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Abstract

Recent question answering and machine read-
ing benchmarks frequently reduce the task to
one of pinpointing spans within a certain text
passage that answers the given question. Typ-
ically, these systems are not required to ac-
tually understand the text on a deeper level
that allows for more complex reasoning on the
information contained. We introduce a new
dataset called BiQuAD that requires deeper
comprehension in order to answer questions
in both extractive and deductive fashion. The
dataset consist of 4, 190 closed-domain texts
and a total of 99, 149 question-answer pairs.
The texts are synthetically generated soccer
match reports that verbalize the main events
of each match. All texts are accompanied by
a structured Datalog program that represents
a (logical) model of its information. We show
that state-of-the-art QA models do not perform
well on the challenging long form contexts and
reasoning requirements posed by the dataset.
In particular, transformer based state-of-the-
art models achieve F1-scores of only 39.0. We
demonstrate how these synthetic datasets align
structured knowledge with natural text and aid
model introspection when approaching com-
plex text understanding.

1 Introduction

Most of the recent question answering benchmarks
require systems to pinpoint the span of the answer
to the question in the given text. In the well-known
SQuAD 2.0 dataset (Rajpurkar et al., 2018), sys-
tems are able to extract the correct answer span in
the following paragraph as an answer to the ques-
tion: “What tactic did researchers employ to offset
the former deficit of work surrounding the complex-
ity of algorithmic problems?”:

“Before the actual research explicitly devoted to
the complexity of algorithmic problems started off,
numerous foundations were laid out by various

researchers. Most influential among these was
the definition of Turing machines by Alan Turing
in 1936, which turned out to be a very robust and
flexible simplification of a computer.” (sample from
Rajpurkar et al. (2018))

Results of state-of-the-art (SOTA) systems on
these datasets have reached Exact Match (EM) and
F1 performances of 90.9 and 93.2, respectively 1.
Some of these models even outperform the human
baseline (which lies at F1 = 89.4 for SQuAD 2.0).

It is unclear to which extent the existing bench-
marks actually require systems to comprehend texts
and to what extent these systems rely on surface
cues signalling a match between question and an-
swer span. Most state-of-the-art models rely on
transformer models such as BERT and ALBERT
(Lan et al., 2020) that are pre-trained on supple-
mentary tasks using large amounts of textual data
(Devlin et al., 2019) and employ extensive self-
attention mechanisms that have been shown to learn
many of the features of a classic natural language
processing (NLP) pipeline (Tenney et al., 2019).
It has been shown for a number of tasks that such
models rely on surface cues and on artifacts of
the datasets. A recent example is the Argument
Reading and Comprehension (ARC) task (Haber-
nal et al., 2018). A deeper analysis of the data and
the performance of transformer models has shown
that they exploit only surface cues and artefacts of
the data, failing to perform beyond chance when
systematic (adversarial) modifications are applied
on the dataset (Niven and Kao, 2019).

Our motivation in this paper is to introduce a new
question answering dataset that requires a deeper
understanding of the text to answer questions be-
yond merely matching answer spans. In particular,
in our dataset, the answers to questions can often

1Current performance of ‘FPNet (ensemble)‘ at the time
of writing according to the SQuAD 2.0 leaderboard https:
//rajpurkar.github.io/SQuAD-explorer/.

https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/
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not be found in the original text, but can be inferred
on the basis of a deeper, structural, understanding.
Examples are aggregation questions such as “‘How
many goals did Marco Reus score in the first half
of the match?’” but also questions such as “‘Who
won the game?’”, requiring a system to understand
that a balanced score leads to a tie, making the
question unanswerable. Since most models cannot
keep track of all the goals and intermediate scores
for the whole game this provides a significant chal-
lenge. The dataset we present is called BiQuAD
and comprises of 99,149 question answer pairs on
4,190 documents, averaging 23 questions per docu-
ment. The texts describe soccer matches that have
actually taken place. The texts have been generated
automatically on the basis of handcrafted templates
from structured reports of soccer games. A model
of each game is available in the form of a Datalog
program representing the meaning of the text in
terms of a model consisting of predicates relevant
to the description of a soccer game. The questions
are paraphrases of queries that can be answered
over the model of the game. Similar to extensions
from SQuAD 1.0 to 2.0 (Rajpurkar et al., 2018), a
percentage of the generated questions in the dataset
are deemed as unanswerable.

In this paper we present the dataset in more de-
tail and describe its creation (section 3). Further,
we present the results of state-of-the-art QA sys-
tems on this task in section 4. We show the limits
of current state-of-the-art QA in answering ques-
tions for which the answer is not in the text but
requires deeper inference on the basis of the infor-
mation given in the text. We show that, in spite
of text being artificially generated using 335 rel-
atively simple templates, thus being very regular,
this task is not solvable by the current state-of-the-
art in question answering. Arguably, the current
state-of-the-art focuses on extractive QA and was
not designed for deeper understanding. We posit
that results on our dataset show that extractive mod-
els in particular overfit on surface cues that do not
require deeper text understanding. In particular, we
show that while the state-of-the-art on Squad 2.0
for example yield results of EM and F1-scores of
90.7 and 93.0, results of these models for our task
range between 38.8 and 39.0 respectively.

2 Related Work

Datasets on machine reading and question answer-
ing tasks can be characterized by broad categories:

a) open vs. closed (specific) domain, and b) text-
comprehension based (e.g. extractive or Cloze-
style) vs. knowledge based QA. Table 1 catego-
rizes prominent datasets along these lines and pro-
vides an overview over the number of questions/-
documents, how each dataset was collected (e.g.
crowdsourcing / artificially generated) as well as
the current state-of-the-art (SOTA) results. This list
is necessarily non-exhaustive and we only show-
case datasets that are either prominent examples of
the space or noteworthy because of their relation to
the work presented here.

Prominent datasets focusing on open-ended ex-
tractive QA include SQuAD 1.0 (Rajpurkar et al.,
2016) and 2.0 (Rajpurkar et al., 2018), which have
enjoyed wide popularity in the research community.
Together with NewsQA (Trischler et al., 2017),
these datasets represent the largest, crowd-sourced,
extractive QA datasets available. Questions here
are answered by correctly identifying a span in a
context paragraph, with version 2.0 introducing a
subclass of unanswerable questions. More recently,
SQuAD versions in languages other than English
have been developed (Croce et al., 2018; Mozannar
et al., 2019; d’Hoffschmidt et al., 2020; Carrino
et al., 2020). The TriviaQA (Joshi et al., 2017)
dataset integrates the notion of external evidence
(Wikipedia articles) for trivia and open domain
question answering and broadens the task to infor-
mation retrieval (IR) settings.

The RACE dataset (Lai et al., 2017) relies on a
multiple choice setting and leverages data used for
the assessment of reading comprehension by hu-
mans. It features simple reasoning challenges such
as deducing relative values from mentions of abso-
lute ones. Similarly, the Open Book QA (Mihaylov
et al., 2018) requires models to involve common
sense knowledge to solve the task successfully.

There are different ways to frame the task of an-
swering questions by machine reading, including
sentence retrieval (Momtazi and Klakow, 2015),
multi-hop reasoning (Khot et al., 2020), and rea-
soning about multiple paragraphs or documents at
the same time (Dua et al., 2019; Cao et al., 2019).
Recent work has considered the development of
reasoning-based QA systems (Weber et al., 2019)
as well as the integration of external (Banerjee and
Baral, 2020) and commonsense knowledge (Clark
et al., 2020) into the QA process.

Other machine reading based QA datasets fo-
cus on answering questions on the basis of struc-
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Dataset Domain Task Type Samples ~ Acquisition Method SOTA
SQuAD 1.0, 2.0 Open Extractive QA 150,000 Crowdsourcing EM 90.724 F1 93.011
NewsQA Open Extractive QA 120,000 Crowdsourcing F1 73.6
TriviaQA Open Extractive QA 95,000 Semi-Automatic EM 90.38 F1 92.96
RACE Open Multiple Choice 100,000 Domain Experts Accuracy 90.9
Open Book QA Open Multiple Choice 6,000 Crowdsourcing Accuracy 87.20
LC-QuAD 2.0 Open Graph Retrieval 30,000 Semi-Automatic tbd.
WikiHop Open Extractive QA 50,000 Graph Traversal Accuracy 81.9
MedHop Closed Extractive QA 2,500 Graph Traversal Accuracy 60.3
QASC Open Multiple Choice 10,000 Crowdsourcing Accuracy 90
QALD-9 Open Graph Retrieval 700 * 11 Manual Annotation Macro F1 QALD 5.0
SciQA Closed Document Retrieval 10,000 Automated Extraction MAP 24.36*
DROP Both Extractive QA 97000 Crowdsourcing EM 90.10 F1 87.04

Table 1: Overview of related QA datasets. Exact match (EM), F1, Accuracy, Mean Average Precision (MAP)
scores according to their respective leaderboards at the time of writing. *Best result on BioASQ 6b test batch 3
(Nentidis et al., 2018).

tured knowledge graphs. A prominent example
is the series of Question Answering over Linked
Data (QALD) evaluation campaigns (Usbeck et al.,
2018), now in its 9th edition and going back to
2011. Solving the QALD tasks requires mapping
natural language questions in multiple languages
into a corresponding SPARQL query (Cimiano
et al., 2013). While QALD provided only hun-
dreds of training samples, recent datasets such as
LC-QuAD 2.0 (Trivedi et al., 2017; Dubey et al.,
2019) rely on automatic generation and human post-
processing to generate sufficient sample counts re-
quired for modern deep learning architectures. A
similar approach is taken by QASC (Khot et al.,
2020) or WikiHop and MedHop (Welbl et al., 2018)
that are aimed at multi hop inference across multi-
ple documents, finding answers directly from the
KG without the need to generate a query.

Most closed domain datasets are smaller than
their open domain counterparts since annotation
usually requires experts that are inherently harder
to source. Datasets such as the biomedical question
answering corpus BiQA (Lamurias et al., 2020)
make use of user generated content from other
sources instead.

The recent DROP dataset (Dua et al., 2019) fo-
cuses on complex reasoning tasks in form of both,
open and closed domain, questions. The task com-
bines the challenge of extractive QA with testing
a models ability to perform limited numerical rea-
soning, e.g. by having to calculate date differences.
At the time of this writing, graph-based models
presented in (Chen et al., 2020) rank at the top of
the DROP leaderboard with F1 of 90.1, and EM

of 87.0.2

Similar to DROP, we aim to bridge gaps required
for deeper text understanding while simultaneously
providing sample annotations that allow for proper
model introspection. The synthetic nature of gener-
ated texts in BiQuAD provides an extensible way to
test model capabilities for reasoning about various
sub-categories. We provide long form text passages
alongside structured representations, in the form
of Datalog rules, as a way to either explicitly com-
bine structured and unstructured information or a
further way for model introspection by aligning
neural model representations with their graphical
and discrete counterparts.

3 Methods

This section outlines the methodology used to gen-
erate the dataset and in what way the state-of-the-
art transformer architectures can provide a first
baseline for the BiQuAD dataset.

3.1 Dataset Generation

The BiQuAD dataset consists of two different views
on each match: a Datalog program representing a
model of each text in terms of the main events in
the match, as well as an artificially generated match
report in natural language. Each of these match
reports is accompanied by a set of, on average,
23 question/answer pairs generated in a similar
fashion.The dataset is made available as fixed 60-
20-20 training/development/test splits.

The Datalog programs and natural language
match reports are extracted and generated on the ba-
sis of structured match reports available as part of

2https://leaderboard.allenai.org/drop/
submissions/public

https://leaderboard.allenai.org/drop/submissions/public
https://leaderboard.allenai.org/drop/submissions/public
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the “European Soccer Database” (ESDB),3 which
aggregates real minute-by-minute data on 14,196
historic soccer matches between 2008 and 2016
from various sources. It is licensed under the
permissive Open Database License (ODbL) v1.0.
We extract data following a scheme of match ob-
jects and associated events from the database, an
overview of which is available in Fig. 1.

The structure presents a complete model of the
facts contained in the database and subsequently all
texts generated using its information. It contains in-
formation about the following eight types of events
for each match: cross (medium- / long-range
pass), foul, shot on target (goal shot at-
tempts), shot off target (shots not reaching
the goal or hitting the frame), card (yellow or red),
goal, possession (special event reporting the
minutes each team is in ball possession). The avail-
able details for each event vary from sub-types, e.g.
indicating the type of card, the reason on why it
was given, to the individual players involved in a
foul or cross pass. These details are used to create
a natural sounding output sentence from each event.
The Datalog programs capture all these events in
addition to the final result via logical predicates
and provide thus the basis for structured querying,
supporting aggregation questions.

The transformation of the data to Datalog pro-
grams relies on a number of rules that extract data
from the ESDB and transforms it into Datalog
clauses. The full set of rules, as well as a compre-
hensive overview, is available for download along-
side the QA dataset itself. Applied to a full object
hierarchy of a match and all its events in the ESDB
this generates a set of Datalog programs and docu-
ments of various sizes. While some matches only
describe major events, like goals or cards, the ma-
jority averages more than one event per minute.

The following example represents information
on the overall outcome of a certain match in both
Datalog (shown here in a standard variant) and text:

3https://www.kaggle.com/hugomathien/
soccer

EXAMPLE 1.

match(M47).
match_league(M47, "Bundesliga").
match_hometeam(M47,"Borussia Dortmund").
match_awayteam(M47, "Bayern München").
match_score(M47, "2:1").
match_hometeam_goals(M47, "2").
match_awayteam_goals(M47, "1").

The Bundesliga match ended with the
home team Borussia Dortmund beating
Bayern München 2 to 1.

Text Generation: The natural language match
report is generated via a set of templates defined
for the different types of events. An additional set
of templates describes the overall match in various
degrees of detail. Similar to the above Datalog
transformation, we represent transformations into
text as natural language with dynamic placehold-
ers:

EXAMPLE 2.

The {@data.league} game of
{@data.hometeam} versus {@data.awayteam}
ended {@data.score}.

For text generation we defined a total of 335
rules, with least 5 different rules for each relevant
event, so that some language variation is introduced.
Filter functions are used to postprocess the names
of players by removing parts of the full name to
check the ability of systems to detect and resolve
co-references. Some rules also introduce explicit
co-reference markers, allowing generated systems
to replace a player’s name that occurs in multiple
subsequent events.

EXAMPLE 3.

The {@data.league} match ended with the
home team {@data.hometeam} beating
{@data.awayteam} {@data.home_goals}
to {@data.away_goals}.

Question Templates (QTcategory) are used to
generate (question, answer) pairs on the original
Datalog program. They are used to construct a Dat-
alog query that answers the question given struc-
tured knowledge, as well as their textual representa-
tion. The answer is then retrieved by executing the
constructed query and, where possible, annotated
in text form. The templates, outlined below, have
each been designed to address a specific challenge
for the QA task. Similar to how most SQuAD
evaluations report performance on answerable and

https://www.kaggle.com/hugomathien/soccer
https://www.kaggle.com/hugomathien/soccer
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Figure 1: ESDB object model overview.

unanswerable questions separately, this allows re-
searchers to evaluate their models along detailed
axes and pinpoint potential for improvements. The
dataset features the following nine types of ques-
tions:

• QTSimple Facts This template takes a fact
from the Datalog program and randomly re-
moves an entity, this generates cloze style
questions answerable using a single sentence
in the textual representation, e.g. "Who won
the game?".

• QTMultiple Facts Questions that relate to mul-
tiple entities, akin to the extraction of relations
with two arguments, such as "Who did :even-
t/player1 tackle?".

• QTParaphrased Facts This is an extension of
QTSimple Facts that generates similar ques-
tions but is mapped to different text templates
that change and omit entity labels (e.g. omit-
ting the first name of a player or omitting a
subsequent use of team names). These tem-
plates require models to learn inexact match-
ing of labels to entities in the underlying
knowledge base and introduce simple patterns
of co-reference resolution.

• QTAggregation (min/max/count): Events such
as goals, cards, and fouls are discrete entries
in the Datalog program. While some result-
ing questions might be available in text, e.g.
"How many goals did Team A score?", some
require further deduction via counting ("How
many goals did Marco Reus score?"). This
also includes comparisons between multiple
entities, e.g. "Did :player1 score more goals
than :player2?".

• QTUnanswerable Aligned with Rajpurkar et al.

(2018), this template introduces an adversarial
element to the dataset by generating questions
that look valid but are in fact not answerable
by the data. These questions are generated
by randomly sampling another document and
ensuring the resulting Datalog query does not
yield a result for the current match. This leads
to realistic questions that might even overlap
in entities (e.g. player names) but make no
sense in the context of the current document.

• QTTemporal This template generates ques-
tions relating to the temporal order of match
events; it generates questions such as "Who
scored the first goal of the match?" or "Who
scored the last goal in the first half of the
match?".

• QTAggregation Temporal This template com-
bines QTMultiple Facts and QTTemporal by
asking questions such as "How many goals
did Team A score in the second half of the
match?" or "Did Team A score more goals in
the first half of the match?" (comparison).

All templates contain placeholders such as
:event/player1 that are dynamically resolved
via the knowledge in the Datalog program for each
match and can refer to individual properties or en-
tity names. Question templates may provide pre-
conditions or constraints that have to be true in
order for the question to be generated on any given
match. This ensures that questions are answerable
and compatible with the given match data.

A question about one player tackling another
for example would generate the following Datalog
query and text:
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EXAMPLE 4.

Q(m, p1) :- event_match(e, m),
event_player1(e, p1),
event_player2(e, p2),
event_type(e, "foulcommit"),
event_subtype(e, "pull").

Who pulled {@data.player2|namefilter}?

The templates in category QTUnanswerable are
generated in a second pass over the dataset, for
each four answerable questions an unanswerable
one is sampled randomly from another document
in the corpus. The answer for the sampled question
is dropped and the accompanying datalog query
is used to validate that no answer exists for the
question w.r.t. the current document. This reliably
transforms templates that generate sensible and
answerable questions into unanswerable ones.

Template annotations include a number of an-
swer types (e.g. text or numeric) that are used to
annotate the location of the answer within the con-
text document. The datalog query of the question
is automatically rewritten to obtain a sensible lo-
cation within the text to annotate an answer. In
the case of textual answers, the closest matches
are annotated since the exact location might not
contain the answer itself due to co-reference. For
numerical answers we employ two strategies: a)
temporal questions looking for the minute a partic-
ular event occurred are annotated at the appropriate
marker and b) generic numeric answers are gener-
ated at the end of the document (ensuring that at
least five multiple choices are presented, padded
with random numbers if necessary).

All questions consist of four elements:

• Question in natural language.
• Datalog query corresponding to the question.
• Answer retrieved from the knowledge base.
• Metadata, such as the answer type (text, nu-

meric) and question template category.

In Figure 2 we give an example excerpt from an
automatically generated report for a single match.
One of the questions w.r.t. this match in the dataset
is the following:

• NL Question: How many goals did Fulham
score in the first halftime?

• Datalog Query (excerpt):

Q(m, team) :- event_match(e, m),
event_type(e, "goal"),

Figure 2: Example match report excerpt between Ful-
ham and Norwich City in 2012.

event_team(e, team),
event_minute(e) <= 45.

A :- sum(Q(m, "home")).

• Answer: 3 (three)

After generation, we generate fixed splits by
shuffling all match report documents and dividing
them into sets of train (60%), development (20%),
and test (20%). The dataset, as well as an evalua-
tion script and resources for generating it, are made
available online. In order to provide a compara-
ble baseline to existing state-of-the-art models the
subset of QA pairs suitable for extractive QA is
exported into a SQuAD-compatible data format.

3.2 Model

In order to provide first reference results for the Bi-
QuAD dataset, we evaluate state-of-the-art vanilla
transformer architectures on the task, in particular
ALBERT (Lan et al., 2020). Based on hardware
constraints and hyperparameter optimization using
fine-tuned base models, all trainings ran for two
epochs, with a learning rate of 3e−5 and a batch
size of 8. The model itself uses a standard AL-
BERT architecture for question answering tasks
following (Lan et al., 2020; Rajpurkar et al., 2018).
The tasks were executed in a Linux cluster environ-
ment on GTX1080 Ti GPUs (CUDA10). A single
additional hidden layer stores answer span logits
(start and end of a span) and treats the first token
([CLS]) as an indicator for unanswerable ques-
tions. Optimization is performed through Adam
(with epsilon = 1e−8).

Input Sequences in both models are constrained
by the maximum sequence length they can pro-
cess. Similar to the size of the parameter space, the
specific maximum values (512 tokens for both mod-
els used here) depends on the maximum sequence
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length used during pre-training. We leverage the
ability of the HuggingFace implementation (Wolf
et al., 2019) to specify a document stride. This
effectively extracts features in a sliding window
approach over the full document and determines
the answer by observing the maximal logit over all
windows.

3.3 Evaluation

The evaluation of each model is performed in two
major settings: a) single question-answering and b)
document level question-answering. While the for-
mer aims to maintain compatibility with SQuAD-
like datasets and optimizes on the overall ability
of a model to extract individual answers from the
textual description of a soccer match, the latter is
designed to assess the overall ability of the model
to cover lots of different questions on a particular
complex text document.

Single Question Answering pairs are evaluated
in accordance with the SQuAD paradigm of ex-
act matches (EM) and F1 scores (Rajpurkar et al.,
2018):

• Exact Match (EM): Percentage of predictions
completely matching the ground truth answer.

• F1: Macro-averaged F1 score. Here each
answer and ground truth pair is treated as a
bag-of-words to determine an inexact overlap
and evaluate in a less strict manner. The cal-
culation of individual F1 scores follows the
classical definition of F1 = 2 Precision∗Recall

Precision+Recall
(van Rijsbergen, 1979). Unlike SQuAD our
datasets only present a singular ground truth
per question so it is unnecessary to search for
a maximal F1 score here.

For the purpose of error analysis, in this article
we report these results on a per-category level, as
well as distinguished by answerable and unanswer-
able questions. This not only showcases where
a particular model might have problems with the
dataset it is trained on, it also is of immense help
when debugging errors and guiding decisions of
where a model might require more training data.

Transfer Learning from open domain question
answering datasets such as SQuAD 2.0 is used to
assess how well the language structure itself can
be used for extractive QA in the unseen data of our
dataset. For this we evaluate the aforementioned

experimental setup after training on the SQuAD
2.0 training split and evaluating on the test split of
BiQuAD .

All results are reported on the development split,
the test split is withheld from public release for use
in an evaluation webservice. In the open source
release of the BiQuAD dataset, evaluation scripts
are provided in order to keep these evaluations con-
sistent.4 To aid in reproducibility, the MIT-licensed
open source release also contains the scripts re-
quired to generate samples.

4 Results

This section provides an overview of the dataset
and provides first results on the dataset by provid-
ing baselines relying on state-of-the-art transformer
models.

4.1 Dataset

The dataset comprises 4,190 documents with play
by play soccer matches and 99,149 questions (∼ 23
per document) and is thus of similar size as com-
parable datasets. Each textual representation of a
match contains an average of 82 sentences (759
words). The template based text generation yielded
long form documents of rather factual and sober
match descriptions. While syntactic and vocabu-
lary variability is clearly limited due to this rule-
based approach, co-reference and detailed event
descriptions make texts non-trivial to reason about.

Albeit not being leveraged in the baseline models
presented herein, the parallel construction of tex-
tual and structured descriptions enables the adop-
tion of BiQuAD for use in further downstream tasks,
such as relation extraction or knowledge base com-
pletion.

The dataset splits follow a 60-20-20 scheme,
it contains a training split with 2,514 documents
(58,807 QA pairs) and Development and Test splits
with 838 documents (19,870 QA pairs) each.

4.2 Model Results

The following results outline the performance of
SOTA models, as described in section 3, for ques-
tion answering on the BiQuAD dataset.

Single Question Answering is evaluated on in-
dividual question answer pairs in the development
dataset, table 2 shows the overall results. Individual
question templates, and subsets such as answerable

4https://github.com/ag-sc/BiQuAD

https://github.com/ag-sc/BiQuAD
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QTAnswerable and unanswerable QTUnanswerable

questions. The latter distinction is important be-
cause both models regarded in this study explicitly
model if a question is answerable in their architec-
ture and are thus typically well equipped to make
this decision.

Question Templates EM F1

All 38.8 39.0
Answerable 25.4 25.8
Unanswerable 86.6 86.6
Simple Facts 25.0 21.6
Multiple Facts 29.7 30.1
Temporal 16.4 16.4
Aggregation 33.8 64.1
Aggregation Temporal 0.0 66.3

Table 2: Results for single QA setting, reported results
on the public development split.

On the question of answerability, the models
perform reasonably well. The fact that it does not
achieve perfect scores here indicates that they are
not able to exploit simple surface queues to make
this decision and validates the approach to generate
these samples as described in section 3. Other
template categories indicate that the model cannot
yet cope with more involved categories, such as the
temporal reasoning category.

Transfer Learning results, presented in table 3,
evaluate the QA pairs in the development set of
BiQuAD on a model trained with the training data
from SQuAD 2.0. The results show a strong abil-
ity to determine the answerability of questions but
break down in other categories. This capability
indicates that questions generated as unanswerable
might often contain easily spotted and exploited
surface clues, such as player names, that do not
occur in the document in question.

The results presented here show that modern
deep learning models such as ALBERT perform
similarly well on the proposed dataset. While
SQuAD-like datasets are commonly limited to the
evaluation of subsets such as QTAnswerable and
QTUnanswerable, the template based nature of Bi-
QuAD allows for even further inspection.

5 Conclusion

We have introduced a challenging new QA dataset
that emphasizes document-level text understand-
ing. While most of the existing benchmark datasets

Question Templates EM F1

All 24.4 25.9
Answerable 3.7 5.7
Unanswerable 99.0 99.0
Simple Facts 6.5 6.8
Multiple Facts 16.9 24.1
Temporal 0.0 0.0
Aggregation 0.0 2.5
Aggregation Temporal 0.0 0.9

Table 3: Results for the transfer learning QA setting,
reported results on the public development split.

require systems to extract answer spans from text
or to select an answer given multiple choices, we
have attempted to provide a dataset that requires
answering questions beyond the content explicitly
mentioned in the text, requiring inference and ag-
gregation on top of the information given in the text.
Our methodology builds on a structured database
of soccer matches. From this database, it generates
natural language reports of games relying on a set
of handcrafted templates in addition to a Datalog
logical representation of a text. For each document,
23 Datalog queries are generated and transformed
into NL relying on a further set of handcrafted tem-
plates. The artificial nature of the dataset allows for
clear cut error analysis and can guide the implemen-
tation of, especially closed domain, QA systems.
Downsides introduced by synthetic generation in-
clude an unnaturally factual text style and the fact
that relatively simple heuristics might be able to
generate the correct answer for some of the ques-
tion templates. These heuristics could potentially
even target the soccer domain itself, as is common
with many subtasks in closed domain corpora. We
aim to alleviate these concerns in future work by ex-
tending a) the tooling around model introspection
and b) coverage of further domains. These steps
should further improve the way reasoning tasks are
reflected in the dataset and establish BiQuAD , or
the approach of synthetic corpora, as a modeling
tool to be used alongside other corpora of natural
texts in comparable or open domain settings.

We have provided baseline systems and show
that existing state-of-the-art systems yield very low
results on the dataset, with exact match and F1-
scores of 38.8 and 39.0, respectively. Results of
EM = 24.4, F1 = 25.9 in a transfer learning
setup further strengthen the assumption that these
models cannot sufficiently answer the type of rea-
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soning tasks imposed by the dataset. While state-of-
the-art systems perform well on standard extractive
questions (QTMultiple Facts,Aggregation), we show
that on questions requiring inference and tempo-
ral reasoning, the baseline systems perform at F1

below 20 even when encoding answers in a way
compatible with extractive systems.

On the basis of these results and experience with
other datasets, we can see that explicit modelling
is required for various complex reasoning tasks.
Many recent state-of-the-art models on QA achieve
this complexity only in limited scopes, such as pure
numeric reasoning, not deeper general text under-
standing. The parallel construction of structured
Datalog knowledge about a closed world model
may be used to a) develop models that combine
textual information with external semantic knowl-
edge or b) decode how a model performs reason-
ing tasks by linking text and structural knowledge
when inspecting individual components such as
attention layers. BiQuAD allows to model and
inspect reasoning on specific categories without
necessarily overfitting on any particular subtask.
Our dataset is freely available and, in combination
with other datasets of non-synthetic nature, will
hopefully contribute to push the state of the art in
machine reading further.
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