of the
token embeddings (v?),, = BiLSTM|(w},),] fol-
lowed by elementwise max-affine pooling y; =
max,, Affine[(v?),].

To obtain the contextualized representations ¢,
we use a DAG-LSTM layer. This is an N-ary Tree-
LSTM (Tai et al., 2015a) in which the sum over
children in the recursive definition of the memory
cell is replaced with an elementwise max opera-
tion (see Appendix). This allows the existence of
multiple paths between two nodes (as it is the case
if a node has multiple children) without the asso-
ciated state explosion (Irsoy et al., 2019). This is
crucial to handle long sequences, as in our case.

At each time step the DAG-LSTM unit receives
the utterance representation Y; of the current post ¢;
as the input and all the hidden and cell states com-
ing from a labeled set of children, C(c;), see Fig-
ure 1. In our case C(c¢;) contains three elements: the
previous post in the conversation (c;_1), the previ-
ous post by the same user of ¢;, the previous post by
the user mentioned in ¢; if any. More dependencies
can be easily added making this architecture well
suited to handle structured information. The DAG-
LSTM is unrolled over the sequence ({x;,C(¢i)})i,
providing a sequence of contextualized post repre-
sentations (¢;);. We also consider a bidirectional
DAG-LSTM defined by a second unit processing
the reversed sequence ¢; = ¢|¢|—;y1- Forward
and backward DAG-LSTM representations are then
concatenated to obtain ¢.

2.3 Thread Encoding

The link post representation 1 can coincide with
the query one, ¥; = ¢;. One potential issue with
this approach is that ¢/ does not depend on past
thread assignments. Furthermore, thread-specific
features such as topic and persona, cannot be easily
captured by the hierarchical but sequential model
described in the previous section. Thus we aug-
ment the link representations by means of thread
encoding (Liu et al., 2020). Given a query, ¢;,

and a link ¢; posts pair, we consider the thread
T(Cj) = (Cti), ti < tit+1, t\T(cj)l = j, to which
c; has been assigned. We construct a representa-
tion 7; of such thread by means of a GRU cell,
7j = GRU[(x(¢))ceT(c,)]- ¥;j is then obtained by
concatenating ¢; and 7;. At training time we use
the gold threads to generate the T representations,
while at evaluation time we use the predicted ones.

2.4 Scoring Function

Once query and link representations are con-
structed we use the scoring function in Eq. 1 to
score each link against the query utterance, with s
a three-layer feed-forward neural network. The in-
put of the network is the concatenation [¢;; 1;; fi;].
where f;; are the 77 features introduced by Kum-
merfeld et al. (2019a). We augment them by 42 ad-
ditional features based on Levenshtein distance and
longest common prefix between query’s username
and words in the link utterance (and viceversa).
These are introduced to improve mention detection
by being more lenient on spelling mistakes (see 2.5
for precise definitions).

2.5 User Features

While IRC chats allow systematically tagging other
participants (a single mention per post), users can
address each other explicitly by typing usernames.
This allows for abbreviations and typos to be in-
troduced, which are not efficiently captured by the
set of features used by Kummerfeld et al. (2019b).
To ameliorate this problem we construct additional
features. Given a pair of utterances c; and cy we
define the following:

* Smallest Levenshtein distance (D) between
c1(c2)’s username and each of the word in
ca(c1); 5 bins, Dp, = i fori = 0,...,4 or
Dp > 4.

* Largest length of common prefix (£) between
c1(c2)’s username and each of the word in
ca(cq); 5bins, £ =ifori =3,...,60r¢ > 6.

* Binary variable indicating whether ¢ (c2)’s
username is a prefix of any of the words in

ca(er).

These amount to a total of 42 additional features
for each pair of posts.
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Model Graph Cluster
P R F P R F

Kummerfeld etal. 73.7 71.0 72.3 34.6 38.0 36.2
Zhu et al.* 73.2 69.2 70.6 35.8 32.7 34.2
Lietal.” 42.3 46.2 44.1
Yu and Joty 74.7 72.7 73.7 33.0 38.9 36.0
+ self. 74.8 72.7 73.7 42.2 40.9 41.5
+ joint train, self. 74.5 71.7 73.1 44.9 44.2 44.5
BIiLSTM ({) 73.9 71.2 72,5 31.3 37.5 34.1
DAG-LSTM 74.9 72.2 73.6 37.3 42.3 39.6
— user features (}) 74.0 71.3 72.6 33.6 39.7 36.4
— mention link 74.5 71.8 73.1 33.5 38.3 35.7
+ self. (1) 74.9 72.6 73.8 41.1 41.1 41.1
+ thread enc. 75.0 72.3 73.7 37.3 42.5 39.7
+ thread enc., self. 75.2 72.7 73.9 42.4 41.7 42.0

Table 1: Results of our experiments (bottom, best
in bold) and literature (fop, best underlined). The
T({) sign indicates the model being significantly better
(worse) (p < 0.05) than the DAG-LSTM entry based
on a McNemar test (McNemar, 1947) conducted on the
test set. User features and mention links are included
in this baseline model, thread encoding and self-link
threshold tuning are not. Starred entries use contextual
embeddings.

3 Results

3.1 Evaluation

We conduct our experiments on the Ubuntu IRC
dataset for disentanglement (Kummerfeld et al.,
2019a; Kim et al., 2019). We focus on two evalua-
tion metrics defined in Kummerfeld et al. (2019a):
graph Fy, the F-score calculated using the number
of correctly predicted reply-to pairs; cluster Fy, the
F-score calculated using the number of matching
threads of length greater than 1.

3.2 Experiments

As a baseline, we use a BILSTM model in which
¢i(= 1;) is obtained as the hidden states of a bidi-
rectional LSTM unrolled over the sequence (;);-
The base DAG-LSTM model uses both username
and mentions to define the children set C of an
utterance. Bidirectionality is left as a hyperparame-
ter. All our experiments use the same architecture
from section 2 to construct the utterance represen-
tation . We train each model by minimizing the
negative log-likelihood for Eq. 1 using Adam op-
timizer (Kingma and Ba, 2019). We tune the hy-
perparameters of each architecture through random
search.! Table 1 shows the test set performances of
the models which achieve the best graph F; score

"We refer to the Appendix for details.
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Model Self-links
P R F
BiLSTM 79.6 94.6 86.5
DAG-LSTM 82.8 93.8 88.0
+ self-links threshold 87.7 92.4 90.0
DAG-LSTM + thread enc. 81.4 93.8 87.2
+ self-links threshold 89.8 90.6 90.2

Table 2: Thread starters (self-links) performances for
our models in Table 1, before and after thresholding.

over the dev set. Optimizing graph over cluster
score is motivated by an observation: dev set clus-
ter F; score displays a much larger variance than
graph F; score, which is roughly four-fold after
subtracting the score rolling average. By picking
the iteration with the best cluster F; score we would
be more exposed to fluctuation and to worse gener-
alization, which we observe.

3.3 Self-Links Threshold Tuning

As noted by Yu and Joty (2020b), the ability of
the model to detect self-links is crucial for its final
performances. In line with their findings, we also
report that all our models are skewed towards high
recall for self-link detection (Table 2).

To help with this, we introduce two thresholds
f and 9, which we compare with p, the argmax
probability Eq. 1, and Ap, the difference between
the top-2 predicted probabilities. Whenever the
argmax is a self-link: if p < 60, we predict the
next-to-argmax link, otherwise we predict both the
top-2 links if also Ap < §. On the dev set, we first
fine-tune 0 to maximize the self-link F; score and
the fine-tune § to maximize the cluster F; score.

3.4 Results Discussion

Table 1 shows our main results. Our DAG-LSTM
model significantly outperforms the BILSTM base-
line. We perform ablation studies on our best DAG-
LSTM model showing that while both user features
and mention link provide a performance improve-
ment for both cluster and graph score, only user
features ablation results in a significant change.
Self-links threshold tuning improves performances,
particularly on cluster score for both models, high-
lighting the importance of correctly identifying
thread starters.

The DAG-LSTM model with thread encoding
achieves state of the art performances in predicting
reply-to relations. This is particularly interesting
especially when we compare with models employ-



ing contextual embeddings like Zhu et al. (2020).
For the cluster scores, the best model is the pointer
network model of Yu and Joty (2020a), which is
anyway within less than 0.5% of the best contex-
tual model, and within 2.5% of our model. The
difference mainly arises from a difference in recall
and corresponds to an absolute difference of less
than 10 true positive clusters on the test set. Further
comparisons with existing literature are limited by
code not being available at the moment.

4 Conclusions

In this paper we apply, for the first time, DAG-
LSTMs to the disentanglement task; they provide a
flexible architecture that allows to incorporate into
the learned neural representations the structured
information which comes alongside multi-turn dia-
logue. We propose thread encoding and a new set
of features to aid identification of user mentions.
There are possible directions left to explore. We
modeled the reply-to relationships in a conversation
by making an assumption of conditional indepen-
dence of reply-to assignments. This is possibly
a poor approximation and it would be interesting
to lift it. A challenge with this approach is the
computational complexity resulting from the large
dimension of the output space of the reply-to clas-
sifier. We notice that thread encoding allows a
non-greedy decoding strategy through beam search
which would be interesting to further explore.
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A Appendix

A.1 DAG-LSTM Equations

A DAG-LSTM is a variation on the Tree-
LSTM (Tai et al., 2015b) architecture, that is de-
fined over DAGs. Given a DAG, G, we assume that
for every vertex v of G, the edges e(v, v") connect-
ing the children v' € C(v) to v can be assigned a
unique label /,, ,» from a fixed set of labels.

A pair of states vectors (h,, ¢,) and an input z,
are associated to every vertex v. The DAG-LSTM
equations define the states (h,, ¢, ), as a function
of the input z,, and the states of its children:

(hy, ¢y) = DAG-LSTM(zy; { (hw, cw)|w € C(v)}).

(2)
The equations defining such functions are the fol-
lowing:

y =
v'eC(v)
for = a(foxﬁ 3 W,f;;’”“”’””hvu) 4
v'"eC(v)
Cy = iy OUy+ Max fyy O cy )
v'eC(v)
hy = o0, ® tanh(c,) 6)

The equations for the o and u gates are the same
as those for the 7 gate by replacing everywhere
1 — o, u. Bias vectors are left implicit in the def-
inition of ¢, f, o0, and u. ® represents Hadamard
product and max in Eq. 5 represent elementwise
max operation.

A bidirectional DAG-LSTM, is just a pair of in-
dependent DAG-LSTM, one of which is unrolled
over the time reversed sequence of utterances. The
output of a bidirectional DAG-LSTM is the con-
catenation of the h states of the forward and back-
ward unit for a given utterance.

A.2 Training and Hyperparameter Tuning

We use adjudicated training, development, and test
sets from (Kummerfeld et al., 2019b). Each of
these dataset is composed a set of conversation
(153 in the training set and 10 in both development
and test set) each representing a chunk of contigu-
ous posts from the IRC #Ubuntu channel. Each
of these conversation contains strictly more than
1000 posts (exactly 1250 and 1500 for dev and test
set respectively). Annotations are available for all
but the first 1000 posts in every conversation. We
apply some preprocessing to these conversations.
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We chunk the annotated section of every training
conversation in contiguous chunks of 50 posts each,
starting from the first annotated post. > To each of
these chunks we attach a past context of 100 posts
and a future context of 50, resulting in 200 utter-
ances long chunks. For each of these chunks we
keep only those annotated links for which the re-
sponse utterance lies in the central 50 posts. We do
not chunk development and test set, but drop the
first 900 post in every conversation.

The various architectures we consider share the
same set of parameters to fine-tune. One parameter
dj, controls the dimension of the hidden state of
the LSTMs and one parameter dpp controls the
dimension of the hidden layers of the feed-forward
scorer. We use word dropout, apply dropout after
the max-affine layer, and apply dropout after activa-
tion at every layer of the feed-forward scorer. We
clip all gradient entries at 5. We use a single layer
of LSTMs and DAG-LSTMs to build the x and
¢, 1 representations and we do not dropout any of
their units. Similarly we use a single layer GRU for
the thread encoder. We list all the hyperparameters
in Table 3 together with their range and distribution
used for the random search.

Hyperparameter optimization is performed by
running 100 training jobs for the base BiLSTM
architecture, DAG-LSTM, and DAG-LSTM with
thread encoding. Our published results are from the
best among these runs. The best sets of parameters
we find for each of these architectures are:

e BiLSTM: d, = 256, dpr = 128, no
word and max-affine dropout, a feed forward-
dropout equal to 0.3, and a learning rate of
2.4 x 1074,

* DAG-LSTM: d;, = 64, dpr = 256, no
word and max-affine dropout, a feed forward-
dropout equal to 0.3, and a learning rate of
7.3 x 1074

* DAG-LSTM with thread encoding: d; =
drpp = 256, word and max-affine dropout
equal to 0.3, a feed forward-dropout equal to
0.5, and a learning rate of 7.9 x 1074,

User feature and mention link ablations are ob-
tained by fixing all parameters of the best DAG-
LSTM run (removing the feature we are experi-
menting with) and running 10 jobs by only chang-
ing the random seed.

>This may result in the last chunk to have less than 50
posts. This happens for 45 conversations.



Parameter Domain Distribution

dn {64,128,256}  categorical
drF {64,128,256}  categorical
word dropout {0,0.3,0.5} categorical
max-affine dropout {0,0.3,0.5} categorical
feed-forward dropout  {0,0.3,0.5} categorical
learning rate [107°,107%]  log-uniform
BiDAG-LSTM {true, false} categorical

Table 3: Hyperparameters of the model architectures.
During hyperparameter optimization, we perform a ran-
dom search according to the distributions described
above. Categorical distributions have uniform proba-
bility mass function.

Each training job is performed on a single GPU
and, depending on the architectures, takes from 6
to 12 hours.

A.3 Significance Estimates

We use McNemar test (McNemar, 1947) to eval-
uate the significance of performance differences
between model. Given two models M4 and Mp,
we define n 45 as the number of links correctly
predicted by A but not by B. Under the null hy-
pothesis both n,5z ~ Bin(n,5,n,1/2), where
n = n,p + ngz. We define a model A to be
significantly better than a model B if the null hy-
pothesis is excluded at 95% confidence level.
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