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Abstract
Ideally, people who navigate together in a com-
plex indoor space share a mental model that
facilitates explanation. This paper reports on
a robot control system whose cognitive world
model is based on spatial affordances that gen-
eralize over its perceptual data. Given a target,
the control system formulates multiple plans,
each with a model-relevant metric, and selects
among them. As a result, it can provide read-
ily understandable natural language about the
robot’s intentions and confidence, and gener-
ate diverse, contrastive explanations that ref-
erence the acquired spatial model. Empirical
results in large, complex environments demon-
strate the robot’s ability to provide human-
friendly explanations in natural language.

1 Introduction

Inspired by recent recommendations for spoken lan-
guage interaction with robots (Marge et al., 2020),
this paper introduces WHY, an approach to commu-
nicate a robot’s planning rationales, intentions, and
confidence in human-friendly spatial language. Our
thesis is that a plan based on spatial representations
acquired from travel experience can ground its ob-
jectives and support explainable path planning. The
principal results of this paper are empirical demon-
strations of WHY’s ability to explain and contrast
plans in readily-understandable natural language.

Given sensor data and a metric map (e.g., a floor
plan), the task of our autonomous robot naviga-
tor is to travel to target locations in a large, com-
plex, human-centric, indoor space (henceforward,
world). The robot’s control system integrates ac-
quired spatial knowledge into a cognitively-based
architecture that combines planning with reactivity,
heuristics, and situational reasoning. Given a tar-
get, the control system creates a plan, a sequence
of intermediate locations (waypoints) to reach it.
This plan is expected to balance multiple objectives,
combine continuous and discrete spatial represen-
tations, and encourage a human’s trust.

Traditional navigation planners use a cost graph
(also known as a costmap) where each node is a
point in unobstructed space and each edge connects
a pair of nodes with a weight for the cost to move
between them. A popular cost graph is based on an
occupancy grid, uniform square cells superimposed
on a two-dimensional metric map. Each edge in the
graph represents two adjacent unobstructed cells,
labeled with the Euclidean distance between their
centers. In a fine-grained grid, however, optimal
planners (e.g., A* (Hart et al., 1968)) hug obstacles
so tightly that their plans require tight maneuvers
to reach some waypoints and may fail as actuator
and sensor errors accumulate near them.

To bias plans toward its particular objective (a
spatial representation or commonsense rationale), a
planner modifies the weights in its own copy of the
occupancy-grid graph. The fixed underlying graph
structure allows our approach to evaluate a plan
within any such modified graph. Voting then selects
the plan that best satisfies all the objectives. This
approach facilitates contrastive natural-language
explanations of the chosen plan with respect to each
objective. The control system reports on its beliefs,
intentions, and confidence with spatial language.
For example, “Although there may be another way
that is somewhat shorter, I think my way is a lot
better at going through open areas.”

The next sections provide related work and de-
scribe the acquired spatial model. Subsequent sec-
tions cover the modified graphs, vote-based plan-
ning, and how WHY explains plans. The last sec-
tions describe empirical results and future work.

2 Related work

A spatial representation of its world is essential to a
robot control system that navigates efficiently and
explains its behavior clearly. Grounded commu-
nication between a robot and a person, however,
requires a shared spatial representation. This sec-
tion first describes work on human cognitive maps
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that inspired our control system’s spatial model. It
then details approaches that describe and explain
the robot’s behavior.

A cognitive map is a compact, mental spatial
representation of a world, built by a person as
she moves through that world (Golledge, 1999).
To reduce her cognitive load, a person reasons
from a cognitive map that incorporates landmarks,
route knowledge, and survey knowledge (Tversky,
1993). Landmarks represent locations in the map,
routes represent lines that connect them, and survey
knowledge captures spatial relations. Although it
has been suggested that cognitive maps use met-
ric distances and angles (Gallistel, 1990), more re-
cent work indicates that cognitive maps have a non-
metric, qualitative topological structure (Foo et al.,
2005). Other recent work suggests that people use
a cognitive graph with labeled metric information
that captures connectivity and patterns (Chrastil
and Warren, 2014; Warren et al., 2017).

An affordance is a characteristic of the world
that enables the execution of some action (Gibson,
1977). Affordance-based theories of spatial cogni-
tion posit a tight relationship between the specific
dynamics of a world and the decisions made by an
individual there (Fajen and Phillips, 2013). Here,
a spatial affordance is an abstract representation
of the world that facilitates navigation. This pa-
per introduces path planning in cost graphs based
on acquired spatial affordances. People general-
ize structured representations across domains on
similar tasks (Pouncy et al., 2021) much the way
the spatial model described here generalizes affor-
dances for use in different worlds.

A control system can learn and use a cognitive
map of its world for robot navigation. For example,
the Spatial Semantic Hierarchy (SSH) modeled a
cognitive map with hierarchical metric and topo-
logical representations (Kuipers, 2000). Although
SSH’s cognitive map bears some similarity to the
one used here, it did not explain plans. Other ap-
proaches used semantics to create a meaningfully-
labeled metric map (Kostavelis and Gasteratos,
2015). While these maps provide a qualitative con-
text in which to ground a controller’s language,
they do not necessarily align with human cognitive
maps. Moreover, control systems often use seman-
tic maps for communication but another represen-
tation for reasoning and decision-making. Instead,
this paper shows how a single, affordance-based
representation supports all of those processes.

Indoors, an autonomous robot may interact with
people as it navigates to its target. A human collab-
orator is more likely to accept, trust, and understand
a robot that can explain its behavior (Rosenfeld and
Richardson, 2019). Rather than describe an event
or summarize its causes, an explanation compares
counterfactual cases, includes causes selectively,
and recognizes people as social beings with be-
liefs and intentions (Miller, 2019). A contrastive
explanation compares the reason for a decision to
another plausible rationale (Hoffmann and Maga-
zzeni, 2019). Human subjects generally prefer such
explanations that focus on the difference between
the robot’s planned route and their own (e.g., “my
route is shorter, but overlaps more and produces
less reward”) (Perelman et al., 2020).

Detailed technical logs of a robot’s experi-
ence were originally available only to trained re-
searchers (Landsiedel et al., 2017; Scalise et al.,
2017). Recent work, however, has generated natu-
ral language descriptions of a robot’s travelled path
from them. These focus on abstraction, specificity,
and locality (Rosenthal et al., 2016; Perera et al.,
2016) or on sentence correctness, completeness,
and conciseness (Barrett et al., 2017). All, how-
ever, required a labeled dataset or a semantic map.
Other recent work partitions a plan into actions and
uses language templates to generate descriptions of
each action in the context of a collaborating robot
team (Singh et al., 2021). WHY focuses on expla-
nations for the reasons behind the robot’s decisions
rather than descriptions of the robot’s behavior.

To produce explanations, others have selected
potentially suboptimal plans (Fox et al., 2017;
Chakraborti et al., 2019) or readily understandable
behaviors (Huang et al., 2019), or relied on classi-
cal planning (Magnaguagno et al., 2017; Grea et al.,
2018; Krarup et al., 2019) or on logic (Seegebarth
et al., 2012; Nguyen et al., 2020). None of that
work, however, explains in natural language. The
approach closest to the one presented here provides
contrastive explanations for multi-objective path
planning in natural language as a Markov decision
process (Sukkerd et al., 2020), but considers fewer
objectives, requires a hand-labeled map, and has
been evaluated only in much smaller worlds.

3 Spatial affordances

The context of this work is SemaFORR, a
cognitively-based control system for autonomous
indoor navigation (Epstein et al., 2015; Epstein and
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(a) Regions with doors and
exits

(b) A dotted path and its de-
rived solid trail

(c) Trails and conveyors (d) Diagonal hallways

Figure 1: Affordances in a simple artificial world

Korpan, 2019). At decision point d = 〈x, y, θ, V 〉,
SemaFORR records the robot’s location (x, y), its
orientation θ, and its view V , the data from its on-
board range finder. After each target, SemaFORR
identifies spatial affordances for its acquired model
of freespace, the unobstructed areas in a world. The
model can be used alone or with a metric map.

At decision point d, SemaFORR learns a region,
a circle in freespace with center at (x, y) and radius
equal to the minimum distance reported by V . Ac-
cumulated contradictory or overlapping regions are
resolved after each target. An exit represents access
to freespace, a point where the robot’s path once
crossed the region’s perimeter. A door is an arc on
a region’s perimeter, a continuous generalization
of finitely many, relatively close exits between its
endpoints. Figure 1(a) shows acquired regions with
exits and doors (drawn for clarity as secants to their
respective arcs). Although regions approximate
what appear to be rooms in the figure, they record
only freespace, not walls.

A trail is a refined version of the robot’s path
toward its target. The algorithm that creates trails
heuristically smooths the robot’s paths and elim-
inates digressions. The remaining (usually far
fewer) decision points are trail markers. As in
Figure 1(b), the sequence of line segments defined
by consecutive trail markers is typically more di-
rect than the original path, but rarely optimal. A
conveyor is a freespace cell in a 2× 2m grid super-

Table 1: SemaFORR’s planners and their objectives

Planner Objective
FASTP Minimize distance traveled
SAFEP Avoid obstacles
EXPLOREP Avoid paths
NOVELP Avoid spatial model
CONVEYP Exploit conveyors
HALLWAYP Exploit hallways
REGIONP Exploit regions, doors, exits
TRAILP Exploit trail markers

imposed on the world’s footprint. Conveyors tally
how often trails pass through them. Higher-count
cells represent locations that frequently support
travel. They appear darker in Figure 1(c).

A hallway represents well-travelled routes in
some angular direction (vertical, horizontal, major
diagonal, or minor diagonal). A hallway general-
izes line segments between consecutive decision
points to find relatively straight, narrow, continuous
freespace with both length and width. Figure 1(d)
shows some acquired minor-diagonal hallways.

4 Modified cost graphs

Planning for navigation requires a graphical repre-
sentation of the world’s freespace. To produces an
optimal plan, A* searches a cost graph G based on
an occupancy grid with edge weights for Euclidean
distance. SemaFORR constructs a set of graphs;
each begins with G but modifies its edge weights
to align with a particular objective. This biases
search toward that objective but still considers plan
length. In practice, an occupancy grid should be
sufficiently fine to represent obstacles accurately.

Table 1 lists SemaFORR’s planners and their
objectives. Given a target, each planner formu-
lates its own plan to reach it, one biased toward its
own objective. Two planners focus on common-
sense: FASTP searches the original G, but SAFEP
increases G’s edge weights based on an edge’s
proximity to obstacles. Two others focus on ex-
ploration to acquire more knowledge about their
world. EXPLOREP creates a grid that tallies how
frequently the robot’s path history passes through
each cell, and uses those values to increase edge
weights where it has already traveled. Because
the acquired spatial model summarizes experience
more compactly than a path, NOVELP explores ar-
eas not covered by the model. It increases a weight
if the edge overlaps an acquired affordance.
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Four planners exploit a particular kind of spatial
affordance with changes to edge weights. (Values
based on preliminary testing bias plans to pursue
but not overemphasize affordances.) REGIONP’s
cost graph modifies each edge’s weight w based
on the location of its endpoints. If both lie in the
same region, w goes unchanged; if neither lies in
a region w becomes 10w. Otherwise, for the one
endpoint v not in a region, w becomes 1.5w if v
is within 0.5m of a door and an exit, 1.75w if v is
within 0.5m of a door or an exit, and otherwise 2w.
This biases plans to pass through regions because
it increases edge costs outside them.

HALLWAYP and TRAILP modify their weights
similarly, with respective conditions “lie in one
hallway” and “lie within 0.5m of a trail marker.”
If both endpoints of an edge meet the condition,
w goes unchanged; if neither does, w becomes
10w. Otherwise, when just one endpoint meets
the condition, w becomes 1.5w. To bias plans to-
ward high-count conveyors, CONVEYP considers
the counters c1 and c2 for the cells where the end-
points of an edge with weight w lies. If both are
non-zero, w becomes w + 2/(c1 + c2); otherwise,
w becomes 10w.

Because SemaFORR’s spatial model focuses on
freespace, these modified cost graphs allow a robot
control system to encourage travel there but also
incorporate the metric cost graph where the model
lacks knowledge. The region-based cost graph, for
example, imposes relatively lower costs only for
doors and exits that the robot has successfully ex-
ploited earlier, and thus prioritizes them. Because
weights only increase, Euclidean distance remains
an admissible heuristic for A*, that is, it never over-
estimates the actual cost to the target’s location.

5 Voting among planners

To choose paths, people use many different objec-
tives that reflect their motivation (Golledge, 1999).
A cognitively-based robot navigator should also
incorporate and balance a variety of path-selection
heuristics. SemaFORR’s planners can be used to-
gether because they originate from the same cost
graph. This section explains Algorithm 1, pseu-
docode for how voting balances the planners’ ob-
jectives to select a plan.

SemaFORR constructs multiple plans that op-
timize a single objective and then uses voting to
select the plan that maximally satisfies the most
objectives. First, each planner j constructs an op-

Algorithm 1: Voting-based planning
Input: planners J , spatial model M , basic
cost graph G

for each planner j ∈ J do
Set j’s cost graph Gj to a copy of G
Modify Gj’s weights based on j and M
With A*, find optimal plan Pj in Gj

for each planner j ∈ J do
for each planner i ∈ J do

Cij ← cost of plan Pi in Gj
Normalize plan scores Cij in [0,10]

for each plan Pi do
Scorei ←

∑J
j=1Cij

best← argmini Scorei
return Pbest

timal plan Pj for its objective as a sequence of
waypoints in its modified cost graph Gj . This guar-
antees that each submitted plan is optimal for at
least one objective.

Next, each planner’s objective is used to evaluate
every plan. All the cost graphs have the same nodes
and edges, so to evaluate planner i’s plan Pi from
the perspective of planner j, SemaFORR simply
sums the edge weights in Gj for the sequence of
edges specified by Pi. The resultant scores Cij are
then normalized in [0, 10] for each j. SemaFORR
seeks to minimize its objectives. Thus a Cij value
near 0 indicates that plan Pi closely conforms to
objective j, while a score near 10 indicates that plan
Pi conflicts with objective j. Voting selects the plan
with the lowest total score across all objectives and
breaks ties at random.

6 Contrastive explanations

SemaFORR uses WHY to explain its long-range
perspective in natural language. WHY exploits dif-
ferences among planners’ objectives to produce
clear, concise, contrastive explanations for a plan
quickly. WHY assumes that the robot’s human com-
panion seeks a shortest-length plan, and compares
that to SemaFORR’s plan. Although we assume
here that a goal-directed human navigator would
seek to minimize travel distance, another objective,
including those in Table 1, could label the founda-
tional cost graph G instead.

Throughout this section,N represents a function
that translates its argument (a planner or a metric
value) into natural language. Given a real-valued
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Figure 2: WHY compares FASTP’s (red) plan to
TRAILP’s (blue) one biased by SemaFORR’s (green)
trails. It explains, “Although there may be another way
that is a lot shorter, I think my way is a lot better at
following ways we’ve gone before.”

metric m for some aspect (e.g., confidence or en-
thusiasm) of the decision process,M(m) bins m’s
value into an ordered partition of m’s range and
N (M(m)) translates that bin to a natural language
phrase. For example, m could measure the desire
to select one plan over the others, and the value
partition could distinguish a strong preference for
that plan from a weak one. Thus, if m ∈ (0,+∞)
were partitioned as {(0, 5), [5,+∞)}, N (m < 5)
could be “a little” and N (m ≥ 5) “a lot.” This
allows WHY to hedge in its responses, much the
way people explain their reasoning when they are
uncertain (Markkanen and Schröder, 1997).

6.1 Why does your plan go this way?
Human and robot plans to reach the same target
may differ because they lack a common objective.
WHY’s response to this question presumes that a
human plans from one perspective, objective βH ,
while the robot plans from another perspective, ob-
jective βR. Explanations for a plan assume a hu-
man has an alternative objective. Henceforward,
βH is “take the shortest path.”

WHY models the human questioner with βH to
produce plan PH , a prediction of the human’s im-
plicit plan. Algorithm 2 is pseudocode for WHY’s
plan-explanation procedure. WHY takes as input
the robot’s plan PR and objective βR, and the alter-
native plan PH and objective βH it attributes to the
human questioner. βH(P ) measures plan length
and βR(P ) measures plan cost in PR’s graph. In
the running example shown in Figure 2, WHY ex-

Algorithm 2: Explanation procedure
Input: planning objectives βR and βH ,
plans PR and PH

Output: explanation
DR = βR(PR)− βR(PH)
DH = βH(PR)− βH(PH)
switch mode(DR, DH ) do

case DR = DH = 0 do
explanation← sentence based on
template for equivalent plans

case DR < 0 and DH > 0 do
explanation← sentence for βR, βH

case DR < 0 and DH = 0 do
explanation← sentence for βR

return explanation

plains SemaFORR’s preference for its plan PR
from TRAILP where βR is TRAILP’s objective
(“exploit trail markers”). WHY translates βH and
βR with Table 2 as “short” and “follows ways
we’ve gone before,” respectively.

If voting selected the plan constructed by FASTP
(i.e., the shortest-length plan), then Why responds
with “I decided to go this way because I agree that
we should take the shortest route.” Otherwise, to
compare PR with PH , WHY calculates their differ-
ence from two perspectives: DH from the human’s
perspective (e.g., length), and DR from the robot’s
perspective (e.g., proximity to trails). WHY places
these differences in user-specified bins that repre-
sent a human perspective on the objectives. Table
3 provides language for these differences.

The relative size of the differences determines
an applicable template. If both DH and DR, as
defined in Algorithm 2, are 0, then the plans equally
address the two objectives, and WHY explains “I
decided to go this way because I think it’s just as
N (βH) and equally N (βR).” Otherwise, the plans
differ with respect to one or both objectives. If DR
is negative (e.g., PR is more aligned with trails),
then WHY instantiates this template:
1: Although there may be another way that is
N (M(DH)) N ∗(βH),
2: I think my way is N (M(DR)) N ∗(βR).
where N ∗(β) is a comparator for β (e.g., “shorter”
or “better at following ways we’ve gone before”).
For example, “Although there may be another way
that is somewhat shorter, I think my way is a lot
better at following ways we’ve gone before.” WHY

omits line 1 in the template ifDH = 0. Other cases,
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Table 2: Language for the planners’ objectives. N ∗(β) andN ′(β) values for FASTP and EXPLOREP are as shown.
For the others, N ∗(β) ≈ N ′(β), where N ∗(β) begins with “better at” and N ′(β) begins with “worse at.”

Planner N (β) N ∗(β) N ′(β)
FASTP short shorter longer
EXPLOREP goes a new way newer familiar
SAFEP stays far from obstacles staying far from obstacles
NOVELP learns something new learning something new
CONVEYP goes through well-traveled areas going through well-traveled areas
HALLWAYP follows hallways following hallways
REGIONP goes through open areas going through open areas
TRAILP follows ways we’ve gone before following ways we’ve gone before

Table 3: Language for value intervals for the difference
D. For affordance-based planners a=150 and b=25, for
SAFEP a=0.35 and b=0.15, for EXPLOREP a=100 and
b=15, and for NOVELP a=350 and b=100.

Planner IntervalsM(D) N (M(D))
(0, 1] a bit

FASTP (1, 10] somewhat
(10,+∞) a lot
(−∞,−a] a lot

All others (−a,−b] somewhat
(−b,+∞) a bit

where DH < 0 or DR > 0 cannot occur because
each planner is optimal with respect to its own cost
graph and objective, as described in Section 5.

6.2 Why do you prefer your plan?
WHY also addresses the question “Why do you
prefer your plan?” Unlike the previous response,
which contrasted the human’s objective with the
robot’s, this response has the robot explain its ob-
jective. If voting selects the FASTP plan, which the
robot assumes has the same objective as its human
companion, WHY would respond “Actually, I agree
that we should take the shortest route.” Otherwise,
WHY uses the differences DH and DR from Al-
gorithm 2. If they are both 0, then WHY replies,
“I think both plans are equally good.” Otherwise,
WHY responds with the template “I prefer my plan
because it’s N (M(DR)) N ∗(βR).” For example,
to explain why SemaFORR chose TRAILP’s plan,
WHY might say “I prefer my plan because it’s a lot
better at following ways we’ve gone before.”

6.3 What’s another way we could go?
Figure 3 shows an example where WHY responds
to “What’s another way we could go?” Because
WHY has access to two plans from SemaFORR

Figure 3: Acquired conveyors in green, with darker
higher-count cells. Voting chose CONVEYP’s (blue)
plan which is drawn to high-count cells. In response
to “What’s another way we could go?” WHY compares
the conveyor plan with FASTP’s (red) plan: “We could
go that way since it’s a bit shorter but it could also be a
bit worse at going through well-traveled areas.”

(PR and PH ), it can provide PH , the shortest-path
plan, as the alternative plan in response. If voting
selects the FASTP plan, which uses the same objec-
tive as the robot’s human companion, then WHY

responds “Yours is the best way to go.” Otherwise,
it instantiates the template: “We could go your
way since it’s N (M(DH)) N ∗(βH) but it could
also be N (M(DR)) N ′(βR).” Here N ′ denotes
an opposite comparator (e.g., “longer” or “worse at
following ways we’ve gone before”). For example,
an explanation is “We could go that way since it’s
somewhat shorter but it could also be a lot worse
at following ways we’ve gone before.”

6.4 How sure are you about your plan?

In response to “How sure are you about your plan?”
WHY explains its confidence that PR meets its ob-
jective. Figure 4 shows an example. WHY uses the
language forM(DR) andM(DH) from Table 3 to
extract a value C = N (M(DR,DH)) from Table
4. WHY then instantiates “I’m N (C) sure because”
followed by line C:
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Figure 4: Highlighted sections of FASTP’s (red) plan
and TRAILP’s (blue) plan to follow acquired (green cir-
cle) trail markers. WHY explains “I’m really sure be-
cause my plan is a lot better at following ways we’ve
gone before and only a bit longer than your plan.”

Table 4: Language N (M(DR,DH)) for confidence
compares M(DR) and M(DH) from Table 3. Here,
1 denotes “really,” 2 = “only somewhat,” and 3 = “not.”

N (M(DH))
N (M(DR)) “a lot” “somewhat” “a bit”

“a lot” 2 1 1
“somewhat” 3 2 1

“a bit” 3 3 2

1: my plan is N (M(DR)) N ∗(βR) and only
N (M(DH)) N ′(βH) than yours.
2: even though my plan is N (M(DR)) N ∗(βR),
it is also N (M(DH)) N ′(βH) than yours.
3: my plan is N (DH) N ′(βH) and only N (DR)
N ∗(βR) than yours

6.5 How are we getting there?

“How are we getting there?” shows a human com-
panion’s uncertainty about the route planned to
reach their shared target. Rather than reference the
planner’s objective, WHY treats this as a request
for a high-level description of PR itself, and uses
the segments between consecutive waypoints in Se-
maFORR’s plan PR to produces natural language
that describes it. Figure 5 shows an example.

WHY anticipates travel with PR as an ordered
sequence of locations from the robot’s current loca-
tion through PR’s waypoints and then to the target.
First, WHY forms plan segments from consecu-
tive locations in PR and computes each segment’s
length and angular direction χ (based on the angle
between its endpoints relative to a fixed horizontal
axis). It then bins χ within an intervalM(χ) and
assigns a label N (M(χ)) as shown in Table 5.

These labels are allocentric, and therefore less

Figure 5: SemaFORR’s FASTP plan with 92 waypoints
from the robot to its target. WHY explains in 9 clauses,
“We will go straight about 20 meters, turn right a little,
go straight about 4 meters, turn left a little, go straight
about 20 meters, turn left a little, go straight about 8
meters, turn left a little, and go straight about 4 meters
to reach our target.”

Table 5: Labels N (M(χ)) for segment angle intervals
M(χ). Language N (α) adjusts the change in con-
secutive angular directions for full 2π rotation: α =
N (M(χk))−N (M(χk−1))) mod 8.

M(χ) N (M(χ)) α Phrase N (α)

[−7π8 , −5π8 ) 2 0 go straight
[−5π8 , −3π8 ) 3 1 turn left a little
[−3π8 , −π8 ) 4 2 turn left
[−π8 ,

π
8 ) 5 3 turn hard left

[π8 ,
3π
8 ) 6 4 turn around

[3π8 ,
5π
8 ) 7 5 turn hard right

[5π8 ,
7π
8 ) 8 6 turn right

otherwise 1 7 turn right a little

appropriate indoors. WHY translates them to an
egocentric frame of reference, as if the robot and its
companion faced the same way along the intended
route. The change in consecutiveN (M(χ)) labels
represents the change in direction from one path
segment to the next. N (α) is language for α, the
angular change in χ from one segment to the next.
For example, if the first segment in PR were labeled
2 and the second segment labeled 7, then α = 5
which Table 5 translates as “turn hard right.”

Plan PR now has a sequence of phrases for
the points where two consecutive segments meet.
WHY inserts a “go straight” after each “turn”
phrase. WHY then summarizes consecutive “go
straight” phrases into a single one (since they in-
dicate no change in direction) with a length L, the
sum of the lengths of the segments that induced
it. These Ls are binned into intervals and reported
in natural language (e.g., 5.7m lies in (4, 6] with
language “about 6 meters”).

WHY combines the list of phrases and lengths
appropriately to form a succinct explanation with
the template “We will [N (α) {aboutN (M(L))},]
to reach our target.” It repeats the material in square
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Table 6: How often planners won the vote

Planner M5 H10 G5 Total
FASTP 25.0% 42.9% 32.4% 33.4%
SAFEP 37.0% 25.7% 27.5% 30.1%
EXPLOREP 9.0% 6.9% 4.9% 6.9%
NOVELP 0.0% 0.0% 0.0% 0.0%
CONVEYP 14.0% 7.4% 16.5% 12.6%
HALLWAYP 6.0% 9.1% 6.6% 7.2%
REGIONP 5.5% 6.3% 0.5% 4.1%
TRAILP 3.5% 1.7% 11.5% 5.6%

brackets for each N (α), and includes the material
in curly brackets only when N (α) is “go straight.”

In summary, WHY produces natural explana-
tions for a robot’s plan as it travels through a com-
plex world. These explanations are essential for
human-friendly autonomous indoor navigation and
require an assumption about its human collabora-
tor’s objective. Our approach explains the robot’s
plan, responds to questions about alternatives, and
expresses a human-friendly level of confidence.

7 Empirical Evaluation

SemaFORR with WHY is evaluated on three chal-
lenging real worlds: M5, H10, and G5. M5 is the
fifth floor of New York’s Museum of Modern Art.
It is 54× 62m and has 1585m2 freespace. H10 is
the 89× 58m tenth floor of an academic building
with 2627m2 of freespace and 75 rooms. G5 is the
110 × 70m fifth floor of a renovated Manhattan
building. G5 has about 4021m2 of freespace, 180
rooms, and many intersecting hallways. It is known
for its ability to perplex human navigators, despite
color-coded walls and art introduced as landmarks.
All testing was in simulation with ROS, the state-
of-the-art robot operating system (Quigley et al.,
2009). MengeROS manages the simulation and
deliberately introduces error into both the sensor
data and action execution (Aroor et al., 2017).

To evaluate WHY we randomly sampled 5 se-
quences of 40 targets in each world’s freespace.
Table 6 reports how often voting selected each plan-
ner’s submission. Two-thirds of the selected plans
were based on a modified cost graph, about half of
them biased by SemaFORR’s spatial model. Be-
cause SemaFORR revises its model incrementally,
as the robot addresses more targets, it begins to
value EXPLOREP’s plans less than model-based
ones. For example, by the second 20 targets in each
sequence of 40, plans based on the spatial model

Table 7: Analysis of explanation results with number
of unique phrasings and average readability scores

Unique phrasings M5 H10 G5 All
Why this way? 38 30 39 49
How sure are you? 24 19 26 30
Another way? 24 19 26 30
Why yours? 17 15 16 18
How to get there? 199 175 182 556
Average readability M5 H10 G5 All
Why this way? 4.7 5.3 5.3 5.1
How sure are you? 6.6 6.6 6.7 6.7
Another way? 3.8 2.7 3.5 3.3
Why yours? 6.8 7.0 7.2 7.0
How to get there? 7.7 7.8 7.8 7.8

were chosen 8.2% more often, and EXPLOREP’s
plans 5.4% less often. No plan from NOVELP was
ever selected because its plans typically performed
poorly in the four affordance-based graphs. Voting,
however, included NOVELP to preserve a potential
trade-off between exploration and exploitation.

We evaluated WHY for its efficiency (average
computation time) and diversity (number of unique
explanations produced in response to each ques-
tion). We also calculated the understandability
of these explanations by average reading grade
level, as measured by the Coleman-Liau index
(CLI) (Coleman and Liau, 1975). Since WHY’s
goal is to produce explanations for non-experts,
lower grade-level scores are more desirable. While
one could manipulate the templates to improve
these scores, CLI provides a method to compare
the complexity of responses to one another.

Table 7 analyzes WHY’s answers to all 3000
(5 questions · 40 targets · 5 sequences · 3 worlds)
questions. Its distinct natural explanations simulate
people’s ability to vary explanations based on con-
text (Malle, 1999). WHY averaged 10.4 msec to
compute explanations for all five questions about
each plan. WHY’s approach is also nuanced, with
many unique responses per question. For exam-
ple, WHY produced 49 unique responses to “Why
does your plan go this way?” out of the 92 possi-
ble instantiations of the template. The CLI gauged
them at about a sixth-grade reading level, readily
understandable to a layperson.

8 Discussion

To capture useful spatial affordances for its world
model, SemaFORR generalizes over its percepts,
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the 660 distances to the nearest obstacle that its
range finder reports 15 times per second. Each of
SemaFORR’s planners generates paths in a graph
biased by edge weights that represent that planner’s
objective but share an underlying structure that fa-
cilitates plan comparison. Voting guarantees that
any selected plan will be optimal with respect to
at least one objective, and makes it likely that the
plan will also perform well with respect to the oth-
ers. This also facilitates contrastive explanations
in natural spatial language for the robot’s planning
objectives, alternative paths, and confidence.

How a robot control system represents knowl-
edge is integral to natural communication between
robots and people, especially in a spatial context.
Misunderstandings between a robot and a human
often arise from a discrepancy between their spa-
tial mental models. This prompts questions about
the robot’s underlying decision-making and rea-
soning mechanisms. WHY’s explanations rely
on SemaFORR’s cognitive underpinnings. Lan-
guage about the spatial model is readily under-
stood because SemaFORR interprets its percepts
much the way people do. SemaFORR’s freespace
affordances were inspired by sketches after hu-
man subjects had actively explored complex virtual
worlds (Chrastil and Warren, 2013). The planners’
objectives are also analogous to processes empir-
ically identified in people (Hölscher et al., 2009).
The results here demonstrate that natural language
communication with robots benefits substantially
when a robot’s control system and a human have
similar cognitively-based spatial representations.

WHY’s templates flexibly and quickly produce
many different explanations in natural language.
The templates focus language generation on Se-
maFORR’s computational rationale rather than on
linguistic structure and grammar. They also fa-
cilitate the introduction of new planners without
the need to retrain a language generator for a new
planning objective. For example, an objective that
relied on landmarks could modify the cost graph
to reduce costs near them, so that WHY might ex-
plain “I think my way is a lot better at following
landmarks.” Although WHY assumes the human’s
objective is the shortest path, it can easily substi-
tute any objective representable in a cost graph
with an admissible heuristic. SemaFORR could
also incorporate a planning objective learned from
external demonstration (e.g., inverse reinforcement
learning) if that objective were representable as

increments to the cost graph’s weights.
Whenever SemaFORR selects FASTP’s plan

here, it assumes that it shares the human’s objective.
Any questions about the robot’s plan necessarily
challenge that assumption. Presumably, the person
asks because they do not recognize their objective
there. WHY responds by agreement that the per-
son’s plan is the correct way to go (e.g., “Actually,
I agree that we should take the shortest route.”),
even though the question should not have arisen.
Another way to address this would be to offer an
alternative plan when FASTP is selected.

Our current work examines how well human sub-
jects understand and feel comfortable with WHY.
Although SemaFORR’s parameters for intervals
(e.g., in Table 3) were chosen for G5 and also
worked well in other worlds, humans subject evalu-
ation will allow us to confirm or reassess these
values. Human-subject studies could also help
refine WHY’s explanations and incorporate psy-
chophysics and proxemics.

Future work could extend WHY for dialogue
(e.g., to clarify confusion or guide navigation (Ro-
man et al., 2020)). This could incorporate natural
language generation with deep learning and facil-
itate queries to the person. WHY presumes that
questions arise from a difference between the hu-
man’s and the robot’s objectives, but they could
also stem from a violation of the shared target
assumption. A broader system for human-robot
collaboration would seek the cause of such a mis-
match, use plan explanations to resolve it, and then
allow the robot to adjust its responses based on
feedback from its human partner. For example,
given a plan P from a person or an unspecified
heuristic planner, WHY could use the individual
objectives in its repertoire to tease apart and then
characterize how P weighted its objectives (e.g.,
“So distance is more important than travel time?”).

Meanwhile, SemaFORR’s cognitively-based
spatial model supports important path planning
objectives and human-friendly explanations of its
behavior, intentions, and confidence. Empirical re-
sults in three large, complex, realistic worlds show
that our approach produces diverse, understandable
contrastive explanations in natural language.
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