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Abstract

Despite its wide use, recent studies have
revealed unexpected and undesirable proper-
ties of neural autoregressive sequence models
trained with maximum likelihood, such as an
unreasonably high affinity to short sequences
after training and to infinitely long sequences
at decoding time. We propose to study these
phenomena by investigating how the modes,
or local maxima, of a distribution are main-
tained throughout the full learning chain of the
ground-truth, empirical, learned and decoding-
induced distributions, via the newly proposed
mode recovery cost. We design a tractable
testbed where we build three types of ground-
truth distributions: (1) an LSTM based struc-
tured distribution, (2) an unstructured distri-
bution where probability of a sequence does
not depend on its content, and (3) a product
of these two which we call a semi-structured
distribution. Our study reveals both expected
and unexpected findings. First, starting with
data collection, mode recovery cost strongly
relies on the ground-truth distribution and is
most costly with the semi-structured distribu-
tion. Second, after learning, mode recovery
cost from the ground-truth distribution may in-
crease or decrease compared to data collec-
tion, with the largest cost degradation occur-
ring with the semi-structured ground-truth dis-
tribution. Finally, the ability of the decoding-
induced distribution to recover modes from the
learned distribution is highly impacted by the
choices made earlier in the learning chain. We
conclude that future research must consider
the entire learning chain in order to fully un-
derstand the potentials and perils and to further
improve neural autoregressive sequence mod-
els.

1 Introduction

Neural autoregressive sequence modeling has be-
come the standard approach to modeling sequences

in a variety of natural language processing appli-
cations (Aharoni et al., 2019; Brown et al., 2020;
Roller et al., 2020). In this modeling paradigm,
the probability of a sequence is decomposed into
the product of the conditional probability of each
token given the previous tokens. Each conditional
probability is modeled by a shared neural network,
typically implemented as a recurrent neural net-
work (Hochreiter and Schmidhuber, 1997) or a
transformer (Vaswani et al., 2017).

Despite its success, recent studies have identi-
fied peculiarities in neural autoregressive sequence
models. Lee et al. (2018) identify hallucinations in
neural machine translation, in which a well-trained
model suddenly generates a nonsense translation
when a rare token is artificially introduced to a
source sentence. Stahlberg and Byrne (2019) ob-
serve that a vast portion of probability mass is con-
centrated on the empty sequence in neural machine
translation, although the models they studied were
never presented with empty sequences during train-
ing. Holtzman et al. (2019) report that large-scale
language models often produce pathological se-
quences with many n-gram repetitions, at a rate
which far exceeds that of the training data. Welleck
et al. (2020a) show that neural language models
can generate infinite-length sequences despite be-
ing trained on only finite sequences.

A common theme underlying these findings is
that well-trained models can assign unreasonably
high probabilities to sequences that are dissimilar
to any sequence from the training set. In particular,
the modes of the model’s distribution appear to
be undesired, implying that the model failed to
recover the modes of the empirical distribution,
which we term mode recovery degradation. The
situation is further complicated by the fact that
we only approximate the model’s modes with a
decoding algorithm, so it is unclear whether the
decoding algorithm, the model, or even the data
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collection is at fault.
In this paper, we isolate and study mode recovery

degradation by characterizing each stage of neural
sequence modeling as inducing a new sequence dis-
tribution, then directly analyzing each distribution’s
modes. With this approach, we diagnose at what
stage, and to what extent, sequences receive unrea-
sonably high probabilities. To do so, we first define
a learning chain that consists of the ground-truth
distribution, the empirical distribution induced by
data collection, the learned distribution, and the
decoding-induced distribution. We then quantify
the extent to which the most probable sequences
under each distribution match the most probable
sequences under the ground-truth distribution by
defining a mode recovery cost, which measures how
expensive it is for a later distribution to recover the
most probable sequences of an earlier distribution
in the chain.

In summary, we find that mode recovery cost is
non-trivial at each part of the neural autoregressive
learning pipeline. The pattern of how mode recov-
ery changes heavily depends on the properties of
the ground-truth distribution. In particular, when
the ground-truth distribution is parameterized as a
product of highly structured distribution based on
LSTM neural network and unstructured distribu-
tion where the probability of every sequence is sam-
pled independently from all the others, its modes
are more costly to recover. Furthermore, the ability
of a decoding algorithm to recover modes is also de-
pendent upon all choices made earlier in the chain
including the underlying ground-truth distribution,
even in the case of modes of the learned distribu-
tion. These observations make a meaningful step
towards better understanding of mode degradation
in neural autoregressive sequence modeling.

2 Neural autoregressive sequence
modeling

We consider the problem of modeling a distribution
p∗(s) over variable-length, discrete sequences s.
Formally, s ∈ Σl, where l ∈ {1, 2, . . . , L}, Σ is a
finite set of tokens, and Ω ⊂

⋃L
l=1 Σl denotes the

space of all possible sequences. Every sequence
s ∈ Ω ends with a special token 〈eos〉 ∈ Σ which
only appears at the end of each sequence.

In neural autoregressive sequence modeling,
we model the distribution p∗(s) as pθ(s) =∏|s|
t=1 pθ(st|s<t), with each conditional distribu-

tion parameterized by a shared neural network.

Maximum likelihood. To learn the model, we
use maximum likelihood estimation (MLE), which
trains the model pθ to maximize the log-likelihood
of a set of training sequences D =

{
s1, . . . , sN

}
:

arg max
θ

1

N

N∑
n=1

Ln∑
t=1

log pθ(s
n
t |sn<t). (1)

Approximate decoding. Given a trained model,
we obtain a set of highly probable sequences. In
practice, this problem is often intractable due to the
size of Ω, which grows exponentially in sequence
length. As a result, we resort to approximating the
optimization problem using a decoding algorithm
that returns a set of k sequences F(pθ; γ), where
F denotes the decoding algorithm, and γ denotes
its hyper-parameters. Concretely, we consider two
decoding approaches: a deterministic decoding al-
gorithm that produces a set of sequences using
beam search with beam-width k, and a stochastic
decoding algorithm that forms a set of sequences
using ancestral sampling until k unique sequences
are obtained.1 We refer readers to Welleck et al.
(2020a) for detailed descriptions of those decoding
algorithms.

Learning chain. The neural autoregressive se-
quence modeling approach consists of four proba-
bility distributions, which together form a learning
chain. The first distribution is the ground-truth dis-
tribution p∗(s). This distribution is almost always
unknown and is assumed to be highly complicated.
Second, the dataset used in maximum likelihood
(Eq. 1) determines an empirical distribution,

pemp(s) =
1

|D|
∑
s′∈D

I(s = s′), (2)

where D is a set of sequences drawn from the
ground-truth distribution p∗ and I is the indicator
function. The third distribution is the learned distri-
bution pmodel captured by a neural autoregressive
model trained on D.

Finally, we introduce the decoding-induced dis-
tribution pF , which allows us to compare the set of
probable sequences obtained with a decoding algo-
rithm F against highly probable sequences in the
ground-truth, empirical, and learned distributions.
Specifically, we turn this set into the distribution

pF (s) =

{
1
Z pθ(s) s ∈ F(pθ; γ),

0 s 6∈ F(pθ; γ),
(3)

1Ancestral sampling recursively samples st ∼ pθ(st|s<t).
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where Z =
∑

s′∈F(pθ;γ) pθ(s
′). Each sequence

is weighted according to the model’s probability,
which reflects the practice of ordering and sampling
beam search candidates by their probabilities.

There is a natural order of dependencies among
these four distributions in the learning chain,
p∗�data collection pemp�learning pmodel�decoding pF .
We are interested in how a distribution in the later
part of the chain recovers the highly probable
sequences of an earlier distribution. To study this,
we next introduce the notion of mode recovery.

3 Mode recovery

Mode sets We define a k-mode set as a set of
top-k sequences under a given distribution:

Sk(p) = argtop-ks∈Ω p(s).

argtop-k selects all the elements within Ω whose
probabilities p(s) are greater than the probability
assigned to the (k + 1)-st most likely sequence,
which could result in fewer than k sequences. This
is due to potentially having multiple sequences of
the same probability.

Mode recovery cost. We characterize the recov-
ery of the modes of the distribution p by the distri-
bution q as the cost required to recover the k-mode
set Sk(p) using the distribution q. That is, how
many likely sequences under q must be considered
to recover all the sequences in the k-mode set of p.

Formally, given a pair of distributions p and q,
we define the k-mode recovery cost from p to q as

Ok(p‖q) = min
{
k′
∣∣∣Sk(p) ⊆ Sk′(q)} . (4)

The cost is minimized (= |Sk(p)|) when the k-
mode set of q perfectly overlaps with that of p. The
cost increases toward |Ω| as the number of modes
from q that must be considered to include the k-
mode set from p increases. The cost is maximized
(=|Ω|) when the top-k set Sk(p) of p is not a subset
of the support of the distribution q.

The limited support of q. As mentioned ear-
lier, the mode recovery cost Ok(p‖q) is ill-defined
when the support of the distribution q, supp(q),
is not a super-set of the k-mode set of the distri-
bution p . In this situation, we say that the distri-
bution q fails to recover modes from the k-mode
set of the distribution p. In particular, this hap-
pens with decoding-induced distributions because

of their limited support, which is equal to the size
of the candidate set of sequences F(pθ, γ).

We introduce the k-mode set overlap
Ik(p‖q) = |Sk(p) ∩ supp(q)|, which equals
the size of the intersection between the k-mode
set of the distribution p and the support of
the distribution q. The k-mode set overlap is
maximized and equals |Sk(p)| when the mode
recovery is successful. We call it a recovery failure
whenever the overlap is smaller than |Sk(p)|. We
use k-mode set overlap only when mode recovery
fails, because it is not able to detect if the modes
from the corresponding k-mode set have high
probability under the induced distribution.

4 Why do we study mode recovery?

The recent success of neural sequence modeling
has operated on the assumption that we can find
sequences that are reasonably similar to training
sequences by fitting a neural autoregressive model
to maximize the log-probabilities of the train-
ing sequences (maximum-likelihood learning) and
searching for the most likely sequences under the
trained model (maximum a posteriori inference).
However, recent studies suggest that the most likely
sequences may not resemble training sequences at
all. For instance, the learning stage can yield a
distribution pmodel which places high probability
on empty (Stahlberg and Byrne, 2019) or repeti-
tive (Holtzman et al., 2019) sequences, while the
decoding stage can yield a distribution pF which
places non-zero mass on infinite-length sequences
(Welleck et al., 2020a).

As a result, various workarounds have been pro-
posed in the form of alternative learning or de-
coding algorithms (Andor et al., 2016; Sountsov
and Sarawagi, 2016; Murray and Chiang, 2018;
Welleck et al., 2020b; Welleck and Cho, 2020; Mar-
tins et al., 2020; Deng et al., 2020; Basu et al., 2021;
Shi et al., 2020). A particularly relevant work by
Eikema and Aziz (2020) argues that the modes of
neural sequence models are inadequate and thus
we must discard maximum-a-posteriori inference
altogether. Rather than advocating for a partic-
ular solution, we instead seek an understanding
of why the conventional approach displays these
peculiar behaviors. While we do not claim to pro-
vide a full explanation, the first step is developing
a way of quantifying the problem, then localiz-
ing it. To this end, we develop the mode recov-
ery cost and measure it along the learning chain
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p∗�pemp�pmodel�pF . This focus on modes de-
parts from the conventional focus on evaluating the
full distribution with a probabilistic divergence.

Mode recovery vs. probabilistic divergence.
Mode recovery is related to but distinct from a
probabilistic divergence. Often a probabilistic di-
vergence is designed to consider the full support
of one of two distributions between which the di-
vergence is computed. For each point within this
support, a probabilistic divergence considers the
ratio, or difference, between the actual probabili-
ties/densities assigned by the two distributions. For
instance, the KL divergence KL(p‖q) computes∑

x∼p p(x) log p(x)
/
q(x). Another example is the

total variation (TV) distance, which is equivalent to∑
ω∈Ω |p(ω) − q(ω)|/2 when the sample set Ω is

finite. The TV distance considers the entire sample
set and computes the cumulative absolute differ-
ence between the probabilities assigned to each
event by two distributions.

We find mode recovery more interesting than
probabilistic divergence in this paper, because our
goal is to check whether a decision rule, that is to
(approximately) choose the most likely sequence
based on an available distribution, changes as we
follow the chain of induced distributions. Further-
more, we are not interested in how precisely un-
likely sequences are modeled and what probabili-
ties they are being assigned. We thus fully focus
on mode recovery in this paper.

5 A testbed for evaluating mode recovery

It is intractable to measure mode recovery cost
(Eq. 4) on real-world datasets that are popular in
neural sequence modeling, e.g. wikitext-103 (Mer-
ity et al., 2016) given the exponential growth of the
sequence space with sequence length. For exam-
ple, the training part of Wikitext-103 consists of
28k sequences with 3.5k tokens, each drawn from
a vocabulary of 267k tokens. Furthermore, these
datasets do not provide access to the ground-truth
distribution, which prevents us from computing any
recovery cost involving p∗.

In order to allow exact computations of mode re-
covery cost, we design a controllable testbed. This
testbed consists of (1) the ground-truth distribution,
which permits explicit control over the structured-
ness, (2) the data collection step, which controls
the complexity of the empirical distribution, (3) the
learning step, which allows us to induce the learned
distribution with neural autoregressive models, and

(4) the decoding step, where the decoding algo-
rithm induces the approximation of the learned
distribution. In the rest of this section we describe
each distribution in detail.

We set the size of the sequence space of the
testbed so that all computations are feasible. We
limit the vocabulary size |Σ| to 7 tokens and use
a maximum sequence length L of 10 tokens. This
results in a sequence space size |Ω| of around 12
million sequences.

Ground-truth distribution. We define each
ground-truth distribution as a product of two com-
ponents:

p∗α(s) ∝ pθ(s)αp(s;µ, σ)(1−α),

where pθ(s) is an autoregressive distribution with
parameters θ. The probability p(s;µ, σ) is con-
structed by p(s;µ, σ) ∝ exp(x(s)), where x(s) ∼
Laplace(µ, σ) is a fixed random sample for each s,
and α ∈ [0, 1].

We implement pθ using a randomly initialized
LSTM neural network, with two layers and 512
LSTM units in every layer. We build p(s;µ, σ)
with µ = 0.0 and σ = 1.0.

We build the ground-truth distribution to reflect
some properties of real data. First, real data has
strong statistical dependencies among the tokens
within each sequence. We induce these dependen-
cies by assuming that each sequence is produced
from left to right by generating each token condi-
tioned on the previously generated sub-sequences
of tokens. We implement this procedure using the
LSTM neural network.

Second, there exist exceptional sequences in real
data which receive high probability even though
those sequences do not reflect statistical dependen-
cies mentioned above. We build another distribu-
tion component in order to introduce exceptions
in a way that there are no statistical dependencies
in the given sequence. We use independent sam-
ples from a Laplace distribution as unnormalized
probabilities of every sequence from the sequence
space Ω. We thus ensure that there are no statistical
dependencies among the tokens under this unstruc-
tured distribution.

We thus construct the product of two distribu-
tions described above so that it exhibits structured
and unstructured aspects of the generating process.
The mixing coefficient α allows us to interpolate
between the heavily structured to heavily unstruc-
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Figure 1: Mode recovery cost of the empirical distribu-
tion from the ground-truth distribution as a function of
k while Ntrain = 5× 105.

tured ground-truth distributions. We call it semi-
structured when 0 < α < 1.

Empirical distribution. We create each empiri-
cal distribution pemp (Eq. 2) by drawing samples
with replacement from the ground-truth distribu-
tion. We sample a training multi-set and a valida-
tion multi-set, then form the empirical distribution
with their union . We denote the size of the training
dataset as Ntrain, and set the size of the validation
set to .05×Ntrain.

Learned distribution. We obtain each learned
distribution pmodel by training an LSTM model on
the training dataset Dtrain using maximum likeli-
hood (Eq. 1). We vary the complexity of the learned
distribution using the number of LSTM units of ev-
ery layer of the LSTM neural network from the set
Nmodel hs ∈ {128, 512}. Variable-length sequences
are padded with a 〈pad〉 token in order to form
equal-length batches of 5120 sequences. We use
the Adam optimizer (Kingma and Ba, 2014) with a
learning rate of 10−4. We compute validation loss
every 5×102 steps, and apply early stopping with a
patience of 5 validation rounds based on increasing
validation loss. We train the model for up to 2×104

steps. After training, the checkpoint with the low-
est validation loss is selected to parameterize the
learned distribution pmodel.

Decoding-induced distribution. We form
decoding-induced distributions (Eq. 3) using beam
search and ancestral sampling. For beam search,
we set Nbeam = 500. For ancestral sampling, we
sample sequences and discard duplicates until a
given number of unique sequences, Nanc = 500,
are obtained.

Randomness. To account for randomness that
occurs when initializing the ground-truth distribu-
tion, sampling the empirical distribution, and using
ancestral sampling during decoding, we run each
configuration of the learning chain (i.e. ground-
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Figure 2: Mode recovery cost of the empirical distribu-
tion from the ground-truth distribution as a function of
Ntrain while k = 200.

truth, empirical, learned, and decoding-induced
distributions) with 10 different random seeds, and
report the median and 25-th and 75-th quantiles, if
available, of each evaluation metric.

6 Mode recovery in the learning chain

We use our testbed to empirically study mode re-
covery degradation by measuring mode recovery
cost in the data collection, learning, and decoding,
stages of the learning chain. We use k ≤ 500.

Data collection: recovering ground-truth
modes with the empirical distribution. We
start by asking: does mode degradation happen
during data collection? We fix Ntrain = 5 × 105

and compute mode recovery cost from the ground-
truth distribution with the empirical distribution
for the range of k ≤ 500 presented in Fig.1 us-
ing three configurations of ground-truth distribu-
tions. It shows that mode recovery cost grows as k
increases. Furthermore, we observe different pat-
terns of mode recovery cost given each choice of
the ground-truth distribution.

We observe distinct patterns of mode recovery
with either structured (α = 1.0) and unstructured
(α = 0.0) ground-truth distributions. We found
that the structured ground-truth distribution assigns
higher probabilities to shorter sequences because
of LSTM neural network and autoregressive fac-
torization. This implies that sequences which are
sorted w.r.t. their probabilities are also sorted w.r.t.
their lengths. Because of this property the empiri-
cal distribution can recover modes from the struc-
tured ground-truth distribution almost perfectly for
particular k. In the case of the unstructured ground-
truth distribution mode recovery cost is lower com-
pared to other cases. This ground-truth distribution
has no statistical dependencies within modes which
makes it less interesting to us due to the lack of
similarity with real data.

Finally, in the case of the semi-structured ground-
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Figure 3: Mode recovery cost reduction log-rate be-
tween empirical and learned distributions from the
ground-truth distribution as a function of k while
Ntrain = 5× 105.

truth distribution (α = 0.3) the cost of recover-
ing its modes grows increasingly as k increases.
In other words, empirical distributions recover
modes from ground-truth distributions less effec-
tively when latter exhibit statistical dependencies
as well as many exceptional sequence probabilities.

Now we focus on the influence of the train-
ing set size Ntrain on mode recovery during data
collection. We fix k = 200 and compute mode
recovery cost from the ground-truth distribution
using the empirical distribution when Ntrain ∈
{105, 5× 105, 106, 5× 106, 107}, shown in Fig.2.
Mode recovery cost naturally decreases as we in-
crease the number of training instances as seen on
the right-most side of Fig.2. The left-most side is
more interesting to us because it corresponds to val-
ues of Ntrain that reflect real world problems. For
instance, in the case of Ntrain = 105 it is signifi-
cantly more costly to recover modes from the semi-
structured ground-truth distribution compared to
both structured and unstructured variants. We thus
conclude that mode recovery degradation happens
already during data collection, and that parameteri-
zation of ground-truth distributions impacts mode
recovery cost.

Learning: recovering modes with the learned
distribution. The next stage in the chain is learn-
ing, pemp�learning pmodel, in which we train a
model using a training dataset with the expectation
that the model will match the ground-truth distribu-
tion. Our experiments center on the question: how
does mode recovery degradation in the learning
stage compare to that of the data collection stage?
For instance, we anticipate that the learned model
will have a mode recovery cost that is at least as
bad as that of the empirical distribution.

We measure the mode recovery cost reduction
log-rate from empirical to learned distributions,
log

Ok(p∗α‖pemp)
Ok(p∗α‖pmodel)

. Fig.3 shows the reduction log-

rate as a function of k with fixed Ntrain = 5× 105,
for three different ground-truth distributions. We
observe three different cases, with a clear depen-
dency on what kind of data was used during learn-
ing.

Learning with data coming from the unstructured
ground-truth distribution (α = 0.0) results in mode
recovery cost reduction log-rate being close to zero.
This implies that the underlying LSTM model is
able to memorize the unstructured data points com-
ing from the empirical distribution, but it can not
recover any other modes from the ground-truth dis-
tribution.

With the structured ground-truth distribution
(α = 1.0), we observe positive log-rate for some
values of k. This means that the learned distribu-
tion is able to recover modes of the ground-truth
distribution at a lower cost than the empirical distri-
bution does. Similarly to data collection stage, this
largely happens due to the property of LSTM to put
high probabilities on short sequences. The learned
distribution’s ability in mode recovery goes above
that of the empirical distribution when there is a
match between the parameterization of models be-
hind the ground-truth distribution and the learned
distribution.

In the case of the semi-structured ground-truth
distribution (α = 0.3), the learned distribution
has severe mode recovery degradation even with
smaller values of k (left-most side of Fig.3). The
model is unable to perfectly learn an underly-
ing dataset which has a few statistical exceptions
within it.

In addition to our observations about recover-
ing modes from ground-truth distributions, Fig.4
shows at what cost modes of each empirical dis-
tribution are recovered by the learned distribution
as a function of Ntrain. The learned distribution
recovers modes of the empirical distribution with
the highest cost when the latter was induced us-
ing the semi-structured ground-truth distribution.
Mode recovery cost of all empirical distributions
naturally decreases as number of training instances
Ntrain becomes unrealistically high. We conjecture
that the combination of sequences with statistical
dependencies and sequences which do not share
any statistical dependencies in the dataset makes
the learned distribution struggling at mode recovery
from both ground-truth and empirical distributions.

We conclude that properties of ground-truth dis-
tributions have direct impacts on the ability of the
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Figure 4: Mode recovery cost of the learned distribu-
tion from the empirical distribution as a function of
Ntrain while k = 200.

learned distributions to recover modes from ground-
truth and empirical distributions. Learning strug-
gles to capture all patterns from the underlying
distributions when the latter exhibit exceptions in
statistical dependencies within data points.

Decoding: recovering modes with the decoding-
induced distribution. The final stage in the
learning chain is decoding, pmodel�decoding pF ,
in which we use a decoding algorithm F to obtain
highly-probable sequences. We study both a deter-
ministic decoding algorithm, implemented using
beam search, and a stochastic decoding algorithm,
implemented using ancestral sampling. Our experi-
ments are centered on two questions: (1) how do
the choices made earlier in the learning chain af-
fect the decoding behavior? and (2) how is this
behavior affected by the choice of the decoding
algorithm?

We consider six different datasets that we
train models on, each of which is a combina-
tion of the ground-truth distribution where α ∈
{0.0, 0.3, 1.0}, and the number of training points
Ntrain ∈ {5× 105, 5× 106}. Our previous analysis
revealed each of those datasets leads to a substan-
tially different ability of the learned distributions
to recover modes from earlier distributions along
the learning chain. We set Nmodel hs to be equal to
512. Our choice of decoding algorithms results in
decoding-induced distributions with a limited sup-
port. Hence the induced distribution pF often fails
to recover modes of distributions from the earlier
stage of the chain especially as k increases. As we
described in Sec. 3, we use the k-mode set overlap
Ik(·‖pF ) to examine the degree to which a given
decoding algorithm F fails at mode recovery.

First, we study how well the decoding algorithm
recovers modes from the learned distribution. Fig.5
shows k-mode set overlap between learned and
decoding-induced distributions using both beam
search (left) and ancestral sampling (right). Both al-
gorithms fail increasingly more often as k increases.

Ancestral sampling fails substantially more often
than beam search. This is expected given that an-
cestral sampling was not designed to find highly
probable sequences, unlike beam search. Both of
these decoding algorithms fail to recover modes
from the learned distribution most when the learned
distribution was obtained using the semi-structured
ground-truth distribution (α = 0.3), regardless of
the size of the dataset. In other words, the choices
made earlier along the learning chain impact the
decoding-induced distribution’s ability to recover
modes from the learned distribution, regardless of
which decoding algorithm was used.

Second, we investigate how the choice of the de-
coding algorithm influences the difference in how
the decoding-induced distribution recovers modes
of ground-truth and learned distributions. We thus
look at the k-mode set overlap reduction from
ground-truth to learned distributions (Ik(p∗α‖pF )−
Ik(pmodel‖pF )) for both beam search and ancestral
sampling. The positive overlap reduction in Fig.6
means that the decoding algorithm fails more to
recover modes from the learned distribution than
from the ground-truth distribution.

Each decoding algorithm shows a different pat-
tern of the overlap reduction. Reduction is more or
less flat and is close to zero for ancestral sampling
regardless of the choice of the dataset. It is, how-
ever, different with beam search where we have
three observations. First, the reduction overlap de-
viates from zero as k increases. Second, with the
semi-structured ground-truth distribution (α = 0.3)
the overlap deviates most, which is then followed
by the unstructured variant (α = 0.0). Third, the
number of training points Ntrain leads to significant
difference in the case of the semi-structured distri-
bution. Reduction overlap goes very negative with
the smaller number of training instances, while the
trend flips when we have ten times more data. We
thereby conclude that the pattern of mode recovery
degradation along the entire learning chain depends
on the choice of the decoding algorithm.

7 Conclusion

In this paper, we studied the propensity of neu-
ral autoregressive sequence models to assign high
probabilities to sequences that differ from those in
the ground-truth distribution. To measure this phe-
nomenon, we defined mode recovery cost, which
measures a distribution’s ability to recover the
highly probable sequences of another distribution.
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Figure 5: k-mode set overlap between the learned distribution and the decoding-induced distribution as a function
of k. Choices made earlier in the learning chain (including ground-truth distribution, data collection and learning)
affect the degree to which the decoding-induced distribution fails to recover modes from the learned distribution.
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Figure 6: k-mode set overlap reduction from the ground-truth distribution to the learned distribution using the
decoding-induced distribution as a function of k. The choice of the decoding algorithm affects the pattern of mode
recovery degradation along the entire learning chain.

We developed a testbed for evaluating mode recov-
ery cost throughout the entire learning chain.

We provided evidence of non-trivial mode re-
covery cost within this testbed, and observed that
the increase in the cost relies heavily on the struc-
turedness of the ground-truth distribution. Mode
recovery from earlier distributions was more costly
along the learning chain when the ground-truth
distribution was constructed as a product of fully-
structured and fully-unstructured distributions such
that it reflects patterns in real data.

Mode recovery cost at each stage depended
on all the choices made earlier at all the previ-
ous stages. The empirical distribution induced
during data collection recovered modes from the
ground-truth distribution imperfectly regardless of
the dataset size. It was particularly high when we
used the semi-structured ground-truth distribution.
As expected, mode recovery cost was negatively
correlated with a number of training instances.

Mode recovery after learning was directly af-
fected by the choice of the ground-truth distribution
as well. In general, the learned distribution failed to
recover modes from the ground-truth distribution as
well as the empirical distribution does. This trend
flipped, however, when the learned distribution was
parameterized identically to the ground-truth dis-
tribution. Distributions induced during decoding
recovered modes of learned distributions with sig-

nificantly different costs depending on all choices
made at previous stages of the learning chain. The
choice of decoding algorithm was also found to
influence patterns of mode recovery cost. Based on
these observations, we conclude that we have to use
the entire learning chain to study mode recovery in
neural autoregressive sequence modeling.

Future directions. We highlight three main di-
rections of research based on our findings and con-
clusions. First, mode recovery along the learning
chain must be studied in the context of real world
problems. To do so, there is a need for future work
on approximation schemes of mode recovery cost
computable in real tasks. Second, the relationship
between the ground-truth and learned distributions
may be changed to better match real-world cases,
for instance by considering structured ground-truth
distributions that are less similar to the learned
model family, or unstructured components that are
informed by sequence content. Third, we have con-
sidered standard practices of neural autoregressive
modeling while constructing the learning chain.
Extending the learning chain to study the effects
of new approaches such as knowledge distillation
(Kim and Rush, 2016) or back translation (Sennrich
et al., 2016) is another fruitful direction for future
research.
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Martins. 2020. Sparse text generation. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
4252–4273, Online. Association for Computational
Linguistics.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els.

Kenton Murray and David Chiang. 2018. Correct-
ing length bias in neural machine translation. In
Proceedings of the Third Conference on Machine
Translation: Research Papers, pages 212–223, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju,
Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott,
Kurt Shuster, Eric M Smith, et al. 2020. Recipes
for building an open-domain chatbot. arXiv preprint
arXiv:2004.13637.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers).

Xing Shi, Yijun Xiao, and Kevin Knight. 2020. Why
neural machine translation prefers empty outputs.

Pavel Sountsov and Sunita Sarawagi. 2016. Length
bias in encoder decoder models and a case for global
conditioning. In EMNLP 2016 - Conference on Em-
pirical Methods in Natural Language Processing,
Proceedings.

Felix Stahlberg and Bill Byrne. 2019. On NMT search
errors and model errors: Cat got your tongue? In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3354–
3360, Hong Kong, China. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762.

Sean Welleck and Kyunghyun Cho. 2020. Mle-guided
parameter search for task loss minimization in neu-
ral sequence modeling.

Sean Welleck, Ilia Kulikov, Jaedeok Kim,
Richard Yuanzhe Pang, and Kyunghyun Cho.
2020a. Consistency of a recurrent language model
with respect to incomplete decoding. arXiv preprint
arXiv:2002.02492.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di-
nan, Kyunghyun Cho, and Jason Weston. 2020b.
Neural text generation with unlikelihood training. In
International Conference on Learning Representa-
tions.

https://doi.org/10.18653/v1/p16-1231
https://doi.org/10.18653/v1/p16-1231
https://openreview.net/forum?id=W1G1JZEIy5_
https://openreview.net/forum?id=W1G1JZEIy5_
https://openreview.net/forum?id=B1l4SgHKDH
https://openreview.net/forum?id=B1l4SgHKDH
https://doi.org/10.18653/v1/2020.coling-main.398
https://doi.org/10.18653/v1/2020.coling-main.398
https://doi.org/10.18653/v1/2020.coling-main.398
https://doi.org/10.18653/v1/d16-1139
https://doi.org/10.18653/v1/d16-1139
https://doi.org/10.18653/v1/2020.emnlp-main.348
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1609.07843
https://doi.org/10.18653/v1/W18-6322
https://doi.org/10.18653/v1/W18-6322
https://doi.org/10.18653/v1/p16-1009
https://doi.org/10.18653/v1/p16-1009
http://arxiv.org/abs/2012.13454
http://arxiv.org/abs/2012.13454
https://doi.org/10.18653/v1/d16-1158
https://doi.org/10.18653/v1/d16-1158
https://doi.org/10.18653/v1/d16-1158
https://doi.org/10.18653/v1/D19-1331
https://doi.org/10.18653/v1/D19-1331
http://arxiv.org/abs/2006.03158
http://arxiv.org/abs/2006.03158
http://arxiv.org/abs/2006.03158
https://openreview.net/forum?id=SJeYe0NtvH

