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Abstract
In this work, we empirically compare span
extraction methods for the task of semantic
role labeling (SRL). While recent progress
incorporating pre-trained contextualized rep-
resentations into neural encoders has greatly
improved SRL F1 performance on popular
benchmarks, the potential costs and benefits
of structured decoding in these models have
become less clear. With extensive experi-
ments on PropBank SRL datasets, we find
that more structured decoding methods out-
perform BIO-tagging when using static (word
type) embeddings across all experimental set-
tings. However, when used in conjunction
with pre-trained contextualized word represen-
tations, the benefits are diminished. We also
experiment in cross-genre and cross-lingual
settings and find similar trends. We further per-
form speed comparisons and provide analysis
on the accuracy-efficiency trade-offs among
different decoding methods.

1 Introduction

Semantic role labeling (SRL) is a core natural lan-
guage processing (NLP) task that aims to identify
predicate-argument structures in text (Gildea and
Jurafsky, 2002; Palmer et al., 2010). Following
the neural encoder-decoder paradigm, we can view
an SRL model as combining an encoder, which
builds hidden representations for the input words,
with a decoder, which extracts the argument spans
based on the encoded representations. While recent
SRL models achieve high performance on popular
benchmarks (Zhou and Xu, 2015; He et al., 2017;
Tan et al., 2018; Strubell et al., 2018; Shi and Lin,
2019), most improvements come from better neu-
ral encoders, such as the Transformer (Vaswani
et al., 2017) and pre-trained contextualized word
representations, such as BERT (Devlin et al., 2019).
However, influence on end-task performance due
to the choice of decoder has become less clear.

B-A0  I-A0       B-V       B-A1 B-A3 I-A3  I-A3   O

A0 A1 A3

A0 A1 A3

(a)BIO-based:   TV stations bought them for record prices .

(b)Span-based:  TV stations bought them for record prices .

(c)Two-step:      TV stations bought them for record prices .

Figure 1: Illustration of decoding methods explored
in this work. For the predicate “bought”, we iden-
tify argument spans by: (a) BIO-based sequence label-
ing; (b) direct span-based extraction; (c) two-step ap-
proach: first identifying head words, then expanding to
full spans by deciding left and right boundaries.

In this work, we perform an empirical investiga-
tion of different decoding methods for span extrac-
tion, as illustrated in Figure 1. The most common
strategy casts the task as a sequence labeling prob-
lem using the BIO-tagging scheme (Zhou and Xu,
2015; He et al., 2017; Tan et al., 2018; Strubell
et al., 2018; Shi and Lin, 2019). While this ap-
proach is simple, it does not directly model the
arguments at the span level. Alternatively, the span-
based method directly builds representations for all
possible1 spans and selects among them (He et al.,
2018a; Ouchi et al., 2018). Though this approach is
straightforward for explicitly modeling span-level
information, composing a representation for every
span can lead to higher computational cost. In-
spired by dependency-based SRL (Surdeanu et al.,
2008; Hajič et al., 2009), a third option first identi-
fies a head word then decides the span boundaries.
This two-step strategy has been explored in previ-
ous work on information extraction (Peng et al.,
2015; Lin et al., 2019; Zhang et al., 2020), and we
apply it here to SRL. Compared with the sequential
BIO-tagger, the latter two approaches more directly
model the argument span structures; we thus refer

1Up to a fixed length, decided as a hyperparameter.
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to them as more structured decoders.
We perform careful comparisons of these decod-

ing methods upon the same encoding backbone,
based on a deep Transformer encoder. We first ex-
periment in the standard fully-supervised settings
on English PropBank datasets (CoNLL-2005 and
CoNLL-2012). The results show that more struc-
tured decoders, especially the two-step approach
with syntactic guidance, consistently perform bet-
ter than BIO-tagging when using static word em-
beddings. However, if including strong contex-
tualized BERT embeddings, the benefits of more
structured decoding are diminished and the sim-
plest BIO-tagging method performs well across dif-
ferent experimental settings. Error analysis shows
that contextualized embeddings help in deciding
span boundaries. Furthermore, we explore cross-
genre and cross-lingual settings on the CoNLL-
2012 datasets, and find similar trends. Finally,
we perform speed comparisons and analyze the
accuracy-efficiency trade-offs among different de-
coding methods.

2 Model

For a given predicate,2 SRL aims to extract all argu-
ment spans and assign them role labels. To model
this task, we follow the neural encoder-decoder
paradigm: the encoder produces hidden representa-
tions for the input words, upon which the decoder
decides the structured outputs. All our models
adopt the same encoding architecture: a deep Trans-
former encoder (Vaswani et al., 2017), which has
been shown effective for SRL (Tan et al., 2018;
Strubell et al., 2018). For a given input sequence
of words {w1, . . . , wn}, we obtain their contextu-
alized representations {h1, . . . , hn} from the en-
coder. Upon these, we stack different decoders to
extract the argument spans corresponding to differ-
ent extraction strategies, which will be described
in the following.

2.1 BIO-based

Since argument spans do not overlap in the datasets
we explore, the BIO-tagging scheme (Ramshaw
and Marcus, 1999) can be utilized to extract them,
casting SRL as a sequence labeling problem.

For each word, we feed its representation h to a
multi-layer perceptron (MLP) based scorer, which
assigns the scores of the BIO tags. Assuming that

2In this work, we focus on argument extraction and assume
given predicates.

we have k possible argument roles in the output
space, each of them will have its “B-” and “I-” tags.
Together with the “O” (NIL) tag, the tagging space
has a dimension of 2k + 1.

Furthermore, we consider the option of adopting
a standard linear-chain conditional random field
(CRF; Lafferty et al., 2001) to model pairwise tag-
ging transitions. If adopting the CRF (BIO w/
CRF), we train the model with sequence-level nega-
tive log likelihood and use the Viterbi algorithm for
inference. If not using the CRF (BIO w/o CRF), we
simply use tag-level cross entropy as the learning
objective and perform argmax greedy decoding at
inference time, following Tan et al. (2018).

2.2 Span-based

In the span-based method, we build neural repre-
sentations for all candidate spans and directly select
and assign role labels (or NIL). Following He et al.
(2018a), for a span a, we compose its represen-
tation from start and end points, soft head-word
vectors and span width features by concatenation:

g(a) = [hstart(a), hend(a), soft(a),width(a)]

Here, soft(a) denotes a soft-head representation
obtained from an attention mechanism:

soft(a) =
∑

start(a)≤i≤end(a)

att(i, a)hi

att(i, a) =
wT
atthi∑

start(a)≤i′≤end(a)w
T
atthi′

and width(a) denotes a width embedding corre-
sponding to the span size (width).

All valid candidate spans are first assigned an
unlabeled score, using an MLP scorer. This unary
score is then used as the criterion for beam pruning
to reduce the computational costs of full labeling.
Since each predicate will not have too many argu-
ments (most have less than 5), we adopt a fixed
beam size of 10. We also limit the maximum width
of candidate spans to 30, which covers around 99%
of the cases. Surviving candidates are further as-
signed label scores with another MLP scorer, with
which we decide output arguments.

2.3 Two-step

In this approach, we decompose the problem into
two steps: head-selection and boundary-decision.
In the first step, each individual word is directly
scored for argument labels (or NIL). We again
adopt an MLP classifier to obtain the probability
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that a word can be the head of an argument with
label r (r can be NIL). The non-NIL labeled words
are selected as the head words of the arguments.
Since the annotations usually do not contain head
words for the argument spans, we further consider
two strategies to provide supervision for training:

HeadSyntax A straightforward method is
to adopt guidance from syntax. Following
dependency-style SRL (Surdeanu et al., 2008;
Hajič et al., 2009), we use syntactic dependency
parse trees and select the highest word (the one
that is closest to the root) in the span as the head.
In training, we only assign the argument role to
the syntactic head word, and all other words in the
span get a label of NIL.

HeadAuto In this strategy, all words in an argu-
ment span can be considered as the potential head
word. We adopt the bag loss from Lin et al. (2019)
to train the model to automatically identify head
words. Specifically, for a word wi inside an ar-
gument span a which has the role r, the loss is
computed as:

Loss(wi) = δi · [− log p(r|hi)]
+ (1− δi) · [− log p(NIL|hi)]

δi =
p(r|hi)

maxstart(a)≤j≤end(a) p(r|hj)

Here, words that are more indicative for the ar-
gument will be assigned higher probabilities to
the argument role. This will give them larger loss
weights (δ) and thus further encourage them to be
the heads. In this way, the head words are decided
automatically by the model.

In the second step, we determine span bound-
aries for these head words. Here we adopt the span
selection method from extractive question answer-
ing (Wang and Jiang, 2016; Devlin et al., 2019)
using two classifiers to decide the start and end
words ([s, e]) of a span:

p(s, e) = pstart(s) · pend(e)

pstart(s) =
exp scorestart(h′s)∑
i exp scorestart(h′i)

pend(e) =
exp scoreend(h′e)∑
i exp scoreend(h′i)

Here, we first add indicator embeddings to the head
word’s encoder representations to mark its posi-
tions, and then stack one self-attention layer to
obtain head-word-aware representations for the in-

put sequence: {h′1, · · · , h′n}. We further introduce
two linear scorers to assign the start and end scores
for each word, which are further normalized across
the input sequence. For training, the objective is
minimizing the sum of negative log-likelihoods of
picking the correct start and end positions. When
decoding, we select the maximum scoring span
whose boundaries s and e satisfy s ≤ e.

We observe that at inference time, sometimes
different head words may expand to overlapping
spans, which do not appear in the datasets we ex-
plore. To deal with this, we adopt a greedy post-
processing procedure to remove overlapping argu-
ment spans: iterating through all argument spans
ranked by model score and only keeping the ones
that do not overlap with previous surviving ones.

3 Experiments

3.1 Settings

Data The models are evaluated on standard Prop-
Bank datasets from the CoNLL-2005 shared task
(Carreras and Màrquez, 2005) and the CoNLL-
2012 subset of OntoNotes 5.0 (Pradhan et al.,
2013). Table 1 lists the relevant statistics. For
CoNLL-2005, we follow the splits from the
CoNLL-2005 shared task.3 For the English part of
CoNLL-2012, we adopt the data from Pradhan et al.
(2013)4 but follow the splits of the CoNLL-2012
shared task.5 For the Chinese part of CoNLL-2012,
we directly utilize those provided by the CoNLL-
2012 shared task. For evaluation, we adopt the
standard evaluation script of srl-eval.pl.6 For
the “HeadSyntax” method that requires dependency
trees, we convert the original constituencies to Uni-
versal Dependencies (Nivre et al., 2020) using Stan-
ford CoreNLP (Manning et al., 2014) version 4.1.0.
Notice that we only need syntactic information to
be provided during training, since the model pre-
dicts head words itself at test time.

Input Features and Encoder For fair com-
parison, we adopt the same input features, deep
Transformer-based encoders and training schemes
across all experiments. We consider two types
of word features: static word embeddings and

3https://www.cs.upc.edu/˜srlconll/
4https://cemantix.org/data/ontonotes.

html
5https://conll.cemantix.org/2012/
6https://www.cs.upc.edu/˜srlconll/soft.

html

https://www.cs.upc.edu/~srlconll/
https://cemantix.org/data/ontonotes.html
https://cemantix.org/data/ontonotes.html
https://conll.cemantix.org/2012/
https://www.cs.upc.edu/~srlconll/soft.html
https://www.cs.upc.edu/~srlconll/soft.html
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CoNLL 2005 CoNLL 2012 (English) CoNLL 2012 (Chinese)

Train Dev Test Brown Train Dev Test Train Dev Test

Sent. 39.8k 1.3k 2.4k 0.4k 75.2k 9.6k 9.5k 36.5k 6.1k 4.5k
Pred. 90.8k 3.2k 5.3k 0.8k 188.9k 23.9k 24.5k 117.1k 16.6k 15.0k
Arg. 333.7k 11.7k 19.6k 3.0k 622.5k 78.1k 80.2k 365.3k 51.0k 46.7k

Table 1: Statistics of the datasets: Number of sentences (Sent.), predicates (Pred.) and arguments (Arg.).

pre-trained contextualized embeddings7 from
BERTbase. In the English experiments, we adopt
fastText8 embeddings (Mikolov et al., 2018)
and frozen features from bert-base-cased.
In the cross-lingual experiments, we only
utilize multi-lingual BERT features from
bert-base-multilingual-cased. Be-
fore feeding the word-level features to the encoder,
we concatenate them and apply a linear layer
to project them to the encoding dimension. We
further add indicator embeddings to let the model
be aware of the positions of the predicates. For
both cases of static embedding and BERT features,
we adopt a 10-layer Transformer module as the
encoder. The head number, model dimension
and feed-forward dimension are set to 8, 512
and 1024, respectively. In addition, we adopt
relative positional encodings for the Transformer
(Shaw et al., 2018) since we found slightly better
performance in preliminary experiments.

Training We use the Adam optimizer (Kingma
and Ba, 2014) for training. The learning rate is
linearly increased towards 2e-4 within the first 8k
steps as warm up. After this, we decay the learning
rate by 0.75 each time the performance on the de-
velopment set does not increase for 10 checkpoints.
We train the model for a maximum of 150k steps
and do validation every 1k steps to select the best
model. One model contains around 40M parame-
ters (excluding BERT). For each update, the batch
size is around 4096 tokens. We apply dropout rates
of 0.2 to the hidden layers. For models using static
embeddings, we further replace input words by a
special UNK token with a probability of 0.5 if it
appears less than 3 times in the training set. At
test time, a word is represented by UNK if it is
not found in the collection of static word embed-
dings. All the experiments are run with our own

7We concatenate layer 7, 8 and 9 of BERT hidden repre-
sentations. For words that are split into sub-tokens, we utilize
the representations of the first sub-token.

8https://fasttext.cc/docs/en/
english-vectors.html

Model WSJ Brown OntoNotes

He et al. (2018a) 87.4 80.4 85.5
Ouchi et al. (2018) 87.6 78.7 86.2
Shi and Lin (2019) 88.8 82.0 86.5
Ours (BIO w/ CRF) 87.9 82.1 86.6

Table 2: Comparisons of F1 scores with previous work
in the fully-supervised settings (with single model).

implementation9. All the models are trained and
evaluated on one TITAN-RTX GPU, and training
one model takes around 1 day in our environment.

3.2 Fully-supervised Experiments

We first experiment in the fully-supervised settings
on English data. Table 2 lists the comparisons of
our test results (BIO w/ CRF using BERT features)
to previous work. Generally our model can obtain
comparable results, which verifies the quality of
our implementation.

Tables 3 and 4 list our main comparisons on
the development and test sets. The overall trends
are very similar. For BIO-tagging, incorporat-
ing a structured CRF layer is generally helpful,
which can improve the F1 scores by around 0.5
points. When not using BERT features, more struc-
tured decoders generally perform better than BIO-
tagging. With the head word oracles from the syn-
tax trees, “HeadSyntax” performs the best over-
all. This agrees with Strubell et al. (2018) and
Swayamdipta et al. (2018), showing the helpful-
ness of syntactic information for SRL. However,
when utilizing BERT features, the benefits of more
structured decoders are diminished and the simple
BIO-tagger robustly performs well. It seems that
with a powerful encoder, the choice of the decoder
plays a smaller role for final performance.

To further investigate this phenomenon, we per-
form error analysis on the development outputs of
“BIO (w/ CRF)” and “HeadSyntax,” which are the
two that perform the best overall. We group the
errors into four categories: “Boundary” denotes
that the predicted head words and role labels match

9https://github.com/zzsfornlp/zmsp/

https://fasttext.cc/docs/en/english-vectors.html
https://fasttext.cc/docs/en/english-vectors.html
https://github.com/zzsfornlp/zmsp/
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CoNLL2005 In-domain (WSJ) CoNLL 2012 (OntoNotes)

P R F1 P R F1

Without BERT

BIO (w/o CRF) 83.11 83.89 83.49±0.20 81.43 82.75 82.09±0.22
BIO (w/ CRF) 83.66 84.27 83.96±0.26 82.41 83.77 83.09±0.11
Span 84.60 83.57 84.08±0.23 82.89 83.04 82.96±0.12
HeadSyntax 84.81 84.48 84.65±0.18 83.12 83.42 83.27±0.18
HeadAuto 84.52 84.38 84.45±0.22 82.50 83.16 82.83±0.15

With BERT

BIO (w/o CRF) 86.47 87.50 86.98±0.12 85.22 86.94 86.08±0.15
BIO (w/ CRF) 86.78 87.84 87.31±0.13 85.66 87.19 86.42±0.12
Span 86.94 86.76 86.85±0.16 85.83 86.37 86.10±0.11
HeadSyntax 87.35 87.48 87.41±0.14 86.04 86.79 86.41±0.12
HeadAuto 87.10 87.67 87.38±0.22 85.80 86.75 86.27±0.15

Table 3: Development results for the fully-supervised experiments. All the numbers are averaged over 5 runs with
different random seeds, standard deviations of F1 scores are also reported.

CoNLL 2005 In-domain (WSJ) Out-of-domain (Brown) CoNLL 2012 (OntoNotes)

P R F1 P R F1 P R F1

Without BERT

BIO (w/o CRF) 84.42 84.94 84.68±0.25 73.56 73.03 73.29±0.43 81.74 82.98 82.35±0.24
BIO (w/ CRF) 85.04 85.35 85.20±0.12 74.25 73.92 74.08±0.31 82.79 84.11 83.44±0.21
Span 85.68 84.62 85.14±0.32 75.88 74.23 75.05±0.42 83.42 83.49 83.46±0.15
HeadSyntax 85.84 85.38 85.61±0.11 75.92 74.74 75.33±0.58 83.55 83.82 83.68±0.11
HeadAuto 85.30 85.17 85.23±0.14 74.98 73.85 74.41±0.50 83.09 83.71 83.40±0.09

With BERT

BIO (w/o CRF) 87.21 87.95 87.58±0.28 81.26 81.79 81.52±0.23 85.33 86.97 86.14±0.10
BIO (w/ CRF) 87.54 88.32 87.93±0.16 81.91 82.37 82.14±0.20 85.93 87.32 86.62±0.14
Span 87.75 87.33 87.54±0.14 81.87 81.60 81.73±0.77 85.97 86.26 86.12±0.09
HeadSyntax 87.76 87.96 87.86±0.08 82.10 81.60 81.85±0.90 86.17 86.77 86.47±0.10
HeadAuto 87.70 88.15 87.93±0.12 81.52 81.36 81.44±0.37 86.00 86.84 86.42±0.09

Table 4: Test results of the fully-supervised experiments. All the results are averaged over five runs with different
random seeds, standard deviations of the F1 scores are also reported.
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Figure 2: Error breakdown for “BIO” and “HeadSyn-
tax” on the CoNLL-2005 development set.

the gold ones but the span boundaries are incor-
rect; “Label” denotes that the predicted spans are
correct but the role labels are wrong; “Attachment”
denotes the errors caused by incorrect phrase attach-
ments, while “Others” denotes the remaining errors,
which are other missing and over-predicted argu-

ments. The results are shown in Figure 2. When
not using BERT features, the main advantages of
“HeadSyntax” over “BIO” are on the “Boundary”
and “Attachment” errors, where the former makes
11% fewer “Boundary” and 17% fewer “Attach-
ment” errors. Notice that these two types of errors
are closely related to syntax, and they are mainly
caused by incorrect phrase boundary predictions.
In this way, it seems natural that incorporating syn-
tactic information with head words can be help-
ful in this scenario. Nevertheless, when utilizing
BERT features, these advantages are reduced to a
negligible level. This indicates that BERT may pro-
vide sufficient information overlapping with syntax
to help on boundary decisions.

3.3 Cross-genre Experiments

We further explore English cross-genre settings.
We utilize English CoNLL-2012 subsets of
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nw∗ bc bn mz pt tc wb Avg.

Without BERT

BIO (w/o CRF) 77.51±0.17 59.91±0.31 73.28±0.62 71.15±0.37 81.03±0.31 67.90±0.37 72.36±0.07 71.88
BIO (w/ CRF) 78.42±0.39 60.15±0.40 73.97±0.15 71.37±0.13 81.51±0.36 68.72±0.34 72.54±0.41 72.38
Span 79.08±0.16 62.74±0.49 74.80±0.30 72.77±0.36 82.42±0.41 68.93±0.12 74.17±0.15 73.56
HeadSyntax 79.54±0.37 62.81±0.58 75.06±0.25 73.17±0.32 82.10±0.30 68.74±0.54 74.82±0.19 73.75
HeadAuto 79.04±0.22 61.97±0.30 74.09±0.25 72.56±0.40 81.80±0.40 69.25±0.39 73.96±0.19 73.24

With BERT

BIO (w/o CRF) 83.55±0.24 73.37±0.51 80.02±0.19 78.45±0.34 87.63±0.19 74.89±0.41 79.49±0.29 79.63
BIO (w/ CRF) 83.73±0.28 75.24±0.89 80.64±0.15 78.75±0.56 87.94±0.42 75.38±0.42 79.66±0.39 80.19
Span 83.41±0.18 74.22±0.89 80.85±0.29 78.69±0.39 87.44±0.16 75.05±0.36 79.44±0.33 79.87
HeadSyntax 83.96±0.34 75.98±0.94 80.88±0.17 79.36±0.37 87.40±0.25 75.12±0.41 80.05±0.20 80.39
HeadAuto 83.76±0.28 74.98±0.77 80.69±0.21 79.01±0.27 87.33±0.36 75.66±0.54 79.98±0.10 80.20

Table 5: F1 scores of the (English) cross-genre experiments (averaged over 5 runs with different random seeds).
“*” denotes that models are trained on the “nw∗” portion. “Avg.” denotes macro average over all genres.

bc bn mz

BIO (w/o CRF) 71.19±0.61 77.56±0.68 76.63±0.51
BIO (w/ CRF) 72.11±0.98 76.28±0.61 75.87±0.69
Span 73.30±1.07 79.90±0.58 77.90±0.59
HeadSyntax 75.23±1.00 79.95±0.49 78.69±0.41
HeadAuto 73.60±0.49 78.97±0.53 77.60±0.41

Table 6: F1 scores of the (English) cross-genre exper-
iments (averaged over 5 runs with different random
seeds) on specific genres without excluding auxiliary
predicates (with BERT).

OntoNotes and split the corpus according to the
genres. There are seven genres, including broadcast
conversation (bc), broadcast news (bn), newswire
(nw), magazine (mz), pivot (Bible) (pt), telephone
conversation (tc) and web (wb) text. The mod-
els are trained on the newswire (nw) portion and
directly evaluated on portions of all the genres. Ta-
ble 5 shows the test results. The overall trends
are similar to those in the fully-supervised setting.
Without BERT, more span-aware structured de-
coders perform better by more than for 1 point
compared to BIO-tagging. After including BERT
features, the gaps decrease. Nevertheless, more
structured decoders can still perform competitively.

Note that in this setting, we perform evaluations
with a correction to an annotation inconsistency
that originally favored more structured (direct) de-
coders. We find that there are inconsistent anno-
tations for the predicates of auxiliary verbs across
some genres, we thus exclude them10 for evalua-
tion. In the genres of “bc”, “bn” and “mz”, there
are many more auxiliary verbs annotated than those
in “nw”. Interestingly, if not excluding these exam-

10We exclude [“be.03”, “become.03”, “do.01”, “have.01”].
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Figure 3: F1 results versus genre similarities according
to BERT representations.

ples, the more structured decoders perform better
than BIO-tagging even with BERT, as shown in
Table 6. A possible explanation is that the more
structured decoders usually see more negative ex-
amples during training and might be more conserva-
tive when predicting arguments for these auxiliary
verbs, which do not have any arguments. On the
contrary, the BIO-tagger tends to over-predict ar-
guments in these cases, leading to worse results.
Nevertheless, this phenomenon is only the result of
an annotation inconsistency in the dataset and we
thus exclude these auxiliary verbs from evaluation
in this setting.

We further compare cross-genre results with
genre (domain) similarities. Following Aharoni
and Goldberg (2020), we obtain similarity scores
from target genres to the source genre (nw) by cal-
culating cosine similarity of the centroids of BERT
representations. Specifically, we first compute
sentence-level representations by average pooling
the final hidden vectors with a vanilla BERT, then
the genre-level representations are obtained by fur-
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Dev Test

BIO (w/o CRF) 56.73±0.63 56.18±0.61
BIO (w/ CRF) 56.86±1.05 56.47±0.95
Span 56.61±0.51 55.97±0.39
HeadSyntax 57.05±0.36 56.48±0.34
HeadAuto 57.05±0.59 56.51±0.66

Table 7: Unlabeled F1 scores of English→Chinese
zero-shot cross-lingual experiments (averaged over five
runs with different random seeds).

Gold [你] [在纽约时报上]写了 [一篇文章]
Literally [you] [at New York Times] wrote [an article]

Predicted [你] [在纽约时报上]写 [了一篇文章]

Table 8: A typical error of cross-lingual systems. Here,
the predicate is the underlined “写”(wrote) and the gold
and predicted arguments are presented in [the brack-
ets]. The cross-lingual models wrongly include the ex-
tra auxiliary word “了” in the last argument.

ther averaging all sentence-level ones in the cor-
pus. We show the results of “BIO (w/ CRF)” and
“HeadSyntax” in Figure 3. Generally, F1 scores on
target genres have a weak correlation with genre
similarities to the source (Pearson’s correlation is
0.45). The outlier “pt” is a special case (biblical
text) which mainly contains simple instances.

3.4 Cross-lingual Experiments

We further explore a simple zero-shot cross-lingual
setting. We still take the CoNLL-2012 subset of
the Ontonotes corpus. The models are trained on
the English sets, and then directly applied to the
Chinese sets. This time we exclude word embed-
dings and only use representations from multilin-
gual BERT as the input features, which has shown
to be effective for cross-lingual transfer (Wu and
Dredze, 2019). Since the Chinese and English
PropBanks use different frames, the labeled results
might not be directly comparable. We thus perform
unlabeled training and evaluate unlabeled argument
F1 scores, which reveal how well the models ex-
tract argument spans. We simply collapse all the
role labels into one special “IsArg” label.

The results are listed in Table 7. The trends
are still similar to the previous monolingual ex-
periments with BERT, different decoders obtain
similar results, especially considering the devia-
tions of multiple runs. In this setting, the CRF does
not help as much as in the case of monolingual
experiments. The main reason might be that we
are training unlabeled systems, and the main transi-

Decoding Without BERT With BERT

BIO (w/o CRF) 709.8±10.6 412.3±4.6
BIO (w/ CRF) 497.0±4.5 335.1±4.3
Span 355.8±5.4 261.3±3.7
HeadSyntax 561.6±5.1 372.8±4.5
HeadAuto 454.9±7.9 311.0±5.8

Table 9: Speed comparisons of decoding methods (eval-
uated by number of sequences per second, averaged
over 5 runs, on one TITAN-RTX GPU).

300 400 500 600 700
Speed (sequences/second)

84

85

86

87

F1 w/o BERT 

 w/ BERT

BIO (w/o CRF)
BIO (w/ CRF)
Span
HeadSyntax
HeadAuto

Figure 4: Comparing speed vs. F1 with different de-
coding methods (on CoNLL05 development set).

tion that CRF is capturing is ”I” after ”B”, which
does not provide too much enhancement. Inter-
estingly, in our preliminary experiments, we also
tried labeled training, and found that the CRF is
actually harmful, since the distributions of the tag
transitions might be different across languages.

We further investigate the systems’ outputs and
find similar error patterns. Table 8 lists a typical
example, where in Chinese the auxiliary word “了”
(which denotes perfective aspect11) is incorrectly
included in the argument. This error is not sur-
prising if considering that in the English training
corpus, the predicate verbs usually have directly-
following arguments. All extraction methods ex-
plored in this work are unlikely to fix such errors
without language-specific knowledge.

3.5 Speed Comparisons

Finally we compare the decoding speed of dif-
ferent extraction methods. Results are shown in
Table 9 and we further compare them against F1
scores in Figure 4. Greedy BIO-tagging (w/o CRF)
obtains the highest speed. However, this comes
with a drop of around 0.5 F1 points without BERT
and 0.3 F1 points with BERT. Although the two-
step approaches require two decoding steps, they

11https://universaldependencies.org/zh/
dep/aux_.html

https://universaldependencies.org/zh/dep/aux_.html
https://universaldependencies.org/zh/dep/aux_.html
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are still efficient thanks to the simplicity of both
steps. When trained with syntactic information,
this model is the second best in terms of decoding
speed. On the other hand, even with beam prun-
ing, the span-based decoder still needs to score a
number of span candidates quadratic in the input
sequence length, making it less efficient compared
to other decoders.

4 Related Work

Argument Extraction Before the incorporation
of end-to-end neural models, traditional SRL sys-
tems usually depend on input constituency trees
to obtain argument candidates (Xue and Palmer,
2004; Màrquez et al., 2008). Although straightfor-
ward, this may suffer from error propagation from
syntax parsers. Recent neural systems utilize end-
to-end models to solve the task. Casting SRL as
BIO-based sequence labeling problem is the most
common decoding scheme and can obtain impres-
sive results (Zhou and Xu, 2015; He et al., 2017;
Tan et al., 2018; Strubell et al., 2018; Shi and Lin,
2019). On the other hand, span-based methods (He
et al., 2018a; Ouchi et al., 2018) directly select and
label among argument span candidates. This is ac-
tually similar to the traditional approaches, though
the argument candidates are obtained by the model
rather than from input syntax trees. In addition to
span-based SRL, the focus of this work, there is
another category of dependency-style SRL, which
only requires the extraction of head words of ar-
gument spans (Surdeanu et al., 2008; Hajič et al.,
2009). Inspired by this, for span-based SRL, we
can extract argument head words as the first step
and then expand to the full spans in a second step.
This idea has also been applied in information ex-
traction, such as coreference resolution (Peng et al.,
2015), entity detection (Lin et al., 2019) and event
argument extraction (Zhang et al., 2020). Another
interesting direction is considering the structured
constraints of the arguments, including works on in-
teger linear programming (Punyakanok et al., 2004,
2008), dynamic programming (Täckström et al.,
2015) and structure-aware tuning (Li et al., 2020).

Syntax and SRL There has been discussion of
the relation between syntax and SRL (Gildea and
Palmer, 2002; Punyakanok et al., 2008), consid-
ering the close connections between these two
tasks. Though syntax trees are usually the inputs
to traditional SRL systems, some recent works find
that syntax-agnostic neural models also work well

(Marcheggiani et al., 2017; Cai et al., 2018). Never-
theless, with recent neural models, syntax informa-
tion has still been found helpful for SRL in various
ways, including multi-task learning (Swayamdipta
et al., 2018; Strubell et al., 2018), argument prun-
ing (He et al., 2018b), and tree-based modeling
(Marcheggiani and Titov, 2017; Li et al., 2018;
Marcheggiani and Titov, 2020). In this work, our
“HeadSyntax” decoder incorporates syntax in a par-
tial way, utilizing dependency trees to decide the
head words in training. This method indeed per-
forms the best overall if only adopting static word
embeddings. However, the incorporation of BERT
features diminishes the advantages. This indicates
that BERT may already cover much of the syn-
tactic (surface) features of the input sentences, as
suggested by recent works on BERT interpretation
(Goldberg, 2019; Hewitt and Manning, 2019; Ten-
ney et al., 2019; Clark et al., 2019).

Cross-lingual SRL There has also been increas-
ing interest in cross-lingual transfer for SRL, where
data transfer and model transfer are the main ap-
proaches. Data transfer usually depends on trans-
lation and annotation projection to obtain training
resources for target languages (Padó and Lapata,
2009; Akbik et al., 2015; Aminian et al., 2019; Fei
et al., 2020a; Daza and Frank, 2020). On the other
hand, model transfer techniques directly reuse an
SRL model trained on source languages to trans-
fer to target languages (Kozhevnikov and Titov,
2013; Fei et al., 2020b), based on common repre-
sentations. In particular, the recent development of
multilingual neural representations, such as multi-
lingual BERT, has been shown to be effective for
cross-lingual transfer (Wu and Dredze, 2019; Pires
et al., 2019). In this work, we explore a simple
zero-shot unlabeled setting for cross-lingual SRL.
We leave more explorations on this to future work.

5 Conclusion

In this work, we empirically compare several span
extraction methods for SRL. Extensive results
show that in fully supervised settings, simple BIO-
tagging is a robustly good option when utilizing
BERT features. Similar trends are also found in
cross-genre and cross-lingual settings. We also
analyze the accuracy-efficiency trade-offs for dif-
ferent decoders; although methodologically more
complex, two-step approaches are still efficient in
decoding. Future work could explore other NLP
tasks that require extracting textual spans.
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tion to the CoNLL-2005 shared task: Semantic
role labeling. In Proceedings of the Ninth Confer-
ence on Computational Natural Language Learning
(CoNLL-2005), pages 152–164, Ann Arbor, Michi-
gan. Association for Computational Linguistics.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for
NLP, pages 276–286, Florence, Italy. Association
for Computational Linguistics.

Angel Daza and Anette Frank. 2020. X-SRL: A par-
allel cross-lingual semantic role labeling dataset. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3904–3914, Online. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Hao Fei, Meishan Zhang, and Donghong Ji. 2020a.
Cross-lingual semantic role labeling with high-
quality translated training corpus. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7014–7026, On-
line. Association for Computational Linguistics.

Hao Fei, Meishan Zhang, Fei Li, and Donghong Ji.
2020b. Cross-lingual semantic role labeling with
model transfer. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 28:2427–2437.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic
labeling of semantic roles. Computational Linguis-
tics, 28(3):245–288.

Daniel Gildea and Martha Palmer. 2002. The necessity
of parsing for predicate argument recognition. In
Proceedings of the 40th Annual Meeting of the As-
sociation for Computational Linguistics, pages 239–
246, Philadelphia, Pennsylvania, USA. Association
for Computational Linguistics.

Yoav Goldberg. 2019. Assessing bert’s syntactic abili-
ties. arXiv preprint arXiv:1901.05287.
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